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DevOps is a novel trend that aims to bridge the gap between software 
development and operation teams. When applied to the performance 
evaluation process, it brings new challenges since developers need to be 
aware of the deployment settings and application runtime characteristics. At 
the operational stage, several uncertainties, e.g., workload fluctuations and 
resource availability, may affect the performance analysis. The goal of this 
paper is to identify the uncertain parameters and quantify their propagation 
to performance analysis results, in order to bring upfront the main system 
criticisms. To this end, we make use of a popular big data system showing 
that the sources of uncertainty may span on different characteristics and the 
performance analysis results can be heavily affected by these uncertainties. 
The paper contributes as an experience report aiming to better identify 
performance uncertainties through a case study. It provides a step-by-step 
guide to practitioners for controlling system uncertainties. 
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Introduction 
DevOps is a recent trend aimed at integrating development (Dev) and operational (Ops) teams 
together5. One of the needs for such an integration is driven by the requirement to continuously 
adapt software system designs based on operational uncertainties, such as workload fluctuations 
and resource availability. Such uncertainties inevitably affect the dependability characteristics of 
systems (e.g., performance and reliability) which may suffer and produce negative consequences. 
For instance, a software system can initially perform well with high throughput and low response 
time, but its performance may suddenly degrade due to reasons like workload fluctuations or 
software upgrades. To make informed decisions, DevOps teams need to be aware of uncertainties 
in the whole DevOps life-cycle to be able to interpret data, models, and results accordingly. Support 
in this direction can be provided by: (i) identifying sources of uncertainty in a performance-aware 
DevOps scenario; (ii) elaborating how these uncertainties manifest in input data, design models 
and operational results; (iii) performing a sensitivity analysis to quantify the impact of these sources 
of uncertainty for results interpretation. Hence, it is necessary to put in place a set of methodologies 
that model and control these uncertainties so that violations of performance requirements can be 
detected and thus, bridging the operational performance issues within the decision process of 



software designers. In literature, uncertainty embeds the concept of variability (i.e., the natural 
variation of some parameters) and it is recognized to be very relevant in the analysis process1,2. 
Hence, it is necessary to include some form of uncertainty representation12 into the engineering 
process and to identify software characteristics that are not completely known. There exist 
performance prediction approaches that provide a sensitivity analysis of many parameters by 
monitoring a system or by considering reasonable guesses by the domain experts. However, such 
model-based approaches are typically used for predicting performance of the system as a result of 
system configuration6 or external uncertainties. However, such estimations are only 
approximations and may result in low accuracies which could be misleading in the software 
development process14.  
There are two main contributions of this paper: (1) we make the developers aware of the system 
uncertainties; (2) we run a sensitivity analysis to highlight the main system criticisms leading to 
performance issues. This experience demonstrates that it is fundamental to bring the sources of 
uncertainty up-front in the DevOps process to make the developers aware of such uncertainties, 
thus to guarantee the stakeholders' performance expectations. 

 

Related work 
This section briefly reviews related works that have been defined to model, analyze, and minimize 
the software system uncertainties. Note that variability can be considered a specific case of 
uncertainty since it includes the specification of parameters subject to varying values, whereas 
uncertainty also considers the lack of knowledge12. 

Modeling and Analyzing Uncertainty 
The concept of uncertainty is discussed in many scientific fields. Kennedy and O'Hagan distinguish 
between six sources of uncertainty for models implemented in source code8: 1) Parameter 
uncertainty -- originating in the challenge of calibrating the model, i.e., aiming at finding the actual 
parameter input values; 2) Model uncertainty -- the difference between the real world process and 
the code output given to the system model; 3) Residual uncertainty -- due to an inherently 
unpredictable real world process. Even under stable conditions, such a process might produce 
different output when repeated; 4) Parametric uncertainty -- introduced when some of the input 
conditions are not specified by the parameter input, either intentionally or due to an uncontrollable 
process; 5) Observation error -- occurring when actual observations are used to calibrate the 
system model; 6) Code uncertainty -- variations in the output produced from executing a system 
model on a given platform. Ramirez et al. introduced an uncertainty taxonomy to establish a 
common vocabulary for the self-adaptive software community10. This taxonomy is composed of 
three phases of the development life-cycle: requirements, design, and run-time. In particular, the 
authors identified 26 sources of uncertainty, ranging from missing requirements to sensor noise. A 
taxonomy highlighting three aspects of uncertainty: location, level, and nature9. This taxonomy 
helps to understand i) where uncertainty manifests in the model, ii) what the level of uncertainty is 
(from deterministic knowledge to not even being certain about being uncertain), and iii) whether the 
uncertainty is caused by lack of measurement data or by inherent randomness in the model. 
 
