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A Framework for Robust Control of Uncertainty in
Self-Adaptive Software Connectors

Pooyan Jamshidi

Abstract

Context and motivations. The desired behavior of a system in ubiquitous environments
considers not only its correct functionality, but also the satisfaction of its non-functional
properties, i.e., its quality of service. Given the heterogeneity and dynamism characterizing the
ubiquitous environments and the need for continuous satisfaction of non-functional properties,
self-adaptive solutions appear to be an appropriate approach to achieve interoperability. In this
work, self-adaptation is adopted to enable software connectors to adapt the interaction protocols
run by the connected components to let them communicate in a timely manner and with the
required level of quality. However, this self-adaptation should be dependable, reliable and
resilient to be adopted in dynamic, unpredictable environments with different sources of
uncertainty. The majority of current approaches for the construction of self-adaptive software
ignore the uncertainty underlying non-functional requirement verification and adaptation
reasoning. Consequently, these approaches jeopardize system reliability and hinder the adoption
of self-adaptive software in areas where dependability is of utmost importance.

Objective. The main objective of this research is to properly handle the uncertainties in the non-
functional requirement verification and the adaptation reasoning part of the self-adaptive
feedback control loop of software connectors. This will enable a robust and runtime efficient
adaptation in software connectors and make them reliable for usage in uncertain environments.

Method. In the context of this thesis, a framework has been developed with the following
functionalities: 1) Robust control of uncertainty in runtime requirement verification. The main
activity in runtime verification is fine-tuning of the models that are adopted for runtime
reasoning. The proposed stochastic approach is able to update the unknown parameters of the
models at runtime even in the presence of incomplete and noisy observations. 2) Robust control
of uncertainty in adaptation reasoning. A general methodology based on type-2 fuzzy logic has
been introduced for the control of adaptation decision-making that adjusts the configuration of
component connectors to the appropriate mode. The methodology enables a systematic
development of fuzzy logic controllers that can derive the right mode for connectors even in the
presence of measurement inaccuracy and adaptation policy conflicts.

Results. The proposed model evolution mechanism is empirically evaluated, showing a
significant precision of parameter estimation with an acceptable overhead at runtime. In addition,
the fuzzy based controller, generated by the methodology, has been shown to be robust against
uncertainties in the input data, efficient in terms of runtime overhead even in large-scale knowledge
bases and stable in terms of control theory properties. We also demonstrate the applicability of
the developed framework in a real-world domain.
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Thesis statement. We enable reliable and dependable self-adaptations of component connectors
in unreliable environments with imperfect monitoring facilities and conflicting user opinions
about adaptation policies by developing a framework which comprises: (a) mechanisms for
robust model evolution, (b) a method for adaptation reasoning, and (c) tool support that allows
an end-to-end application of the developed techniques in real-world domains.

Keywords: Uncertainty, Self-Adaptive Software, Software Connector, Models at Runtime, Fuzzy Logic
System, Type-2 Fuzzy Logic Control, Mode-based Reconfiguration.
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Propositions

Belonging to the PhD dissertation

A Framework for Robust Control of Uncertainty in

Self-Adaptive Software Connectors

1.

Software connectors play an important role in increasing the interoperability of software.
Software connectors coordinating heterogeneous components support interoperability in
ubiquitous environments.

The desired behavior of a system in ubiquitous environments considers not only its
correct functionality, but also the satisfaction of non-functional properties, i.e., its quality
of service.

Given the heterogeneity and dynamism characterizing the ubiquitous environments and
the need for continuous satisfaction of non-functional properties, self-adaptive solutions
appear to be an appropriate approach to achieve interoperability.

Self-adaptive connectors adapt the interaction protocols run by connected components to
let them communicate timely and with the required level of quality.

However, such self-adaptation should be dependable, reliable and resilient to be adopted
in such a dynamic environments with different sources of uncertainty.

To achieve dependable self-adaptive software connectors, mechanisms to enable the self-
adaptation for component connectors should be robust against different sources of
uncertainty.

For quantitative verifications of non-functional properties, it is required to consider
parametric analytical models that can be calibrated at runtime to accurately measure such
properties. However, the challenge is that how accurate and trustworthy model
calibration can perform given that the input measurement data typically are not complete
and contain noise (Chapter 4).

Having quantitatively verified non-functional properties and detected a violation, an
adaptation is required to change the interaction protocol to let the components
communicate with the desired level of quality. However, this adaptation should also be
reliable given the input information as well as the adaptation policies may contain
uncertainties (Chapter 5).

Assuming that dependable model calibration and adaptation reasoning is in place, their
integration in the MAPE-K self-adaptation loop to ensure the reliability of the self-
adaptation of component connectors in real-world unreliable environment needs to be
considered (Chapter 7).
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Chapter 1

1. Introduction

“Never promise more than you can perform” — Publilius Syrus (85 - 43 BC).
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1.1. Chapter Overview

Recently, software has become one of the key influential entities of modern society. Consequently, the
expectations people place on software systems have quickly changed, even more recently as software
systems have become essential for living. With the rise of a new computing paradigm (such as service-
oriented and cloud computing), in which the main principle is to move towards independent management
of computing entities, applications use and integrate functionality from third-party, potentially distributed
services, implemented in different environments and running on different platforms.

Therefore, interoperability and dependability have become fundamental requirements for building
software-intensive systems. This raises questions of not only how we coordinate different pieces of
software and how we can reason about the properties of the subsequent systems, but also how we can
robustly adapt the coordination architecture at runtime due to the intrinsic dynamics and uncertainties of
the environment. The robust handling of uncertainty in self-adaptive software connectors is the topic of
this thesis. The term robustness here means the persistence of a system’s characteristic behavior under
perturbations or unusual conditions of uncertainty. More concretely, we aim at developing mechanisms
for enabling a reliable (i.e., dependable) adaptation of the coordination architecture even if its
assumptions that have been made at design-time are somewhat violated by the situations at runtime. In
other words, we enable resilient self-adaptive software connectors that perform well in uncertain
environments. Throughout this thesis, we may use the three key terms in the last two sentences (i.e.,
reliability, dependability and resiliency) interchangeably, but in the context of this thesis, we mean that
we intend to develop a safe and reliable self-adaptation for software connectors in the presence of
uncertainty.

The rest of this chapter describes the motivations for this work and provides an overview of the proposed
solution. We first give a broad overview of the research context including component-based systems,
component connectors as well as self-adaptive software (Section 1.2) and motivate the need for a
dependable self-adaptive software connector (Section 1.3). We then elaborate on the problem that this
work aims to address by deliberating the hypotheses and research questions (i.e., the problem space in
Section 1.4). Afterwards, the basic elements of the proposed solution and specific contribution of this
thesis are discussed (i.e., the solution space in Section 1.5). The details of the research methodology that
we have followed throughout this work are then presented (Section 1.6). The thesis of this dissertation
and research claims are then stated (Section 1.7). A mapping of the related publications to the individual
chapters in the thesis is also provided (Section 1.8). Finally, the structure of the remainder of this
document, explaining each chapter’s relevance to the stated thesis is presented (Section 0).

1.2. Research Context

In this section, before examining the research motivations of this thesis, we first introduce the most
related aspects, which intersect to determine the scope of this research as illustrated in Figure 1.1.
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Figure 1.1. Scope of this thesis.

1.2.1. Component-Based Systems

Software intensive systems that are built according to the component-based paradigm are called
component-based software systems. A component-based system is described as a composition of
components that interact with each other to offer original functionalities resulting from the composition
of individual component functionalities. Composition of components not only defines the rules according
to which the individual components can interact, but it also describes the interaction between the
composed components.

The traditional concept of separation between computation and interaction (Gelernter & Carriero, 1992)
is now a necessity for modern large-scale software intensive systems. The separation between
computation and interaction becomes more prominent in the component-based paradigm, where
reusability, evolution, maintainability and heterogeneity are key principles. In order to realize this
separation, the notion of a connector has been coined to act as an interaction media. Unfortunately, the
majority of programming languages for component-based systems do not provide any mechanism to
express the connectors explicitly. This forces the interaction logic to be programmed within components.
As a result, the interaction logic becomes entirely hidden inside individual components. This limits the
usage of components to the very specific interaction protocol that it contains. Ultimately, this limits the
reusability and dynamic interchangeability of software components.

In this thesis, we consider interaction between components as a first-class entity. Here, rather than
focusing on the self-adaptation of component-based systems, we focus on the self-adaptation of
interaction protocols that describe how the individual components interact and evolve over time to
accommodate the changes in the surrounding environment. Interaction protocols are promoted forming
a special class of components, the so-called component connectors. In this thesis, we intend to build on
component connectors by promoting the notion of self-adaptation and form a special class of component
connectors, which we call self-adaptive component connectors.

1.2.2. Component Connectors

Connectors participate in the design of component-based systems by defining the interaction protocols
for composing individual components. Connectors prescribe how the constituting components of a
system connect and interact with each other. As opposed to the components, which provide system-
specific functionality, connectors have no responsibility for the computation carried out by the overall



system. This means that connectors define interaction protocols between components. To form a
coherent system that realizes its requirements, connectors are responsible for the coordination of
activities realized by components to ensure their correct interaction.

1.2.2.1. A tangible example of component connectors

In order to investigate the details of component connectors, we introduce this notion by a tangible
example. Let us use two individual and physical components, a camera and a mini-display. We consider
these components as black boxes, with their internal behavior hidden, and they only expose an interface
for interaction purposes. The camera interface has a single output port to which it writes a captured data
stream. The display module also has an interface to the input data stream to be displayed. The objective
is to construct a simple component-based system that enables the user to capture a scene and have the
photo of the scene shown on the display. Let us imagine a scenario where there is a mismatch between
the rate at which the photo on the display can be refreshed and the rate at which the camera writes the
stream to the output port. More specifically, the camera is able to capture the scenes successively one
after another at a higher rate than the display allows the photos to be updated on its screen. The situation
in this scenario means that we cannot simply connect the output port of the camera with the input port
of the display. What would happen when the user starts capturing the scene at a pace that exceeds the
rate at which the display can show the respective captured photo? The following potential scenarios can
be considered:

1. The photographer is forced to wait for when its output port is not busy to capture another photo.
This means that the output port of the camera is synchronized with the input port of the display.

2.  The extra data stream is buffered and can be displayed in order as they have queued.

3.  The photos that are captured are disregarded while the display is busy showing another photo.

4.  The second and the third scenarios are combined by offering a limited buffer where a number of
photos can be buffered while the display is busy. Once the buffer is full, extra photos are
disregarded.

5.  The forth scenario is extended by estimating the rate of photo capturing and adapt the buffer by
the objective of scaling out the size of the buffer in order not to lose any photos and scaling in the
size of the buffer by releasing extra resources.

Let us consider scenario 3 and ignore the extra data stream captured by camera when the display is busy
and not ready to show new photos. When someone follows this scenario to construct a composed system,
the result would be a system that allows the photographer to capture photos and have the photo shown
in the display, but with the issue that if the user captures too quickly, he needs to capture repeatedly until
the photo is shown in the display. This example shows a common scenario faced by component-based
system designers in which constructing a desirable system is not possible by only wiring the input-output
ports together. There is a need for a piece of software, usually called glue code, to coordinate the
interaction of individual components.

Coordination languages (Papadopoulos & Arbab, 1998) are a class of modeling as well as programming
languages that offer a solution for the problem of specifying and managing the glue code. More
particularly, coordination languages offer mechanisms for composing and controlling systems made of
independent and possibly heterogeneous components. There are two classes of coordination languages
(Papadopoulos & Arbab, 1998): endogenous and exogenous. In endogenous coordination languages, the
coordination can be realized by incorporating the interaction logic with computation. The component-
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based systems that use endogenous languages for coordination utilize the provided primitives for defining
the interaction inside the components. This intermixes the coordination with computation inside
components and leads to an implicit coordination logic. In contrast, exogenous coordination languages
enable the interactions outside the components as separate entities. This makes the role of coordination
explicit in component-based systems and enhances the reusability of individual components.

In the example, we exemplified a connector to enable the interactions between the camera and the
display according to the exogenous class of coordination. In exogenous coordination, connectors are
separated from components and we can deal with them as a first class entity. The connector acts as a
mediator between the camera and the display to enforce the behavior of scenarios that we want for the
composed system. This solution retains both the camera and the display independent, reusable, and
interchangeable for different contexts. If we need to enforce a new kind of scenario, we could still use the
same components, but design a different connector for realizing such behavior. Note that neither camera
nor display are aware of the presence of each other. However, the display here dictates the rate at which
the resulting composed system is able to display the photos.

1.2.2.2. The language aspect of component connectors

In this thesis, we explicitly work with component connectors designed in the coordination model Reo
(Arbab, 2004). Component connectors built using Reo are composed out of primitive channels, with
specific behavior, that can be plugged together with the help of nodes. This resembles the arcs and nodes
of general graphs in graph theory. The channel based compositions control the dataflow between the
components they are coordinating by enforcing well-defined communication protocols among them. This
coordination behavior involves a number of different semantics such as (a)synchronous communication,
buffering, data manipulation, context dependent behavior and mobility. The Reo coordination language
is based on a formal foundation and promotes loose coupling, distribution, mobility, exogenous
coordination and dynamic reconfigurability (Arbab, 2004). The formal basis of Reo guarantees verification
of quality of service properties and well-defined execution semantics for component compositions. There
are also some supporting tools associated with Reo for modeling component connectors, simulating
connector behavior, providing formal operational semantic languages and facilities to derive analytical
models, which we employ in this thesis.

1.2.3. Self-Adaptive Software

Currently software facilitates many human activities in modern society. With this ubiquitous usage and
the expectations that users have, new directions and perspectives have recently been envisaged.

In traditional software development, one of the key concerns is a meticulous requirement analysis in order
to avoid costly changes in later stages of the software development process. The situation in recent
software engineering processes is different. Software systems are constructed by composing
independently developed components that might be offered as third party services. Deployment
configuration can be changed quickly thanks to the flexibility of infrastructure in the cloud. Because of the
pervasiveness of mobile devices, the use of software becomes ubiquitous and integrated with everyday
life in a continuous fashion.

Modern software-intensive systems usually interact with an environment that is not under the control of
software itself. Because of the unpredictable occurrence of changes in the environment, a system may



not be able to meet the desired requirements. Consequently, software systems need to self-adapt
themselves to the occurrence of changes with limited or without any kind of human interventions.
Additionally, because software systems are continuously running in their desired environments, they
cannot be simply shut down in order to perform the required changes. Therefore, there is a need for a
special class of software systems that, while running, is required to recognize the occurrence of changes,
analyze the changes and reason about possible reactions to them in a self-managed manner. Systems that
fit into this class are called self-adaptive systems (SAS).

A number of relevant changes in the environment that affect software systems are:

1. Changes in the components of the systems that are not the core assets of the system itself and
are managed by third parties. This set of components is composed in the system under specific
considerations and when they change, it causes unexpected behavior of the composed system.

2. Changes in the usage profile of the system’s functionality. Users of user-intensive software
systems may change their behavior over time by overloading the system at specific time points
and cause the system to response slowly.

3. Changes in the deployment infrastructure of the system. For example, the changes for resources
that are available for computational purposes may cause the system to violate certain quality of
service requirements.

There are also other sources of changes for software-intensive systems comprising the changes in system
requirements, which may affect the software system. However, in this thesis, we assume the system
requirements are stable over time and we primarily focus on the changes in the environment in which
software is embedded. The changes in the environment of software cause some non-functional
requirements (NFR) such as performance or reliability to be violated. However, users of the systems
require a continuous satisfaction of the requirements despite the changes. Most non-functional
requirements correspond to quantitative properties (Marta Kwiatkowska, 2007). A convenient adaptation
of software can be triggered whenever a quantitative property corresponding to a requirement is violated.

1.3. Research Motivation

In traditional software development, the development processes mostly concentrated on how to carefully
analyze the requirements in early phases and avoid costly changes in the latter phases of the development
process (L Baresi, 2006). Therefore, in the research context, developing methods and techniques to
capture requirements and avoiding changes was one of the central themes for a long period of time, when
organizations were centralized and development environments and deployment infrastructure were
mostly stable.

However, interestingly, almost none of these assumptions are still valid (Luciano Baresi & Ghezzi, 2010; A
Filieri, Tamburrelli, & Ghezzi, 2013). Software development has now become decentralized. Software
applications are constructed by composing independent components potentially developed and operated
by third parties. The coordination between components and binding to their implementations is delayed
until runtime. Infrastructure is often provisioned in the cloud and may change quickly. Accessibility devices
are ubiquitous in everyday life, providing continuous interaction with billions of different users through
social networks. Communication networks are pervasive and heavily shape software execution.



Today software systems must be designed for change (Luciano Baresi & Ghezzi, 2010) and in the future
more software will be required to continuously adapt in response to unpredictable changes in its
environment and objectives (Lemos, Giese, & Miiller, 2013). In particular, self-adaptation is a key solution
to deal with the issues of modern software development (A Filieri et al., 2013):

e Instability of requirements, as a consequence of the volatility of user needs

e Uncertainty in the environment in which software operates and in the accuracy of design-time
parameters

e Variability in the behavior of third party components, infrastructure and users.

Another major difference between traditional concerns in software engineering and its current progress
is the role of non-functional requirements, such as performance, energy consumption and
reliability. Users require the continuous assurance of service level agreements (SLAs), regardless of
uncertainties. This requirement has necessitated an important technique typically used in self-adaptive
paradigm nowadays (Calinescu, Ghezzi, Kwiatkowska, & Mirandola, 2012). Quantifiable non-functional
requirements enable automated verification of specific quantitative properties (Marta Kwiatkowska,
2007). In other words, the realization of this technique enables continuous verification of important
properties of software in order to trigger an appropriate adaptation action whenever a requirement is
violated.

Self-adaptation is an appropriate approach to deal with the changing dynamics in the surrounding
environment of software systems. As in biological systems (Kitano, 2004), when facing external (or
internal) perturbations, a self-adaptive software system modifies itself in response to changes in the
environment (or requirements). Even though self-adaptive software is beneficial in many application
domains, it is not a widely adopted solution (Lemos et al., 2013). It is regarded as a non-dependable
solution, which is subject to uncertainty (Lemos et al., 2013). The research community has managed to
address the complexities in building self-adaptive software systems (Lemos et al., 2013). However, as
reported by other researchers (Esfahani, Kouroshfar, & Malek, 2011; Esfahani & Malek, 2013; Lemos et
al., 2013), there is a serious lack of applicable techniques for handling uncertainty in the context of self-
adaptive software.

In the field of software engineering in general, the phenomena of uncertainty is considered as a second-
class citizen (David Garlan, 2010). Although it is conceivable to decrease the degree of uncertainty, it is
not possible to fully eliminate the effect of uncertainty in both real-world physical systems (J. M.
Aughenbaugh & Paredis, 2006) and software-intensive systems (David Garlan, 2010). Self-adaptive
software is not an exception and uncertainty plays a major role in this area (Esfahani & Malek, 2013).
Uncertainty is present in every facet of adaptation, but to varying degrees. As representatives of
uncertainty sources, one can refer to the following items:

1. Uncertainty in monitored parameters of the system. Sensors employed for monitoring the
environment are not usually free of noise. As a result, the monitoring data are rarely a single crisp
value. However, they mostly correspond to a distribution of values obtained over an observation
period.

2. Uncertainty in analytical models at runtime. Analytical models for evaluating system-level quality
attributes make simplifying assumptions, which obviously introduces some uncertainty for
reasoning purposes. This kinds of analytical models provide only acceptable estimates of the



system quality and since they model based on an underlying theory, they ignore unrelated
aspects of the system at a time.

3. Uncertainty in user preferences. User preferences for non-functional requirements are imprecise.
When users specify their preferences for formulating the utility functions measuring the overall
quality of the system, they make subjective decisions. This makes the analysis based on them
error prone.

The uncertainty that manifests itself in the aspects that we mentioned above poses critical risks to the
adaptive software. Note that we only mentioned a few sources of uncertainty among the several to
highlight the problem and motivate the research. We have provided a more detailed discussion of the
sources of uncertainty in self-adaptive software in Chapter 3 (mainly motivated by the work of Esfahani
et al. (Esfahani & Malek, 2013)). These sources of uncertainty fall into two diverse categories. The first
category is associated with the environment surrounding the software. The environment in which
software is embedded produces different noises, which is called external uncertainty (Esfahani et al.,
2011). The impact of adaptation decisions (e.g. replacing a component or reconfiguring a connector) on
system quality properties (e.g. response time) cannot be measured precisely at design-time. As a result,
this produces a distinct source of uncertainty, which is categorized as internal uncertainty (Esfahani et al.,
2011). The focus of this thesis is to find a solution for addressing the challenges posed only by external
uncertainty.

Some uncertainty is because of the lack of knowledge while some other is because of the variation in
adaptation parameters. Therefore, techniques that are used to mitigate one type of uncertainty are
different from the other types. This distinction is related to the location of uncertainty, i.e., the user or
the system itself (J. Aughenbaugh, 2006). In other words, variability is the uncertainty inherent in the
system under study, while the lack of knowledge is associated with uncertainty of the human being.

The software engineering research community has made progress towards addressing the complexities
involved in the construction of self-adaptive software (Lemos et al., 2013). However, despite the fact that
uncertainty is predominant in self-adaptive software systems, as reported by a community wide roadmap
(Lemos et al., 2013) and reviews of uncertainty handling techniques (Esfahani & Malek, 2013; A. J.
Ramirez, Jensen, & Cheng, 2012), there is still a lack of methods and techniques for handling uncertainty
in self-adaptive software. These seminal references imply that the issues related to uncertainties are
treated in an ad-hoc fashion. For example, (Esfahani & Malek, 2013) hypothesize that this might be related
to a lack of understanding and common knowledge about different sources of uncertainties in self-
adaptive software, due to the diverse characteristics of each source. In the self-adaptive software
community, only a handful of researchers have proposed to address uncertainty issues related to different
aspects of software. The main aspects that have been addressed so far are related to 1) requirements
specification (Luciano Baresi, Pasquale, & Spoletini, 2010; Whittle, Sawyer, Bencomo, Cheng, & Bruel,
2009). 2) internal quality objectives (S. Cheng & Garlan, 2007; Esfahani et al., 2011; Q.-L. Yang et al., 2013).
3) external environments (Calinescu & Kwiatkowska, 2009; Chan, 2008; Cooray, Malek, Roshandel, &
Kilgore, 2010; Epifani, Ghezzi, Mirandola, & Tamburrelli, 2009; Esfahani, Elkhodary, & Malek, 2013;
Gmach, Krompass, Scholz, Wimmer, & Kemper, 2008).

All of the mentioned sources of uncertainty challenge the confidence with which decisions are made
during the adaptation process. In this thesis, we identify different sources of uncertainty in the self-
adaptive loop of component connectors and treat them explicitly in the loop in order to enhance the



dependability of self-adaptive component connectors. Therefore, the key objective in this thesis is to
robustly handle uncertainty in the self-adaptation of component connectors. Although we constrain the
scope of this project to component connectors, in general, the developed techniques can be applied for
self-adaptive software systems after some customizations.

1.4. Research Problem

Based on the identified research gap to handle uncertainty in the self-adaptation process of component
connectors, in this section, we outline research challenges that we address in this thesis. The primary
objective of this thesis is to enable robust control of uncertainty in self-adaptive component connectors
to increase the dependability in component-based software systems. The main reason for choosing
software connectors in this thesis is their ever-increasing importance to interconnect heterogeneous
components in application domains like cloud, where interoperability with an acceptable performance is
essential. In this section, we outline the central hypothesis and research questions.

1.4.1. Central Hypothesis

We outline the central hypothesis for this thesis as:

The application of parameter estimation for calibrating models for non-functional requirement
verification, in the presence of imprecise monitoring data and fuzzy logic in adaptation reasoning, and the
integration of the two in the self-adaptation process, enable component connectors to become robust
against uncertainty in the surrounding environment.