Minimizing Uncertainty 
Minimizing uncertainty results to be an open research challenge. Research effort has been invested 
in order to minimize the uncertainty in software engineering experiments. Three main techniques 
have been adopted in this context. First, a widely adopted resolution of minimizing performance-
related uncertainty is through repeated measurement7. The instability of performance 
measurements leads to uncertainties of performance evaluation results. Such measurements may 
be misleading and incorrect without providing measures of variation7. Georges et al.3 
recommended computing a confidence interval for repeated performance measurements when 
doing performance evaluation. With the knowledge of variation from repeated measurement, 
rigorous statistical techniques can be used to minimize uncertainty. Second, another attempt to 
minimize uncertainty is to gain more knowledge about the nature of the system based on extensive 
modeling and simulation. With models, it is possible to specify the uncertainty of parameters values 



through probability distribution functions13. In this way, Monte-Carlo based simulation allows to 
extract samples of parameter values to minimize the uncertainty. Goldsby and Cheng4 developed 
a model-based approach that generates a system model to simulate system behavior in complex 
environments. Developers can use such model to interactively understand the uncertainty in such 
environment. Third, another way to minimize uncertainty is to provide more information about the 
subject system, and uncertainties can be reduced. Yuan et al.15 enriched the monitoring of system 
by attaching more runtime information. 

Decisions in a Performance-aware DevOps Life-cycle Leading to Uncertainty 
In this section, we describe the envisioned performance-aware DevOps life-cycle whose high-level 
illustration is reported in Figure 1. A central element of such life-cycle is represented by the models 
used for decision making. They may be: formal models to predict the system runtime, e.g., queuing 
models; runtime and system models to test design changes. For these models there are two types 
of inputs: static information in source code repositories and dynamic information instrumented or 
observed during the system runtime. A sensitivity analysis, i.e., the study of how the uncertainty in 
the output can be apportioned to different sources of uncertainty in the input11, closes the cycle: 
stakeholders use this information base to converge towards an understanding of the system on 
various levels, e.g., influencing their decisions in the task of changing the running system by altering 
the source code, the configurations, the infrastructure, or even re-deploying the system.  
 

 
Figure 1 - Performance-Aware DevOps Life-Cycle under Uncertainty. 

 
Design decisions are influenced by the uncertainty of the system under development9. To this end, 
we elaborate on the high-level decisions taken by the stakeholders that may affect the performance 
analysis results: 

• Deployment infrastructure (DI): deciding on which physical or virtual infrastructure to deploy 
a system can have a tremendous effect on the uncertainty of various performance 
characteristics, especially in public cloud infrastructures. 

• Software versions and code changes (SC): uncertainty in the performance characteristics 
can also be directly introduced by a code change through a software developer or indirectly 
by an operator's decision to upgrade to a different version of the software.  

• Configuration parameters (CP): small adjustments in configuration parameters of software 
can have a tremendous effect on the uncertainty of the runtime characteristics of a system, 
e.g., the SQLite benchmarking has been found to be often incorrect. 

• Workload fluctuation (WF): the performance of a system is a function of its workload, and 
linearly increasing load may have non-linear effects on a system. Wrongfully interpreting 
future states of a system when higher workloads occur can lead to uncertain decisions 
affecting configuration parameters. 
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• Monitoring and sensor accuracy (MS): operators rely on active monitoring, instrumentation, 
and sensors to observe and retrieve information about the (internal) state of a system, and 
adjusting the accuracy of sensors (e.g., through sampling) determines an inherent trade-
off between the visibility of the state and introduced overhead. 
 