We propose that in order to robustly control the uncertainty sources in the self-adaptation process of
component connectors, we need to employ appropriate analytical techniques from probability theory for
adaptation reasoning in the presence of imprecise (or noisy) monitoring data. By adaptation reasoning
here we mean decision making about the changes in the architecture at runtime and this obviously
requires adjusting some parameters in the model corresponding to the system architecture. Additionally,
we also propose to utilize proper fuzzy reasoning technique in order to plan adaptation in the presence
of uncertain measurements. An analysis of the central hypothesis suggests that the research problem that
we aim to address in this thesis can be divided:

e How to calibrate analytical models that we employ at runtime for adaptation reasoning of
component connectors in the presence of imperfect observations? (see RQ1)

e How to plan the appropriate configuration for component connectors in the presence of
imprecise measurements and conflicting objectives? (see RQ2)

1.4.2. Research Questions

In this section, we outline the primary research questions that we aim to address in this thesis. Each of
the research questions outlines a key challenge that we identified for this research and an individual
aspects of the proposed solution. We validate the proposed solution by evaluating the degree to which
each question has been addressed in the proposed solution (Chapter 7).



Research Question 1 (RQ1). How can we estimate the parameters of (i.e., calibrate) the analytical models
at runtime that we employ for non-functional requirement verification of component connectors in the
presence of noisy monitoring data?

The primary objective of this research question is the development of an appropriate estimation
technique based on probability theory for robust model calibration at runtime. Note that the runtime data
that has been observed by monitoring facilities and probes contain dynamic noise. However, all existing
approaches for model calibration assume that the monitoring data is complete and noise free. As a result,
the verification of non-functional requirements based on this assumption is error prone. This question
allows us to evaluate the proposed model calibration approach in handling dynamic noises in monitoring
data.

Research Question 2 (RQ2). How can we reason about adaptation and derive appropriate configuration
for component connectors at runtime in the presence of noisy measurements and imprecise objectives?

The primary objective of this research question is the development of an appropriate adaptation
reasoning technique based on fuzzy theory for robust control of uncertainty in reasoning. Note that for
reasoning we need to feed measurement data such as workload or response time for reasoning. The
reasoning process for deriving an appropriate configuration that is optimal based on the current situation
of the connector and its surrounding environment is based on the preferences of stakeholders in terms
of adaptation policies. The policies are specified based on imprecise terms such as “if response time is
high then ...”. Different stakeholders with different opinions can specify these policies and they might be
conflicting with each other. This question allows us to evaluate the proposed adaptation reasoning to
derive appropriate configurations in the presence of imprecise and conflicting objectives.

Research Question 3 (RQ3). How well can our approach for model calibration and adaptation reasoning in
the feedback control loop ensure the reliability of the self-adaptation of component connectors in a real-
world unreliable environment?

The primary objective of this research question is the integration of both robust model calibration and
robust adaptation reasoning in the self-adaptation loop of component connectors. Even though we apply
model calibration that can handle noisy data, the analytical models themselves are an abstraction of the
component connectors. These abstractions as mentioned in (Esfahani & Malek, 2013) are a source of
uncertainty in self-adaptive software. This question allows us to evaluate the integration of model
calibration with adaptation reasoning to provide an end-to-end mechanism for guaranteeing uncertainty
in the self-adaptation process of component connectors.

1.5. Proposed Solution and Contributions

Based on the identified research challenges, an overview of the proposed contribution as an integration
of robust model calibration and robust adaptation reasoning is illustrated in Figure 1.2. In contrast to
limitations identified in earlier sections, the solution aims to control uncertainty in the self-adaptation
process of component connectors to enhance dependability of a component-based system, which
consumes such connectors for interaction.
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Figure 1.2. An overview of self-adaptive software connectors.

In the context of this thesis, we deal with two types of uncertainty. We provide a solution for robust
handling of uncertainty for monitoring and planning in the self-adaptation loop. We utilize probability for
updating models that are being kept at runtime for analysis purposes. The techniques that we developed
for updating models have the capability to deal with incomplete and noisy data. Probability theory is an
obvious choice for dealing with uncertainty, which are related to variability in data rather than lack of
knowledge. On the other hand, we adopt fuzzy logic for adaptation reasoning at runtime. The aim of
reasoning is to find the appropriate configuration to replace the existing configuration. The kind of
uncertainty we deal with for reasoning is related to the users of self-adaptive software. Different users
often have different and even conflicting opinions about an adaptation policy that needs to be taken when
the software meets a certain condition. This makes the adaptations based on user preferences uncertain
and error prone. The sort of uncertainty that we are dealing with here is not related to the variability in
the data, but the lack of knowledge. As a result, we chose fuzzy theory for adaptation reasoning.

In Summary, we address two types of uncertainty in this thesis:

1. Uncertainty due to measurement inaccuracies (see Chapter 4).
2. Uncertainty in the adaptation knowledge specification (see Chapter 5).

1.5.1. Solution Framework

The solution in Figure 1.3 is an integration of two developed mechanisms. The first mechanism, which we
call RobustMC, enables the robust model calibration of component connectors. The second mechanism,
which we call RobusT2, enables robust adaptation reasoning. We integrate the mechanisms in a
framework called Robust Control of Uncertainty in component connectors (RCU) as a coherent framework
that guarantees reliability in the self-adaptation loop. Note that the process of runtime observation (i.e.,
monitoring) and execution of change plans (change effectuation) is out of the scope of this thesis. In order
to demonstrate the applicability of this approach in real-world domain, we had to implement those two
parts as well (see Chapter 7). We use estimation techniques based on time series analysis for model
calibration at runtime (see Chapter 4). We also use runtime efficient verification techniques to verify the
non-functional requirements at runtime. When a violation is detected, we use fuzzy reasoning for deriving
the appropriate configuration that satisfies the requirements (see Chapter 5).

11
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Figure 1.3. Overview of our solution framework.

2. Research Contributions

In this thesis, we introduce the RCU framework (cf. Figure 1.3) as the main contribution that enables:

1.

Robust control of uncertainty in runtime verification.

The runtime verification task has been split into two sub-tasks — model calibration and
guantitative evaluation. The model calibration enables the update of models at runtime. The
proposed stochastic approach is able to update the unknown parameters of the models at
runtime even in the presence of incomplete and noisy observations. The proposed model
calibration technique has been implemented and empirically evaluated, showing a significant
precision of parameter estimation and a reasonable overhead at runtime. This contribution
will be the main subject of Chapter 4.

2. Robust control of uncertainty in adaptation reasoning.

A general methodology based on fuzzy logic has been defined for the control of adaptation
decision that adjusts the configuration of component connectors to the appropriate operating
mode. The methodology enables a systematic development of fuzzy logic controllers that can
determine the right operating mode for connectors considering that different users with
potentially different and even conflicting opinions can specify the adaptation policies. The
fuzzy based controller, generated by the methodology, has been shown to be robust against
uncertainties in the input data and efficient in terms of runtime overhead, allowing a reliable
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decision-making in the self-adaptive component control. The control methodology and
experimental evaluations are presented in Chapter 5.

3. Reliable and dependable self-adaptive component connector.

The evaluation of the primary contributions — i.e., robust model calibration and adaptation
reasoning, is performed by applying the solution to enable self-adaptation of a real-world
connector. The approach has been shown to be effective as an end-to-end solution for
controlling uncertainty in the feedback control loop of the self-adaptive connectors. This
evaluation is dealt with in Chapter 7.

Although in this thesis we claimed for three different contributions as listed above, we consider the
second contribution that is reported in Chapter 5 as the main and core contribution of this thesis. Taming
uncertainty in the adaptation knowledge specification is the novel contribution that has been proposed
for the first time in this thesis.

1.6. Research Methodology

While behavioral science is the appropriate methodology for studying phenomena that are related to
human aspects or requirements aspects of software systems, design-science (Hevner, March, Park, &
Ram, 2004) is a methodology to study phenomena related to software through building and evaluating
artifacts. The synthetic nature of software engineering aligns with the subject of study of the design-
science paradigm. Design science is essentially an action-based problem-solving methodology that seeks
to create and evaluate artifacts intended to solve identified problems. It concentrates on the usefulness
or utility of a method or artifact in practice rather than on its truth, taking into account real-world
constraints and practical considerations. Design-science helps in managing the complicated issues linked
to the design of useful artifacts in domain areas in which existing theory or previous knowledge is often
not enough. It essentially addresses important unsolved problems in unique or innovative ways, or solved
problems in more effective or efficient ways (Hevner et al., 2004).

Since the objectives of this research are synthetic (i.e. robust control of uncertainty in self-adaptive
component connectors), we followed a research methodology consistent with the principles of design-
science. The artifact that is developed for this thesis is “a framework comprising analytical techniques and
mechanisms for controlling uncertainties in component connectors environment” to enable “reliable self-
adaptation” of component connectors. The application domains of the research artifacts (i.e., analytical
techniques and mechanisms) are in the area of evolving critical systems (e.g., safety-critical, mission-
critical, business-critical, or security-critical). The evaluation of the artifacts (i.e., framework and its
comprising analytical techniques and mechanisms) are performed through controlled experiments.
Controlled experiments are frequently used to evaluate and validate research artifact correctness and
how precisely the research goals are met through measurement of some criteria. Controlled experiments
provide a better understanding of the problem and feedback to improve the mechanisms. Experiments
also explain the contributions of the mechanism when compared to existing practices.

While design science provides general guidelines for conducting research, we performed our research
according to the model in (Davison, Martinsons, & Kock, 2004), which provides a rigorous step-wise
process. Figure 1.4 provides an overview of the research activities performed for this thesis.

13



The following activities has been followed in this research:

1.

Diagnosis. In this step, we identified the research problem that needs to be addressed. The
general domain of our research is architecture-centric software evolution and more specifically
self-adaptive software. In order to identify the research gap in this domain, we performed a
systematic literature review reported in (Jamshidi, Ghafari, Ahmad, & Pahl, 2013). This study
enabled us to identify the primary research challenge of this thesis, which is controlling the
uncertainty in the self-adaptation process of component connectors.

Planning. In this step, we planned the actions need to be performed according to the research
gaps identified in the diagnosis step. A research proposal and a completion plan were prepared.
In the research proposal, we described, in detail, the deliverables and ultimate outcome of this
research as well as the methods needs to be adopted for evaluating the research outcomes.
Intervention. In this step, we conducted the activities that were required to develop the solution
to solve the identified research problem. The framework that is developed as the primary
solution in this thesis concerns runtime model calibration as well as change planning in the self-
adaptation loop. The first process includes updating analytical models based on runtime data
observation. The techniques that are developed in this process can handle precise model update
in the presence of uncertainty such as incomplete data or noisy data. The second process includes
planning the right configuration for the component connector based on environmental and
internal quality measurements. The techniques that are developed in this process can plan
appropriate configuration in the presence of noisy runtime measurements.

Evaluation. In this step, we evaluated our solution through controlled experiments on individual
techniques and mechanisms that we have developed in order to control uncertainty in self-
adaptive component connectors.

Reflection. Reflection consists of activities that involve illustration of the research impact to a
specific research community. In the context of this research, the research outcomes were
communicated though publications and implementations of the techniques were made available
for replicating the results.
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Figure 1.4. Overview of our research methodlogy.
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In Table 1.1, we summarize the steps of our research methodology that we have followed throughout this
research and their relevance to the individual thesis chapter (represented as Ch*).

Table 1.1. Summary of the research methodology steps and their relevance to the thesis chapters.

Thesis Chapters

Research Methodology Steps Chl | Ch2 | Ch3 | Cha | Ch5 | Ch6 | Ch7 | Ch8

Diagnosis — Problem Identification i\ ' '

Planning — Develop Research Plan Vv

Intervention — Execute Research Steps ) Vv v

Evaluation — Conduct Research Evaluation i\ Vv \

Reflection — Research Impact i\ Vv
1.7. Thesis

This section first describes the thesis that this work intends to support. This section also explains the
research claims of this thesis.

1.7.1. Thesis Statement

In this thesis, we enable reliable and dependable self-adaptation of component connectors in unreliable
environments with imperfect monitoring facilities by providing: (a) techniques for robust model
calibration, (b) a method for robust adaptation reasoning, and (c) tool support that allows an end-to-end
application of the developed techniques.

1.7.2. Research Claim

The thesis statement explains a concise solution to the stated problem being addressed in this thesis.
However, it does not explicitly talk about specific claims or the criteria for evaluating the approach. In this
section, we consider three research claims and explain an appropriate evaluation method. A summary of
these items is shown in Table 1.2.

Research claim 1 (runtime efficiency). The approach for model calibration and adaptation reasoning
imposes acceptable overheads and is runtime efficient, satisfying the timing restriction of the self-
adaptation loop.

The activities that need to be integrated in the self-adaptation requires being time efficient. Therefore, as
part of ensuring the practicality of the approach, there is a need to evaluate the runtime complexity of
the approach.

Research claim 2 (scalability). The approach for model calibration is practical in terms of runtime efficiency
with large models. In addition, the approach for adaptation reasoning is applicable even with a large
knowledge base.

It is not sufficient for the approach to be time efficient for small models but it needs to impose an
acceptable overhead to large-scale systems, which correspond to complex models. As a result, there is
required to ensure the scalability of the approach by scaling out models at runtime for model calibration
and fuzzy rule base for adaptation reasoning.
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Research claim 3 (robustness). The approaches for model calibration and adaptation reasoning are
resilient against dynamic uncertainty in their input.

The approach needs to be resilient against different amplitude of noises, which resembles the reality of
uncertain environments that component connectors are operating. It is required that different levels of
noise are injected to the input parameters of the approach and the robustness of the approach is
evaluated under dynamic uncertainty.

Research claim 4 (applicability). The approach is applicable to real-world component connectors.

The approach presented in this thesis develops a set of techniques and methods to control the uncertainty
in self-adaptation of component connectors. However, it is not evident that these techniques and
methods are actually useful in real world settings. In order to evaluate the applicability of our approach
in a real world context, we conducted a case study.

Table 1.2. Research claims, evaluation method and relevant chapters.

Research Claim Evaluation Method Associated Chapter (s)
Runtime efficiency | Controlled experiment | Chapter 5, Chapter 7
Scalability Controlled experiment | Chapter 5, Chapter 7
Robust Controlled experiment | Chapter 4, Chapter 5, Chapter 7
Applicability Case study Chapter 7

1.8. List of Publications

The following publication has been produced during the course of the last three years as part of my PhD
research:

Refereed Journal Papers:

[J1] P. Jamshidi, A. Ahmad, C. Pahl, Taming Knowledge Specification Uncertainty in Self-Adaptive Software,
Elsevier Journal of Systems and Software, 2014, Under Review.

[J2] P. Jamshidi, A. Ahmad, C. Pahl, Cloud Migration Research: A Systematic Review, IEEE Transactions on Cloud
Computing, 2013, DOI: 10.1109/TCC.2013.10. [Data]

[J3]1 A. Ahmad, P. Jamshidi, C. Pahl, Classification and Comparison of Architecture Evolution Reuse Knowledge - A
Systematic Review, Journal of Software: Evolution and Process, Wiley, 2014, DOI: 10.1002/smr.1643. [Data|

[J4] A. Ahmad, P. Jamshidi, C. Pahl, A Pattern Language for the Evolution of Component-based Software
Architectures, Electronic Communications of the EASST, Special Issue on Patterns Promotion and Anti-patterns
Prevention, 2014.

Refereed Conference Papers:

[C1] P. Jamshidi, C. Pahl, Orthogonal Variability Modeling to Support Multi-Cloud Application Configuration,
Seamless Adaptive Multi-cloud Management of Service-based Applications (Seaclouds), ESOCC 2014.

[C2] P. Jamshidi, A. Ahmad, C. Pahl, Autonomic Resource Provisioning for Cloud-Based Software, in 9th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), co-located
with ICSE'14, 2014.
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[C3] P. Jamshidi, M. Ghafari, A. Ahmad, C. Pahl, A framework for classifying and comparing architecture-centric
software engineering research, in 17th European Conference on Software Maintenance and Reengineering
(CSMR), 2013.

[C4] A. Ahmad, P. Jamshidi, C. Pahl, F. Khaliq, PatEvol - A Pattern Language for Evolution in Component-Based
Software Architecture, Workshop on Patterns Promotion and Anti-Patterns Prevention, CSMR, 2013.

[C5] P. Jamshidi, C. Pahl, Business Process and Software Architecture Model Co-evolution Patterns, ICSE 2012
Workshop on Modeling in Software Engineering (MiSE 2012).

[C6] A. Ahmad, P. Jamshidi and C. Pahl, Pattern-driven Reuse in Architecture-centric Evolution for Service
Software, 7th International Conference on Software Paradigm Trends ICSOFT 2012, 2012.

[C7] A. Ahmad, P. Jamshidi, M. Arshad and C. Pahl, Graph-based Implicit Knowledge Discovery from Architecture
Change Logs, Seventh Workshop on SHAring and Reusing architectural Knowledge - SHARK 2012 (at
WICSA/ECSA'2012), 2012.

[C8] M. Ghafari, P. Jamshidi, S. Shahbazi and H. Haghighi, An architectural approach to ensure globally consistent
dynamic reconfiguration of component-based systems, 15th International ACM SIGSOFT Symposium on
Component-based Software Engineering (CBSE’2012), Bertinoro, Italy, June 2012.

[C9] M. Ghafari, P. Jamshidi, S. Shahbazi, H. Haghighi, Safe stopping of running component-based distributed
systems: challenges and research gaps, International Conference on Adaptive and Reconfigurable Service-
oriented and Component-based Applications and Architectures, Toulouse, France, June 2012.

[C10] A. Ahmad, P. Jamshidi, C. Pahl, Graph-based Pattern Identification from Architecture Change Logs,
International Workshop on System/Software Architectures IWSSA’2012, CAISE 2012.

Table 1.3. A mapping of the related publications to the individual thesis chapters.

Chapter Primary Publication | Secondary Publication Outcome

Chapter1 | - C10,C7,Ce, C3 Research Questions, Hypothesis
Chapter2 | - - Thesis Background

Chapter3 | C3,J3 - Research Positioning

Chapter4 | - C3 RobustMC (cf. Figure 1.3)
Chapter5 | J1,C2 - RobusT2 (cf. Figure 1.3)
Chapter6 | C8, C9 C5,C4,C1,)4 Change Execution Mechanism
Chapter7 | C2,J1 12 Research Validation (RCU)
Chapter 8 | - - Conclusions and Outlook
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1.9. Thesis Outline

The structural organization of the thesis is illustrated in Figure 1.5. In the remainder of this section, we
provide an overview of the contribution of each chapter that follows a summary of the objectives and
outcome for each chapter presented in Table 1.3.

Chapter 1: Introduction
\ 4

Chapter 2: Background

Chapter 3: State of the
Art

L 7

Chapter 4: RobustMC-
Model Calibration

v

Chapter 5: RobusT2-

Background/Positioning

Adaptation Reasoning

\ 4

Chapter 6: Adaptation

Contribution

Execution

v

Chapter 7: lmplementation*

and Evaluation

L 2

Chapter 8: Conclusions and
Outlook

-———

Appendix 1: Survey
Template

1
L

Appendix

Figure 1.5. An overview of the thesis organization.

Chapter 2 presents the research background and related definitions and concepts that we use throughout
this thesis.

We explain some of the fundamental concepts that provide background details before the discussion of
thesis contribution. In this chapter, we focus on the role of uncertainty in self-adaptive software, the role
of models at runtime in non-functional requirement verification and the central role of fuzzy logic systems
in adaptation reasoning.

Chapter 3 critically reviews the state-of-the-art of existing approaches for controlling uncertainty for self-
adaptive software systems.
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First, a number of comparison criteria of related approaches is given. Then, we provide a demarcation and
detailed description of each related research work. Finally, a detailed comparison of the related work
according to the comparison criteria is discussed.

Chapter 4 proposes a method for model calibration in the presence of uncertainty.

In this chapter, we present the analytical models to model the component connector behavior. We also
propose mechanisms to calibrate the unknown parameters of the models at runtime. The key contribution
here is that the mechanisms are capable of carefully determining the parameters even in the presence of
uncertainty. The proposed method is comprehensively evaluated with thorough discussions of the results.
The results in this chapter provides an answer for research question RQ1.

Chapter 5 describes in details the design, implementation and experimental validation of the adaptation
reasoning for component connectors.

In this chapter, we first review the state-of-the-art of adaptation reasoning techniques and mechanismes.
We then propose the RobusT2 framework to realize the adaptation reasoning using type-2 fuzzy logic
system. After presenting the concept of uncertainty and type-2 fuzzy logic systems, this chapter
introduces in detail the interval type-2 fuzzy logic systems considered in this research. This chapter
presents the application of type-2 fuzzy logic control developed in this research for adaptation reasoning.
The chapter explains by using numerical examples the subsystems of the developed framework. This
chapter also presents experimental evaluations of the framework. The results in this chapter provide an
answer to research question RQ2.

Chapter 6 presents a mechanism to enact the transitions from the current connector configuration to the
target configuration.

Considering the heterogeneity of models and languages involved in software connectors, this chapter
introduces an approach to derive reconfiguration plans using reasoning based on graph theory and
feature models. We describe a mechanism for transforming these feature models corresponding to the
connector modes to an executable reconfiguration plan.

Chapter 7 reports an end-to-end evaluation of individual research components and overall validation of
the proposed framework.

In this chapter, we show how the three key parts of the RCU framework are integrated to enable self-
adaptation of component connectors through a real-world case study. To conduct this research, we
followed the guidelines of the action research methodology (Chapter 1) that provides a rigorous set of
steps focused on planning (Chapter 2, Chapter 3) and conducting the research (Chapter 4, Chapter 5,
Chapter 6) along with the evaluations of the research results (Chapter 7). Therefore, in this chapter, we
focus on an experimental evaluation of the adaptation management of component connectors in the RCU
framework. In summary, we show the validity of the research claims that are discussed in Section 1.7.2.
The results in this chapter provide an answer to research question RQ3.

Chapter 8 concludes our research contribution in the context of research gaps identified in Section 1.4.

In this chapter, we review the contribution once again. We also discuss limitations, threats to validity and
the potential for future research.
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Appendix A presents the design of the fuzzy logic system used in Chapter 5.

The type-2 fuzzy logic system used for adaptation reasoning is designed by using expert knowledge. A
survey based on a real-world connector was conducted among experts in cloud computing. The survey
allows extracting expertise in the form of IF-THEN rules. This appendix chapter mainly presents the
template that we adapted from (Solano Martinez, 2012) and extended to use in the survey.

1.10. Chapter Summary

This chapter provides the research motivation based on a brief overview of existing research and its
limitations. Based on the identified research challenges, we outlined the central hypothesis that allowed
us to identify the research questions. The role of individual research questions is vital in highlighting the
solution requirements. We highlighted the adoption of a customized research methodology to plan,
conduct the research, evaluate the developed artifacts and reflect on the research implications. We also
specified our research claims, which become the main criteria for evaluating the approach.

Finally, we provided an overview of the organization of the thesis. The chapter provides a foundation to
present the results of our literature review and to provide an overview of the proposed solution. A
summary of the objectives and the outcome for the individual chapters in this thesis is presented in
Table 1.3 that allows us discuss the research positioning, contributions and evaluation in subsequent
chapters (cf. Figure 1.5).
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Chapter 2

2. Background

“We shall not cease from exploration and the end of all our exploring will be to arrive where we started
and know the place for the first time.” - Thomas Stearns Eliot (1888-1956).

Contents
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2.1. Chapter Overview

Several research fields, the most important ones being “Self-Adaptive Software”, “Models at Runtime”,
“Fuzzy Logic Systems” and “Component Connectors”, influence this thesis. Each field is divided into many
research communities each focusing on special aspects of the respective field. The self-adaptive software
community provides the general theme underlying this thesis, and the outcome of this thesis contributes
mainly to this community. The “models at runtime” is a closely related technique to realize self-adaptive
software, which was a main inspiration for this thesis. Fuzzy logic is a field of research, which has been
investigated, tailored and adapted for adaptation reasoning in this thesis. Finally, component connectors
play a fundamental role in this thesis as the principal domain to which we apply our solution framework
in order to enable dependable self-adaptive architectures.