Case Study 
We conducted a controlled experiment as a case study to illustrate the effects on uncertainty 
caused by the DevOps decisions depicted in the previous section. The goal of this case study is to 
demonstrate the performance impact of various DevOps decisions. We assessed and quantified 
both the Dev (e.g., code or configuration changes) and the Ops (e.g., hardware and workload 
changes)-side changes, which may impact the system performance. Specifically, we measured 
different performance characteristics of Apache Cassandra while changing the deployment 
infrastructure, source code repository, and workload. For the sake of illustration, we focused on the 
throughput (i.e., sensors/monitoring, see Figure 1) of the benchmark queries against the Cassandra 
engine. However, a broader definition of performance can be extended to any quantitative non-
functional property (e.g., reliability and security) of the system. We modeled potential actions that 
could affect uncertainty as a discrete decision space D = {DI, SC, CP, WF}. DI represents the space 
of underlying hardware (i.e., deployment infrastructure). SC= {v1, …, vn} depicts the space of 
software releases (i.e., software versions and code changes). CP= {c1, …, cn} is a set of 
configuration options that can be set for a particular version of a software. WF= {w1, …, wn} models 
the workload change on the system as a set of relative percentages of read and write operations. 
Finally, |D| represents the number of combinations of all these decision parameters. 

Experimental Setting 
We measured the performance characteristics of Apache Cassandra under different environmental 
changes (see Table 1) that represents the dimensions of concrete instances of the decision space 
D. For our Cassandra case study, we conducted systematic measurements (for measuring the 
performance indicators of one configuration for specific system version in specific environments 
and for specific workloads). We ran the benchmark for 10 minutes with the same operation 
repeated multiple times. Before the next measurement, the Cassandra database was cleaned and 
restarted to ensure each measurement started with the same initial state. The Cassandra database 
was left idle for 10 seconds as the warmup period before the start of each measurement round. We 
used the Yahoo! Cloud Serving Benchmark (YCSB - https://github.com/brianfrankcooper/YCSB) 
for generating different workloads and collecting the performance indicators of the system. More 
specifically, we used YCSB workload generator to first define the dataset and load it into the 
database; and second, to execute operations against the dataset while measuring performance. 
YCSB is a standard benchmarking tool that has been extensively used for performance 
measurements of key-value and cloud-based data engines. 
 
Table 1 -Overview of the case study subject system. |D|: number of all possible decisions; |DI|: number of hardware 
environments; |SC|: number of analyzed software versions; |CP|: number of configuration options; |WF|: number of 
different analyzed workloads. 

System Domain |D| |DI| |SC| |CP| |WF| 
Cassandra DB 1024 2 3 6 6 

 
 
Table 2 -Summary of hardware platforms on which configurable software systems were measured; NC - Number of 
CPUs; IS - Instruction set; CCR - CPU clock rate (GHz); RAM - memory size (GiB). 

ID Type NC IS CPU CCR RAM Disk 
h1 NUC 4 x86_64 i5-4250U 1.30 15 SSD 
h2 NUC 2 x86_64 Celeron 2.13 7 SCSI 

 



We observed output parameters in all different combinations: (i) hardware change; (ii) workload 
change; (iii) version change; (iv) workload-version change; (v) hardware-workload-version change. 
In particular, we measured the system performance considering 6 configuration options (leading to 
a total of 1024 system configurations) in different environments: 2 hardware environments, 3 
software versions, and 6 workloads. 
 
Table 2 provides a summary of the underlying hardware options in this case study. In order to 
understand the performance with respect to varying incoming request rate behavior, in light of 
different choices made in the decision space of the Apache Cassandra benchmark system, we ran 
six different workloads: 
 

• Workload A (Update heavy): this workload has a mix of 50/50 reads and writes. An 
application example is a session store recording recent actions. 

• Workload B (Read mostly): this workload has a 95/5 reads/write mix. An application 
example is a photo tagging session where adding a tag is an update, but most operations 
are to read tags. 

• Workload C (Read only): this workload is 100% read. An application example is a user 
profile cache where profiles are constructed elsewhere (e.g., Hadoop). 

• Workload D (Read latest): new records are inserted, and the most recent inserted records 
are the most popular. An application example is a user status updates; people want to read 
the latest. 

• Workload E (Short ranges): short ranges of records are queried, instead of individual 
records. An application example is offered by threaded conversations where each scan is 
for the posts in a given thread. 

• Workload F (Read-modify-write): the client will read a record, modify it, and write back the 
changes. An application example is a user database where user records are read and 
modified by the user. 