This chapter serves to ease the understanding of the succeeding chapters by summarizing the most
important aspects of the four related research fields to the topic this thesis. Note that readers can skip
this chapter as it is not a core contribution chapter and it consists mainly of fundamental definitions that
we borrowed from standard literature in order to back up the propositions of this thesis. In other words,
none of the definitions that are given in this chapter are originated here and we only include them to
make this thesis a self-contained manuscript. In core chapters (i.e., Chapter 4, Chapter 5, Chapter 6 and
Chapter 7), wherever necessary, we refer back to the definitions in this chapter.

In the following, Section 2.2 discusses the phenomena of uncertainty in self-adaptive software, followed
by an overview of mathematical techniques for controlling uncertainty in Section 2.2.3. Section 2.3
introduces background on analytical models, which are adopted in this thesis for adaptation reasoning.
Section 2.4 discusses background on fuzzy logic systems, upon which our adaptation planning is based.
Section 2.5 discusses the basic definitions related to the scope of this thesis, which is the notion of
component connectors and the adopted language for representing component connectors.

2.2. Uncertainty in Self-Adaptive Software

In self-adaptive software, not all sources of uncertainty have the same features (Esfahani & Malek, 2013).
Approaches for modeling different uncertainties are very dissimilar to each other (Esfahani et al., 2011,
Esfahani & Malek, 2013). For example, uncertainty for specifying objectives of self-adaptive software is
due to lack of knowledge and it is not possible to specify this with a probability distribution suitable for
specifying uncertainty due to variability.

2.2.1. Lack of knowledge vs. variability

A distinction that is common in the literature is between aleatory uncertainty and epistemic uncertainty
(J. Aughenbaugh, 2006). The former uncertainty comes from the Latin word for gambler “aleatory” and
refers to uncertainty rooted in a random process. The later uncertainty arises from the Greek term
“episteme” meaning knowledge. Aleatory uncertainty refers to inherent variability in the observed
phenomena and is commonly modeled using probability theory. In contrast, epistemic uncertainty is
instigated by a lack of knowledge about the observable phenomena. This distinction is because of the
location of uncertainty — in the state of the analyst, users, decision maker vs. state of the software system
under consideration (J. Aughenbaugh, 2006).
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The distinction between aleatory and epistemic uncertainty is not always clear (J. Aughenbaugh, 2006).
For instance, one may argue that variability observed in the environmental dynamics of software systems
is due to the limitations of scientific models and, therefore, lack of knowledge. While these opinions are
somehow correct, these distinctions depend on one’s specific point of view. More clearly, in one point of
view, a phenomenon might be uncertain due to lack of knowledge, but it also might be uncertain due to
variability in a different point of view.

2.2.2. Reducibility vs. irreducibility

The uncertainty with respect to unknowable phenomena is often referred to as irreducible uncertainty (J.
Aughenbaugh, 2006). Similarly, the uncertainty linked with knowable phenomena, which are currently
unknown, is referred to as reducible uncertainty (J. Aughenbaugh, 2006). The distinction between these
types of uncertainty is also disputable. One of the main causes behind irreducibility of uncertainty is
related to the existing capability of science to mitigate the intractable complexity of phenomena. For
example, itis a fact that the physical world is a non-linear system. However, since we do not know enough
non-linear mathematics, we model the system through linear mathematics and as a result, models
contains irreducible uncertainty.

2.2.3. Mathematical theories for representing and controlling uncertainty

This section provides an overview of two commonly applicable approaches for handling uncertainty in
software engineering in general and self-adaptive software in particular. As it is discussed in the state-of-
the-art (Esfahani & Malek, 2013), existing work has often relied on one of these approaches to either
model or reduce the effects of uncertainty.

2.2.3.1. Probability theory

Probability theory (Bertsekas & Tsitsiklis, 2002) is the most widely used approach for handling uncertainty
in the self-adaptive software domain (Esfahani & Malek, 2013). Probability was formerly connected to the
classical interpretation of the theory. This interpretation is because the outcome of a phenomenon is
equally possible. This classical interpretation of the theory produces inconsistencies when it is used
beyond games of chance. Because of this limitation, the frequentist interpretation was conceived. In this
interpretation, the probability of an event is delineated as a limit of its relative frequency in large trials.

Bayesian theory (Hoff, 2009) is founded on the subjective explanation of the probability. In this
interpretation, the probability is defined as a manifestation of a rational belief of a human about uncertain
propositions. This explanation generalizes the frequentist interpretation as it allows probability
assignment to a single observation regardless of whether or not it is part of a larger observation. This
interpretation is very useful in cases where there is not enough data for frequentists. For instance, by
frequentist interpretation we are not be able to analyze a new unknown phenomenon for which enough
data is not available, while Bayesians can use subjective information based on related phenomena to
analyze the new phenomenon. Bayesian approaches are a unified theory for both data-rich and data-poor
problems. Many modern machine-learning methods, including those adopted within this thesis, are based
on Bayesian principles.
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2.2.3.2. Fuzzy theory

Fuzzy theory (Zadeh, 1965) is an extension of classical set theory. In classical set theory, either an element
of a set is a member of the set with membership value 1 or it is not a member of the set with membership
value 0. However, in fuzzy theory, a member can be in some degree a member of a set. To that end, the
membership value of an element with respect to a set is any value between zero and one. The higher a
membership degree is, the more likely that element belongs to that set. As a result, the boundary of a
fuzzy set is not evidently defined, while the boundary of a classical set is defined with a crisp value.

Fuzzy theory is useful in domains where information is incomplete or imprecise. For instance, fuzzy sets
have been used in linguistics to deal with ambiguity of words. As another example, temperatures that are
considered to be cold and warm may be different from person to person. In fact, some temperatures can
be considered both cold and warm to some extent. A program that tries to understand written text can
use the fuzzified versions of coldness and warmness to deal with uncertainty regarding understanding of
the text.

While probability theory deals with quantifying the variability in data, fuzzy theory focuses on quantifying
the ambiguity of data. Although, sometimes the two theories can be used interchangeably, it has been
shown that the two theories are different. In general, possibility theory is useful when there is little
information or imprecise data. However, when more precise information is available, it is better to use
probability theory.

2.3. Analytical (Stochastic) Models at Runtime

Runtime modeling of a software system describes the behavior of software, comprising its interaction
with users and the environment (cf. Figure 2.1). There are some factors including the dependency of
software on physical resources, third party services, and variability of the usage profile that produce
uncertainty for the software. All of these changes are not under the control of the system and may occur
unpredictably. For instance, the usage load of a cloud-based application may change suddenly during
special events like Christmas (Jamshidi, Ahmad, & Pahl, 2014).

Autonomic Manager
@}

N v

Base-Level Software

Users

Figure 2.1. The role of models as the K in the MAPE-K loop in self-adaptive software.
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The key focus of this thesis is on non-functional requirements (Pohl, 2010), in particular performance and
reliability, that are considerably affected by environmental dynamics. These requirements are often hard
to predict at design-time because of their interdependence on environmental factors that are prone to
change at runtime. Moreover, even if the predictions were initially made, they are likely to change at
runtime. These predictions are often based on human experience, historical data or the observation of
similar systems (A Filieri, Ghezzi, & Tamburrelli, 2012). Even when such data is available to make design-
time assumptions about the environment, sudden changes in the environment can nullify them.

In order to quantify non-functional requirements, we need to deal with unavoidable uncertainty. By
abstracting the behavior of software (component connectors here in this thesis) to a finite and countable
set of states, we are able to formally analyze the properties in which we are interested to study finite-
state stochastic processes. The reason behind this choice is quite natural. Firstly, since our focus is on non-
functional properties of software systems, we specify systems via stochastic models, which support
guantitative probabilistic specifications that are particularly suitable to express reliability, performance,
and cost concerns. Secondly, reasoning is supported by model checking, which can be utilized to
automatically verify a system model against requirements expressed in a suitable logic notation.
Consecutively, this may trigger proper adaptation strategies to change system configurations and avoid
predicted requirements violations. Conceptually, this framework, usually called models at runtime (Blair,
Bencomo, & France, 2009), establishes a feedback control loop between analytical models, here
stochastic models, and the running system. At runtime, the system feeds data back to update the
analytical model. Models are alive at runtime and they evolve since their parameters are constantly
updated by monitoring relevant aspects of the running software, which recognize relevant changes as
they occur at runtime and modify the models accordingly (Epifani et al., 2009).

Note that all definitions given in this section are standard definitions in probability theory, stochastic
model checking and quantitative verification that we borrowed from standard literature, e.g., (Calinescu
et al., 2012; M Kwiatkowska, Norman, & Parker, 2007; Marta Kwiatkowska, 2007; Pinsky & Karlin, 2010).

A stochastic process (Pinsky & Karlin, 2010) is a family of random variables X; that is intended to model
time dependent stochastically evolving dynamic systems, such as software systems. Note that each of the
random variables signifies the state of the system at a time point t. More concretely, we describe a
stochastic process as:

Definition 1. A stochastic process is a mapping
X:TxQ->S (2.1)

, where Q is a probability (sample) space, T is a set of time points and S is the state space of the
stochastic process X.
The quantity X (t, w) is the value of the stochastic process at time t for the outcome w € Q. To simplify
the definition, the dependence of X on w can be avoided, we can write the process as X(t), which
represents the state of the process at time. One can consider discrete-time processes witht € N, or
continuous-time processes with t € R. In this thesis, we consider both discrete-time and continuous-time
processes.

The temporal evolution of stochastic processes representing a software system is indicated by its previous
history, design-time assumptions and random variables capturing the uncertainty about users and
environment. Markov processes are a special class of stochastic systems satisfying the Markov property.
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Definition 2. A stochastic process X (t) have a Markov property if for each t > 0 and a subset A € S:
PX(t+ 1) € A|X(0) = xg, ..., X(t) = x;) = P(X(t + 1) € A|X(t) = x;) (2.2)

Therefore, for a Markov process the only information about the past needed to predict the future is the
current state of the random variable. On the other hand, knowledge of the values of earlier states do not
change the transition probability. Note P(X(t + 1) € A|X(t) = x;) is one-step transition probability.
Under the assumption of discreteness (finiteness and countability) of state space S, the one-step
transition structure of X can be summarized through a square transition matrix P, whose entry p; ; is the

value [P(X(t +1) = sj|X(t) = sl-) with s;,s; € S.

A stochastic process satisfying the Markov property is called Markov process (Pinsky & Karlin, 2010). A
Markov chain refers to a sequence of random variables (X, ..., X;;) generated by a Markov process.
Generally, the term Markov chain is used to convey a Markov process which has discrete (finite or
countable) state space. More specifically, the possible values of X; form a countable state space of the
chain. There are many alternatives to Markov processes, suitable for representing several aspects of the
modeled software systems such as reliability, execution time, or energy consumption (A Filieri et al.,
2012). A Markov chain either can be defined for a discrete set of times or can take continuous
values {X(t):t = 0}. In the former case, the Markov chain is called Discrete-Time Markov Chain (DTMC)
and in the latter case, it is called Continuous-Time Markov Chain (CTMC).

2.3.1. Discrete-Time Markov Chains

Discrete-Time Markov Chains (DTMC) (Pinsky & Karlin, 2010) are widely adopted in software engineering
for reliability measurement and analysis (L. Cheung, Roshandel, Medvidovic, & Golubchik, 2008; Pham,
2006; Roshandel, Medvidovic, & Golubchik, 2007; W.-L. Wang, Pan, & Chen, 2006). One common
characteristics of these approaches is that they are used for reliability assessment of systems composed
by cooperating parts (e.g. component-based software, or service-oriented architectures) at design-time
(Immonen & Niemeld, 2007). The most important aspect for adopting DTMCs for reliability analysis is that
the system’s behavior with some tolerable approximation should meet the Markov property.

Definition 3. A Discrete-Time Markov Chain is a stochastic process satisfying the Markov property with
T € N and S is finite and countable. This structure is usually represented by Kripke notation as
(8,50, P, L), where:
e Sis a finite set of states.
e 5qis the initial state.
e P:SxS—-1]01] is the probability of transitions between states. P(i,j),P(si,sj),pi,j are
interchangeably used for representing the transitions.
e L:S - 24P s a labeling function that associates to each state the set of atomic propositions
(i.e., L(s)) that are true in that state.

An element of P such as p; ; signifies the probability that the next state of the process will be s; given that
the current state is s;. Note that Zsjespij = 1, where {p;;} is the next state distribution for a state s;.
Usually, s = s;,s = i are the default atomic propositions of each state s;. The probability of a path
originating from s; and ending in s; in precisely 2 steps, i.e.,, having one intermediate step, is
Yis,es Pix * Pxj- This summation is the entry (i, j) of matrix P2, Similarly, the probability of moving from
s; to s; in exactly k steps is the entry (i, j) of matrix Pk,
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Definition 4. An execution path is a sequence of states ™ = sg, S1, Sy, ... of a DTMC if for any pair

(Si) Si+1), Dii+1 > 0. m[i] is used to represent the ith state in the path 7. The probability of a finite path

to be observed is HLZIJZ P(s;,Si+1), and 1 when || = 1.

Definition 5. A state s; is transient if:

Inf.
Z p{}i < © (2.3)

n=1

It is recurrent if:

Inf.
Z piy = (2.4)

n=1

And it is absorbing if p;; = 1.

In other words, the number of transitions into state s; is finite, while recurrent states will be visited
infinitely.

Definition 6. A DTMC model is well-formed if:
e Every state that is recurrent is also absorbing
e All states of the model are reachable from the starting state
e There is a path to at least one absorbing state from every transient state

2.3.1.1. Model Specification with DTMCs

In this section, a few points about the modeling process with DTMCs are provided.

DTMCs have been adopted for modeling different phenomena, e.g. chemical reactions, DNA sequences,
financial trading, demographic evolution, human behavior, or business processes (Pinsky & Karlin, 2010).
DTMCs can be perceived as state-transition systems with annotated transitions through which non-
functional aspects can be specified. State-transition systems are frequently used in practice by software
designers and can be used at different levels of abstraction to model software systems.

Several software modeling standards such as UML can be automatically translated into DTMC models by
means of automated model transformations, e.g., (Gallotti & Ghezzi, 2008; Carlo Ghezzi & Sharifloo,
2011). Moreover, some integrated design frameworks can automatically transform their design models
into corresponding Markov chains in order to provide quality assessment, e.g., (Becker, Koziolek, &
Reussner, 2007; Ciancone, Filieri, & Drago, 2011).

Because of its inherent characteristics, DTMCs have been widely used to analyze system reliability (Pham,
2006). The common idea behind the various software reliability analysis approaches is that special states
represent software failure condition. The existence of a failure is then represented by a transition toward
one of these states. In general, a state in a DTMC model represents an observable condition of the system
at runtime that is relevant from the modeling perspective at a specific abstraction level (A Filieri et al.,
2012). In this thesis, we assume that it is possible to identify a portion of the execution of the system that
we can associated with only one state of the DTMC.
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In order to map the execution state of a software system into a DTMC model, there is no general guideline
and procedure. In (R. Cheung, 1980) a state of a DTMC model corresponds to a program module and state
transitions correspond to control flow between the modules. In (Littlewood, 1975), the very same concept
with a different name, i.e., program sub-unit, is used for reliability analysis of a software program. In
(Calinescu, Grunske, Kwiatkowska, Mirandola, & Tamburrelli, 2011; A Filieri et al., 2012), a state is referred
to as an external service invocation. Moreover, special states such as the initial state of DTMC models
represent the users and its outgoing transitions represent user profiles. Similarly, in (A Filieri, Ghezzi,
Grassi, & Mirandola, 2010), a state represents service execution, but also contain accumulated errors in
the data flow up to the point.

A common practice in the mentioned work is that they classify the states in a way that leads to at least
one absorbing state. As we mentioned earlier, when an absorbing state is reached, the model will stay
there forever. This characteristic makes absorbing states appropriate for occurrences of failure or
successful completion of software. In this thesis, it is assumed that every analytical model that we use
here has at least one absorbing state demonstrating the termination of the software execution.

One of the interesting features of Markov models in general and DTMC models in particular is that their
transition matrices can handle the temporal changes of the model perfectly (Pinsky & Karlin, 2010). Model
change in this type of analytical models is defined as variation in the values of the entries of P. In this
thesis, we assume two types of entries exist in the transition matrix of a DTMC model. Some entries in the
transition matrix are assumed to be known at design-time and stable at runtime. An example is failure of
a particular hardware services, e.g. storage. Some other entries are assumed as either unknown at design-
time and/or subject to change at runtime. For instance, usage profiles of users may change due to
unexpected events. Note that discovering changes at runtime requires observation of the running system
and suitable learning techniques. In this thesis, the latter entries of p are referred to as parameters of the
model, and a model that has at least one parameter is called parametric.

2.3.1.2. Markov assumption verification

According to the Markov property as stated in Definition 2, the next state to be executed in a Markov
process is independent from the previous history and depends only on the current state. However, it not
always easy to verify the satisfaction by looking at the source code of a software. In (R. Cheung, 1980;
Ramamoorthy, 1966), several experiments showed that this assumption often holds at architectural level.

In the case that the next action depends on previous history, there are still some cases that can be
approximated by a Markov process. The first is the case where a limited number of previous moves, let
say k of them, affect the next step. This situation can be modeled by a k-th order Markov process, that is
one where the next action depends only on the previous k actions. Nonetheless, a software systems might
expose an intrinsically non-Markov behavior (Gokhale, 2007), thus the Markov assumption must be
verified before proceeding with the analysis (Billingsley, 1961; Pinsky & Karlin, 2010).

2.3.2. Continuous-Time Markov Chains

Despite the fact that each transition between states in a DTMC model corresponds to a discrete time-step
in a Continuous Time Markov Chain (CTMC) (Pinsky & Karlin, 2010), transitions occur in real time. For
DTMCs, we assume a fixed set of atomic propositions AP.
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Definition 7. A Continuous-Time Markov Chain is a stochastic process satisfying the Markov property
with T € R and S is finite and countable. This structure is usually represented by Kripke notation as
(S,5s0,R, L), where:

e Sisafinite set of states.

e 5, isthe initial state.

e R:SXS - R,pisthe transition rate matrix.

e L:S — 24P s alabeling function that associates to each state a set of atomic propositions

(i.e., L(s)) that are true in that state.

The matrix R assigns rates to each pair of states in a CTMC. A transition can only occur between states s;

and s, if R(s1,5,) > 0 and, in this case, the probability of this transition being triggered within t time-
_R(SI'SZ)*t

units equals 1 — e Typically, in a state s, there is more than one state s’ for which R(s; s') >
0. This is called race condition. The first transition to be triggered determines the next state of the CTMC.
The time spent in state s, before any transition occurs, is exponentially distributed with the exit rate of

state s, i.e., E(s), where:

EG)E ) R(s,s) 25)

SIES

A state s is called absorbing if E(s) = 0, i.e., if it has no outgoing transitions. Note that the actual
probability of each state s’ being the next state, to which a transition from state s is made, is independent
of the time at which this occurs. This is defined by the notion of an embedded DTMC.

Definition 8. The embedded DTMC of a CTMC C = (S,sq,R,L) is the DTMC emb(c) =
(S, so, pemb(c), L), where:
R(s,s")/E(s) if E(s) # 0
pemb© (s, s") = { 1ifE(s)=0ands=ys' (2.6)
0 otherwise

By considering the above definition, the behavior of the CTMC can be considered in an alternative way.
The model will remain in a state s for a delay, which is exponentially distributed with rate E(s) and then
make a transition. The probability that this transition is to state s’ is given by P€M™?(©) (s, s").

Definition 9. The infinitesimal generator matrix for a CTMC C = (S, sg, R, L) isthe matrix Q: S X S = R
defined as:
R(s,s")if s+s
Qls,s7) = {—z R(s,s'") otherwise (2.7)

s'l#s

Definition 10. An infinite path of a CTMC C = (S,so,R,L) is a non-empty sequence T =
So,to,S1,t1,82, ... where R(s;,Siz1) >0 and t; € Ry, . Similarly, a finite path is 7=
S0, to,S1,t1, - Sk—1,tk—1, Sk, such that s is an absorbing state. As with DTMCs, m[i] is used to
represent the ith state in the path m. t@t represents w(j) where j is the smallest index for which
I oti=t.
There are some traditional properties regarding CTMC models: transient behavior, which relates to the
state of the model at a certain instant of time; and steady-state behavior, which describes the state of the
CTMC model in the long run. For a CTMC model C = (S, so, R, L), the transient probability ngt(s’) is
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defined as the probability of having the model started in state s and being in state s’ at time instant t.
Using the definitions of the previous section:

. (s") & P(n € Path®(s)|n@t = s") (2.8)

On the other hand, the steady-state probability ¢ (s") is the probability of having the model started in
state s and being in state s’ in the long run:

& (s") € limy, P(m € Path®(s)|n@t = s") (2.9)

In this thesis, we only consider CTMC models that are homogeneous and finite-state, i.e., the limit in the
above definition always exists.

Uniformization is a method to compute transient solutions of finite state CTMC, by approximating the
process by DTMC.

For a CTMC model C = (S,sq,R,L), l'[tC represents the matrix of all transient probabilities, i.e.,
¢ (s,s") =mée(s).

Definition 11. For a CTMC model C = (S, sq, R, L) with infinitesimal generator Q, the uniformized DTMC
is given by unif (C) = (S, so, P (O, L), where P¥/(C) = | + Q/q and q = max{E(s)}.
The uniformization rate q is determined by the state with the shortest mean residence time. All
exponential delays in the CTMC C are normalized with respect to q. This means that for each state s with
E(s) = q, onetime period in unif (C) corresponds to a exponentially distributed delay with rate q after
which one of its successor states is selected (M Kwiatkowska et al., 2007).

2.3.3. Logics for requirement specification on analytical models

Transient-state and steady-state analysis are two traditional methods for analyzing Markov models in
software engineering (Marta Kwiatkowska, Norman, & Parker, 2010). These two classical methods enable
the investigation of the probability of the analytical model to be in a particular state at a certain time or
in a long run respectively. Although because of their long time use in mathematics they are mature
enough, these two types of analysis cannot express behavioral properties, such as the probability of
eventually reaching a particular state or never hitting an error before completion.

Probabilistic behavioral properties are appropriate formulations of software requirements, such as
invariance, precedence, response, or constrained or unconstrained reachability (Grunske, 2008) that can
be interpreted on probabilistic models, like Markov processes. They can be adopted, in general, to specify
constraints on the probability that particular (un)desired behaviors may be observed for the system:

o (1 (Reliability): “The probability of handling a request successfully must be greater than 0.98”
o (2 (Complexity): “At least 50% of the requests must be processed within 7 operations”

e (3 (Cost): “The average cost for running a request must be less 0.0005 dollars”

e C4 (Response time): “The 95th percentile of response time must be less than 0.02s”

A suitable formal language must specify these informal requirements (i.e., C1 to C4) in order to apply
automatic verification techniques. For a more comprehensive examples of such quantitative
requirements, we refer to (Antonio Filieri, 2013).
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2.3.3.1. Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic (PCTL) (Hansson & Jonsson, 1994) is a temporal logic, based on CTL
(Baier & Katoen, 2008). A PCTL formula expresses conditions on a state of a DTMC, and it is evaluated to
either true or false on the model.

The syntax of PCTL is defined by the following rules:

¢ == truelalg A |=¢|Pup ()
P = XplpU=te
, Where a represents an atomic proposition and p € [0,1], x€ {<, <, >, >},t € NU{co}. The temporal

operators X and U are called “Next” and “Until”, respectively. Note that formulae that are based on the
axiom ¢ are called state formulae and those that are originated by 1 are instead called path formulae.

(2.10)

Here is some examples of state formulae:

s Etrue foralls €S

skEaiffac€lL(s)

SE-QIffs¥ (2.11)
SEP NG Iff sEPiand s E ¢,

s E Pup() iff P(m = |m[0] =s) > p

A path m originating in s satisfies a path formula Y according to the following rules:

T EXPiff n[l] = ¢
TE QU D, iffA0<j <t (m[jlE P, A(VO <k <j:m[k] E ¢;)) (2.12)

As a short form for trueU= ¢, we use operator ¢ instead, which means eventually: =" ¢.