 
We considered three different versions of Apache Cassandra for our measurements: SC = v1 = 
1.2.19, v2 = 2.2.8, v3 = 3.10. We chose the last release at the time, one closer release (2.2.8), and 
a very distant version of the system (1.2.19). We also artificially injected white noise of 10% to the 
sources in order to investigate the performance impact due to measurement noise. More details 
regarding the configuration options, considered environments, and all measurement data are 
publicly available: https://github.com/pooyanjamshidi/uncertainty. 

Results 
We analyzed the percentage of the top/bottom configurations that are common across the 
environmental changes. Table 3 shows the results, and uncertainty clearly shows a dramatic 
influence when we consider variations along hardware, workload, version changes or combinations 
of them. More specifically, we considered throughput as a metric and derived 10% of top (highest 
throughput) and 10% of bottom (lowest throughput). The results show that the percentage of 
common configurations is very low. In particular, we found that in ec6 (ec* stands for environmental 
change where the source environment is different from the target), practitioners have a higher 
chance to achieve top throughput, at the same time, they have a higher change in ec9 to spot 
performance issues, if they choose the same configuration. But the chance is still low. Also, the 
major gap (0.08) between top and bottom values is showed by ec3 which demonstrates that in this 
environment change, it is more likely that they find a high performing configuration and not 
observing a performance issue. This means that, despite of uncertainties in the parameters, ec6 
results the system configuration showing the highest system throughput, ec9 is the one most likely 
leading to performance issues, whereas ec3 is the one whose input uncertainties largely influence 
performance analysis results. This sensitivity analysis supports system administrators in their task 
of setting the best configuration of the system using specific hardware, workload, and version of 
the software or their combinations. In the last two columns of Table 3 we report the Spearman rank 
correlation values calculated on the original sources and on the artificially injected data (i.e., white 
noise of 10%), respectively. We observe that the rank correlation, despite being weak, still shows 



a decreasing trend. This observation highlights the importance of handling uncertainty in the 
DevOps process, due to the sources of uncertainty because of environmental changes and 
measurement noise. For instance, as a developer, if one selected a configuration based on 
previous measurements in a certain environment, it should be careful to choose a configuration for 
the system in another environment since some environmental changes are more prone to 
uncertainty than others. 
 
Table 3 - Results. Top/Bottom: percentage of top/bottom common configurations between source and target. 

Decision ID Source Target Top Bottom |Top-
Bottom| Corr Corr 

(10%) 
DI ec1 h2-A-V3 h1-A-V3 0.0980 0.1569 0.0589 0.0364 -0.0078 

SC ec2 h1-A-V3 h1-A-V2 0.0490 0.0588 0.0098 -0.1266 -0.0527 
ec3 h1-A-V3 h1-A-V1 0.1176 0.0376 0.08 0.1424 0.0696 

WF 

ec4 h2-A-V3 h2-B-V3 0.0392 0.0686 0.0294 -0.1732 0.0139 
ec5 h2-A-V3 h2-C-V3 0.1373 0.1275 0.0098 0.0318 0.0381 
ec6 h2-A-V3 h2-D-V3 0.1471 0.1176 0.0295 0.0088 0.0172 
ec7 h2-A-V3 h2-E-V3 0.0490 0.0686 0.0196 -0.0704 0.0127 
ec8 h2-A-V3 h2-F-V3 0.0686 0.1373 0.0687 0.0217 0.0078 

SC-WF ec9 h1-A-V3 h1-B-V1 0.1078 0.1765 0.0687 0.1001 -0.0302 
DI-SC-WF ec10 h2-A-V3 h1-B-V1 0.1078 0.1176 0.0098 -0.0327 0.0192 