PCTL can specify a large number of properties on a Markov model. For example, it can specify constraints
on the probability of reaching an absorbing state demonstrating a failure or success, given the initial state.
This property is a specific example of the more general class of reachability properties. Reachability
properties are specified as Py, (¢ ¢), which shows that the probability of reaching a state where ¢ is valid
meets the constraint & p.

2.3.3.2. Continuous Stochastic Logic (CSL)

Continuous Stochastic Logic (CSL) (Aziz, Sanwal, Singhal, & Brayton, 1996) is a temporal logic, where the
state formulae are interpreted over states of a CTMC and it is a natural extension of PCTL logic.

The syntax of CSL is defined by the following rules:

¢ == truelald A ¢l |S () Prap (W)
P = Xp| U=

, where a represents an atomic proposition and p € [0,1], M€ {<,<,>, =}, t € RyoU{inf.}. The
temporal operators X and U are called “Next” and “Until”, respectively.

(2.13)

31



Here is some examples of state formulae:

sEtrue foralls €S
seaiffac€lL(s)
SE-QIffsk#

SEG AN, iff sEdPLands E ¢, (2.14)
S E Sup(@) if f limy_ s P(m@t & $|n[0] = 5) < p
S E Pup(@) iff P(r E |m[0] =5) x p
A path 1 originating from s satisfies a path formula 1 according to the following rules:
m =X iff (1] = ¢
mE ¢ U, iff 30 < j <t (n[j] E ¢ A (VO < k < jim[k] & ¢y)) (2.15)

2.3.4. Extending Markov models and requirement specification logics with rewards

In this section, we represent an extension for DTMCs with the capability to specify rewards (or costs) and
extend the corresponding requirement specification PCTL with the capability to specify over reward
structure. A reward can be adopted for specifying additional information about the system that the
analytical model describes, e.g., number of messages sent or the number of lost requests, or even the
cost for consumptions of energy.

Definition 12. For a DTMC model D = (S, s, P,L), a reward structure (p,t) allows two types of
reward. A state reward function p: S = R, assigns rewards to states of the model. A transition reward
function t: S X S — R, assigns rewards to transitions between states of the model. The state reward
p(s) is acquired per time-step, while a transition reward ((s,s") is incurred each time a transition
between the two states s, s’ occurs.

The PCTL logic is extended by reward properties by means of the following state formulae (M Kwiatkowska

et al., 2007):

Ruar (C¥F)[Ruar (I7%) Ry (Fb) (2.16)
, Where M€ {<,<,>,>},7 € Ry, k € Nand ¢ is a state formula.
Intuitively, the interpretation of the extended structure is as follows:

° RW(CS") is true in state s, if from the state s, the expected reward cumulated after k time-steps
satisfies > 7.

. RW(F") is true in state s, if the expected state reward in the state entered at time-step k along
the path originating from s meets the bound x r.

o R, (F@) is true in state s, if the expected reward cumulated before a state satisfying ¢ is
reached meets the bound X 7. In order to calculate the average cost of a run of the system, we
can use this construct by computing the expected cumulated cost until the execution reaches the
end state.

For a more detailed description of the reward extension, we refer to (M Kwiatkowska et al., 2007).
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2.4. Type-2 Fuzzy Logic

In this section, we only briefly introduce the notion of type-2 fuzzy sets and systems. In the corresponding
chapter (i.e., Chapter 5), the details of each key components of such systems are discussed.

2.4.1. Type-2 fuzzy sets

The concept of type-2 (T2) fuzzy sets (FS) was firstly introduced by Zadeh (Zadeh, 1975) and further
elaborated by Mendel (JM Mendel & John, 2002; JM Mendel, 2007). This type of FSs is an extension of the
ordinary ones (also known as type-1 (T1) FS). A T2 FS is characterized by a membership function (MF, cf.
Figure 2.2), which associates a FS to each elements of the set, unlike a T1 set where its MF associates a
crisp number in [0,1] to each element of the set. Such sets are useful in circumstances where it is
infeasible to determine the exact MF. This additional dimension provides new degrees of freedom, which
is useful for incorporating uncertainty (Wu, 2012).
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Figure 2.2. An interval type-2 fuzzy set based possibility distribution.

One may consider Figure 2.2 as the blurred version of the T1 MF by shifting the points on the trapezoid
either to left or to the right. Therefore, at a specific value, x’, there is not a single value, but an interval of
values. These values do not necessarily have the same weight. This leads to the definition of a three
dimensional MF, a T2 MF, which characterizes a T2 FS. Note all definitions in this section as well as those
given in Chapter 5 are standard definitions in fuzzy theory that we borrowed from standard literature
(e.g., (JM Mendel & John, 2002; Jerry M. Mendel, John, & Liu, 2006) and more specifically (JM Mendel,

Hagras, & John, 2010)).

Definition 13. A T2 FS, denoted by R, is characterized by a type-2 membership function ug (x, 1)
R={((xw,ug(x,w)|vx € X,Yu € J,, puz(x,u) < 1} (2.17)

When these values have the same weight, it leads to the definition of a two dimensional MF, which at a
specific point, x’, has a range [0,1]. This type of FSs are called interval T2 FS (IT2 FS) (Definition 14).

Definition 14. When all uz(x,u) = 1in (2.17), then R is an interval T2 FS (IT2 FS).
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Therefore, the MF of IT2 FS can be fully specified by the two T1 MFs (cf. Definition 16). The area between
the two MFs (the grey region in Figure 2.2) characterizes the uncertainty.

Definition 15. The uncertainty in the membership function of an IT2-FS, R, is called footprint of
uncertainty (FOU) of R, i.e.,

Fou(R) = | J1e = (@ wlvxex,vue)y (2.18)

XEX

Definition 16. The upper membership function (UMF) and lower membership function (LMF) of R are
two T1-MFs 5 (x),ﬁi;, (x) respectively that bound the FOU.

Definition 17. An embedded fuzzy set R, is a T1 FS that is located inside the FOU of R.
In Figure 2.2, LMF, UMF and Ug, are three embedded MFs.
2.4.2. Type-2 fuzzy logic systems

The theory of IT2 FLS is given in (JM Mendel, 2000). Here, we briefly summarize calculating the parameters
that we need for adaptation reasoning process. Figure 2.3 represents the architecture of an IT2 FLS (N.
Karnik & Mendel, 1999) with a rule base consisting of L rules:

RY:IF x; is F{ and ...and x,, is E},THEN y is G (2.19)

, where F}(i = 1,...,p) and G' are IT2 FSs. When a FLS receives input X' = {x], ..., Xp}, the inference
engine computes the firing degree by performing a meet operation (JM Mendel, 2007):

#p e - Mg () (2.20)
Theorem 1. In an IT2 FLS, the firing interval of the lth rule is computed as:
-1
Fl=[fLF|
1= kD) ® . @pp(xp) (2.21)

-t - ! —_ ’
f=Hp0a) ® . O (xp)

The proof is given in (JM Mendel, 2000). Afterwards, the type reducer transforms the fired IT2 FSto a T1
FS, which shows the possible disparity in the crisp output of the FLS. It establishes an interval around the
output in the same way that a confidence interval is established for a point estimate. However, this
represents linguistic uncertainties.
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Figure 2.3. The architecture of type-2 fuzzy logic system (adapted from (JM Mendel, 2000)).

A general T2 FLS has a high computational complexity (N. Karnik & Mendel, 1999), but the calculations
simplify dramatically when we use IT2 FSs in the rules. Therefore, IT2 FLSs are better suited for runtime
efficient computation in the adaptation reasoning in self-adaptive software.

2.5. Reo Component Connectors

A component connector, in the context of this research, corresponds to a coordination pattern (Arbab,
2004; N Oliveira & Barbosa, 2013; Nuno Oliveira & Barbosa, 2013) on architectural elements (e.g.
components) that performs I/O operations through that connector. In other words, here, the term
connector is adopted to name entities that can regulate the interaction of (potentially) heterogeneous
components. Thus, connectors must deal with exogenous coordination, handling all those aspects that lie
outside the scopes of individual components (Bruni, Melgratti, & Montanari, 2013). A coordination
pattern is formally given as a graph of channels whose nodes represent the points for interactions
between channels. The edges of this graph are represented with channel types and channel identifiers.
To provide a concrete illustration of this approach, we utilize Reo coordination model (Arbab, 2004).
Therefore, a channel is considered here as a Reo channel (Arbab, 2004).

In the Reo model, channels are primitives out of which more complex and composite component
connectors are constructed. A connector channel is directional (except one channel type) with a unique
identifier and specific semantics (i.e. coordination protocol). A channel in this model accepts an I/O
operation (data flow) on its source end and dispenses it from its sink end. Figure 6.2 illustrate the basic
channel type in the Reo coordination model. Note that Reo support an open-ended set of channels (Arbab,
2004), each exhibit a unique behavior with a precise and distinguishing semantic. However, for the
purpose of this research, we only consider the construction of component connectors based on the
primitive channels, represented in Figure 6.2.

Sync LossySync SyncDrain

O—L—10 O—’V\/q\)N\r*O
A B A , B
FIFO Filter

Figure 2.4. Primative connector channels.
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2.5.1. Stochastic Reo

Stochastic Reo (Moon, Arbab, & Silva, 2011) extends Reo in a way that channels are annotated with
stochastic values representing distributions of their relevant data-flow and request arrival at the channel
ends. These distributions are respectively referred to as processing delay rates and request arrival rates.
Such stochastic values are non-negative real values and describe the probability of a certain value of a
discrete random variable, or similarly intervals that represent continuous random variables. Figure 2.5
shows some primitive channels of Stochastic Reo that correspond to the primitives of Reo in Figure 6.2.
In this figure, ya means the arrival rate at node a and similarly, yab means channel delay between two
nodes a and b. We describe these concepts later in Chapter 6 in more detail.

yab yb yab Yb & yab vb Y@ vaF yFb YP

ya ya
O—0 OO0 O——=0

yal
Figure 2.5. Primitive connector channels with stochastic anotations.

Note that the annotations do not change the semantics of Reo connectors, thus, when the rates are
ignored, the semantics of Reo connectors and stochastic counterparts are the same. The labels annotating
Stochastic Reo channels can be categorized into the following two groups:

Channel delays. A delay rate represents the duration that a channel takes to perform a certain activity
such as transferring a data item from one end to the other end. For instance, a LossySync has two
associated variables yab and yalL for the stochastic delay rates of, respectively, successful data-flow from
node a to node b, and losing the data item at node a when a read request is absent at node b. Ina FIFO
channel, yaF means the delay for data-flow from its source node a into the buffer, and yFb means the
delay for sending the data from the buffer to the sink node b. Similarly, yab of a Sync (and a SyncDrain,
respectively) indicates the delay for data-flow from its source node a to its sink node b (and losing data
at both ends, respectively).

Arrivals at nodes. Arrival rates describe the time between consecutive arrivals of requests at source and
sink nodes of Reo channels. For instance, ya and yb in Figure 2.5 represent the associated arrival rates of
write/take requests at nodes a and b, respectively. Note that at most one request can wait at a boundary
node for acceptance. That is, if a boundary node is occupied by a pending request, then the node is
blocked and consequently all further arrivals at that node are lost.

Stochastic Reo supports the same compositional framework of joins of connectors as Reo (Moon, 2011).
The nodes in Stochastic Reo have certain quality attributes associated with them. Therefore, joining nodes
must accommodate quality property composition. A mixed node delivers data items instantaneously to
the source end(s) of its connected channel(s). Therefore, mixed nodes have no associated arrival rates.
However, arrival rates on nodes model their interaction with the environment.
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Chapter 3

3. State-of-the-art

“If I have seen farther than others, it is because I was standing on the shoulder of giants.”— Isaac Newton

(1643-1727).
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3.1. Chapter Overview

In this chapter, various approaches covering uncertainty control in self-adaptive systems are investigated.
This chapter summarizes related approaches and particularly exposes how the contribution of this thesis
for controlling the uncertainty for self-adaptive component connectors makes advances in the state of
the art. Note that this chapter only focuses on work that specifically proposes a framework for addressing
the issues that uncertainty introduces in self-adaptive software. However, the related work considering
the individual contribution chapters (i.e., model adjustment techniques in Chapter 4; adaptation
reasoning approaches in Chapter 5; and change execution mechanisms in Chapter 6) is covered in their
respective chapters.