 
Our numerical results provide evidence that if uncertainty is not handled properly, performance 
issues may arise. For example, if a system configuration is selected based on a model trained by 
measurement data that are collected in an environment with a different workload, it may lead to a 
sub-optimal configuration. As a result, systems may encounter higher deployment costs or more 
failures due to larger memory allocations or threads spin up. This can be more problematic in critical 
domains, such as robotics. A further experience has been matured in the Model-based Adaptation 
for Robotics Software project (https://github.com/cmu-mars), where power models are used under 
budget constraints to adapt to perturbations, such as environmental or internal resources changes 
(e.g., battery level). Pareto optimal configurations are swapped at runtime based on environmental 
condition of the robot (e.g., its remaining battery level). We found out that when the model is 
inaccurate, Pareto optimal configurations are chosen incorrectly, and it results in a mission failure, 
as shown in the following demo: https://youtu.be/ec6BhQp2T0Q. 
Given these consequences, if practitioners are aware of the uncertainty, they can opt to: 1) conduct 
additional experiments to further reduce the uncertainty. For example, repetitive measurements 
combined with statistical methods are widely used in prior research to reduce uncertainty, 2) identify 
and handle at the root cause of the uncertainty. As an example, if the deployment infrastructure 
introduces the uncertainty, one should consider control or leverage a more stable infrastructure, 
and 3) if the uncertainty cannot be easily reduced or handled, uncertainty quantification approaches 
(such as forward uncertainty propagation or inverse uncertainty quantification) can be employed to 
determine how likely certain outcomes are if some aspects of the system (e.g., optimal 
configurations) are not deterministically known16. 
Similar results have been observed in other systems (including a compiler, a SAT solver, a 
database engine, and a video encoder) across different environmental changes, see details in 
https://github.com/pooyanjamshidi/ase17. Note that the considered uncertainties are demonstrated 
to be relevant for some software systems, but they are far from being exhaustive. Further 
applications may show other characteristics that have not been evidenced so far, since it is indeed 
difficult to link performance issues to a finite list of system configuration settings. 

Conclusions and Future Work 
We conclude this paper by discussing the lessons learned and their implications as a result of our 
study in the following two dimensions: (1) identifying sources of uncertainties; and (2) modeling and 
controlling the uncertainties. 



Identifying Sources of Uncertainty 
The identification of the sources of uncertainty is challenging and two different strategies can be 
used for this scope: (i) the bottom-up that is based on the knowledge of the possible sources of 
uncertainty in the given model; and (ii) the top-down which starts from the complete lack of 
knowledge about possible uncertainties. We followed the bottom-up approach defined in9, and we 
first started off by enumerating various decision points in the performance-aware DevOps life-cycle 
as shown in Figure 1. Then, we further limited the decision points to only those which can lead to 
performance uncertainty, and we narrowed down with five sources of uncertainty. 

Modeling and Controlling Uncertainties 
Once we have identified the sources of uncertainties, we want to minimize their impact by: (1) 
modeling and analyzing the performance variation caused by such uncertainties, then (2) devising 
approaches to control their impact. In our case study we observed the following sources of 
uncertainty: 

• Deployment infrastructure (DI): our results show that within the same release and 
workload, changing deployment infrastructure can have a small to large impact on the 
system performance. For example, for version 3.10, the throughput can be more than 
doubled when switching between two different hardware platforms. Hence, to limit such 
uncertainties, it is important to conduct user acceptance testing or closely monitor the 
performance of the canary deployment5 before full-fledged infrastructure changes. 

• Software versions and code changes (SC): our results show that the optimal configurations 
for one version of Cassandra would probably not yield the best performance after system 
upgrade.  As shown in Table 3, when switching between versions (ec2 and ec3), there is 
less than 12% top configurations shared among the two versions (before and after system 
update). Therefore, it is vital to examine the performance impact of various configuration 
parameters for each version. However, due to the large combination of the configuration 
space and the rapid changes in DevOps, performance testing reduction techniques (e.g., 
experimental design or redundancy detection) should be used to efficiently explore the 
system configuration space. 

• Configuration parameters (CP): among different hardware platforms, software versions 
and workloads, the percentage of common configurations is very low. Within the same kind 
of setting (same hardware, workload, and release version), the throughput can vary up to 
9 times differences among different Cassandra configurations. This clearly shows the 
importance role that the configuration parameters play in terms of the system performance. 
However, to minimize and control the uncertainty due to the configuration parameters, it is 
necessary to isolate and study the most relevant ones. 

• Workload fluctuation (WF): similar as the above three aspects, for Cassandra, the optimal 
configurations do not translate when different workloads are exercised. As the system 
keeps evolving, the user behavior co-evolves. Hence, it is important to periodically verify 
and update the performance testing workload. 

• Monitoring and sensor accuracy (MS): the measurement noise can impact the validity of 
the performance results, although its overall effect can be small. Hence, it is helpful to 
cross-reference the measurement data to ensure their validity. 
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