Section 3.2 provides a number of comparison criteria of related approaches. Then, Section 3.3 presents a
demarcation and detailed description of each related research work. Finally, a systematic comparison of
the related work according to the comparison criteria is given in Section 3.4.

3.2. Comparison Criteria

In this section, a set of comparison criteria for an objective comparison of related research is discussed.
Figure 3.1 illustrates an overview of a self-adaptive software system consistent with the FORMS reference
model (Danny Weyns, Malek, & Andersson, 2010). Based on this reference model, the self-adaptive
system can be decoupled into two separate subsystems: Meta-Level and Base-Level. The base-level
subsystem provides the application behavior, while the meta-level subsystem controls the base-level
subsystem by adapting its behavior. At the meta-level, we use the IBM reference model for autonomic
systems called MAPE-K (JO Kephart & Chess, 2003). There are also two other entities in Figure 3.1. Users
use the functionalities of the system and specify adaptation logic and the environment within which the
software system operates.

The different elements as depicted in Figure 3.1 are loosely coupled. The meta-level depends on models
of other elements to decide about the adaptation of the base-level system. The loose coupling between
the meta-level and the other elements in self-adaptive software are either unavoidable (e.g., system and
environment) or essential to provide flexibility, reusability and managing the complexity of constructing
self-adaptive software systems. In fact, this loose coupling between the meta-level and the other
elements (i.e. Environment, User, and Base level) is the origin of uncertainty in self-adaptive software. A
comprehensive number of sources of uncertainty is enumerated and discussed in (Esfahani & Malek,
2013). In this section, we recall them and extend them in order to compare the related work and to
identify the research gap in the state-of-the-art.
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Figure 3.1. Sources of uncertainty in self-adaptive software.

As depicted in Figure 3.1, uncertainty exists in every aspect of the self-adaptation process (Esfahani &
Malek, 2013): (1) Stakeholders often have conflicting preferences over expressing adaptation policies. (2)
Monitoring facilities receive noisy data from sensors. (3) Analytical models make simplifications for quality
assessment. (4) Adaptation facilities may not execute changes correctly or may enact the changes with a
latency. (5) Users may not use the system as it is expected. (6) The environment is inherently dynamic and
unpredictable.

We now describe these sources of uncertainty referring to the numbers that have been used to annotate
different parts of Figure 3.1:

Uncertainty in the expression of adaptation policies [annotation (1)]. This type of uncertainty is related to
the “Feed Policy” arrow in Figure 3.1. This uncertainty exists because of the difficulties in expressing
requirements and preferences that need to be elicited from users. Users have multiple and sometimes
conflicting concerns. The elicitation of user concerns is a challenge (Lemos et al., 2013). Therefore, user
preferences in terms of mathematical functions are subjective and analysis based on them is prone to
uncertainty.

Uncertainty because of noisy data [annotation (2)]. The data that feeds the meta-level (see the left part
of Figure 3.1) is not free of noise because of the errors in the employed sensors. As a result, the input data
is not a single value but a distribution of values obtained over time. Therefore, the analysis in the meta-
level should explicitly consider this measurement noise. Otherwise, the adaptation decision is prone to
uncertainty.

Uncertainty due to simplification of assumptions [annotation (3)]. The analytical models, which are
employed for analytical activities (e.g., reasoning based on the impact of adaptations on the system
quality attributes) at the meta-level, are mathematical models. These mathematical models can become
inaccurate because of the errors in estimation of some parameters in the model. Sometimes the
assumptions based on which the model is designed are not upheld at runtime. These inaccuracies, which
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depend on the circumstances, make the analytical models an inaccurate representation of the real system
and as a result, the reasoning based on them becomes error prone.

Uncertainty because of change enactment [annotation (4)]. Some changes that are issued by the execution
module may not be enacted exactly as it is requested. Therefore, the models for reasoning in the meta-
level become inconsistent representations of the real systems. This makes reasoning based on the
inconsistent models prone to uncertainty. In some execution environments, the change enactment is not
instant and contains a latency. This time latency may also change due to a number of reasons, leading to
a more intricate source of uncertainty (Jamshidi et al., 2014).

Uncertainty because of humans in the control loop [annotation (5)]. Human behaviors are uncertain (David
Garlan, 2010). However, modern software systems become ubiquitous and more dependent on user
behavior. This creates uncertainty in the software system they use.

Uncertainty in the environment [annotation (6)]. Self-adaptive software systems are used in many
different environments. Environments themselves are inherently dynamic and unpredictable events may
happen.

Note that in addition to the above-enumerated sources of uncertainty, we also consider the techniques
that existing works apply in the feedback control loop (i.e., throughout MAPE-K activities) and their
evaluation approach (cf. Table 3.1).

3.3. Existing Frameworks for Controlling Uncertainty

The software engineering research community has made progress towards addressing the complexities
involved in the construction of self-adaptive software (Lemos et al., 2013). However, as reported by a
community-wide roadmap (Lemos et al., 2013) and reviews of uncertainty handling techniques (Esfahani
& Malek, 2013; A. J. Ramirez et al., 2012), there is still a lack of methods and techniques for handling
uncertainty in self-adaptive software. In the self-adaptive software community, a few researchers have
recently proposed to address uncertainty issues related to different aspects in self-adaptive software. In
general, we can categorize these proposals into the following categories: requirements specifications,
internal uncertainty, external uncertainty, design-time uncertainty, and control theory. We also structure
this section according to this classification.

3.3.1. Requirement specification uncertainty

RELAX (Whittle et al., 2009) is a requirements specification language that incorporates uncertain
requirements in self-adaptive systems. RELAX allows designers to explicitly express environmental
uncertainty in requirements. More concretely, RELAX defines a number of operators that can be used in
defining requirements and making them “disabled” or “relaxed” at runtime depending on the state of the
environment. Additionally, the operators are able to capture the uncertainty factor that can initiate the
relaxation of requirements.

The RELAX language is extended with goal modeling to specify the uncertainty in the objectives in (B.
Cheng, Sawyer, Bencomo, & Whittle, 2009). The sources of uncertainty with the help of threat modeling
in goal models can be identified. More specifically, threat modeling helps to identify the environmental
elements which can endanger the satisfaction of goals. Once the uncertainty is identified, mitigation
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tactics are devised. The ultimate tactics for mitigating uncertainty are enabled by relaxing the goal that is
prone to uncertainty.

While RELAX is a specification language for identifying and assessing sources of uncertainty, AutoRELAX
(E. Fredericks, DeVries, & Cheng, 2014) is an approach that automatically generates RELAXed goal
specifications. More concretely, AutoRELAX identifies goals to RELAX through specific operators and by
determining the shape of the membership function that establishes the goal satisfaction criteria.
AutoRELAX generates solutions by making tradeoffs between minimizing the number of RELAXed goals
and maximizing functionality by reducing the number of adaptations triggered by environmental
conditions.

FLAGS (Luciano Baresi et al.,, 2010) uses fuzzy theory to mitigate the environmental uncertainty by
enabling the specification of adaptive goals. FLAGS enables the definition of tactics that must be taken if
some goals are not satisfied. FLAGS also deals with the uncertainty in goals themselves. More specifically,
FLAGS relies on a fuzzy temporal language to specify imprecise goals that some temporary violations are
tolerated. It also allows for the specification of crisp goals through linear temporal logic.

Goal-Driven Self-Optimization. Chen et al. (Chen, Peng, Yu, & Zhao, 2014) propose to handle the
uncertainties in goal models comprising contribution, preference and effect uncertainty. Taking the
quality indicator as the feedback and the estimated earned value as the global indicator of self-
optimization, the proposed framework dynamically updates the quantitative contributions from
alternative functionalities to quality requirements, tunes the preferences of relevant quality
requirements, and determines a proper timing delay for the last adaptation action to take effect. Then,
they apply these runtime measures to limit the negative effect of the uncertainty in goal models.

REAssuRE (Kristopher Welsh, Sawyer, & Bencomo, 2011b) enables the specification of the rationale for a
choice of alternative goal operationalization when there is uncertainty about the optimal choice by
attaching claims to the contribution links. In addition, Ramirez et al. (A. Ramirez & Cheng, 2012) integrated
REAssuRE with RELAX to introduce a fuzzy logic layer upon the evaluation criteria of claim validity. When
a claim is violated at runtime, its attached contribution link is updated and the goal model is re-evaluated
to discover a better solution. Hence, these studies presented a qualitative way to handle the contribution
uncertainty.

Bencomo and Belaggoun (N Bencomo & Belaggoun, 2013) proposed to map goal models to dynamic
decision networks (DDNs), where each contribution link corresponds to a conditional probability and each
configuration is associated with a preference. As soon as the validity of a claim is changed, the relevant
conditional probabilities will be updated at runtime and the DDN model will be re-evaluated to find a
configuration with the highest utility. Note that experts give the conditional probabilities and preferences
and only some of the conditional probabilities will be updated.

In summary, this category of research intends to adopt the concept of partial satisfaction of requirements
at design-time and to provide a resolution mechanism at runtime. This category of research, in general,
uses the notion of claims and their refinements as the marker for uncertainty at design-time and
uncertainty resolution at runtime (Kristopher Welsh, Sawyer, & Bencomo, 2011a). It monitors claims at
runtime in order to verify their satisfaction. If a violation is detected, it changes the system’s goal model
to select an alternative goal realization. This allows for the dynamic adaptation of the system in the
presence of uncertainty.
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3.3.2. Internal uncertainty

Cheng and Garlan (S. Cheng & Garlan, 2007) proposed high-level uncertainty mitigation strategies for their
architecture-based self-adaptation framework, which is called Rainbow (D Garlan, Cheng, Huang, Schmerl,
& Steenkiste, 2004). The proposed mitigation strategies are about three specific sources of uncertainty in
the MAPE-K control loop: 1) detecting when there is a violation in the system, 2) determining the right
adaptation policy, 3) knowing whether a given adaptation achieved its intended effects. The first one is
related to Monitoring and Analysis activities of the MAPE-K loop, whereas the second and third ones are
respectively related to Planning and Execution activities. More specifically, they intend to mitigate the
uncertainty in the activities of the feedback control loop.

In order to mitigate the uncertainty in the first source, they employ probability theory to determine the
running average in monitoring to stand against the variability in the environment. The data is then
compared with probabilistic information in the architectural description of the system. Once any problem
is detected, a mitigation strategy is then selected to resolve it. The Stitch language helps to mitigate the
uncertainty in the strategy selection. Stitch allows explicit modeling of the uncertainty in strategies. As a
result, when the Rainbow framework decides a strategy, it can select it based on the expected value,
which is a representative of the underlying uncertainty. For the last source of uncertainty, they consider
how to deal with it by specifying how long the framework should monitor the implementation of the
strategy before committing the change to the running system.

POISED (Esfahani et al., 2011) is a quantitative approach to handling the challenges posed by uncertainty
in making adaptation decisions. POISED adopts fuzzy theory for assessing the positive and negative
consequences of uncertainty. They proposed a novel approach for finding an optimal solution that has
the best range of possible behaviors with regard to the system’s utility. POISED aims at improving the
quality attributes of software systems through reconfiguration in order to achieve an optimal
configuration. However, POISED redefines the traditional definition of optimal adaptation from point
estimations to the one that has the best range of behavior. In turn, the selected configuration has the
highest chance of satisfying the quality objectives, albeit due to uncertainty, properties cannot be
confirmed 100% accurately. POISED uses Possibilistic Linear Programming to make the tradeoff between
alternatives. The decision-making problem is based on a coherent representations of uncertainties allows
the specification of important aspects of uncertainties in the eye of decision makers. For example, in one
scenario one might prefer to have a solution that guarantees certain limits in the worst-case scenario.
However, in other scenarios, one may prefer a solution with a higher risk but potential higher quality.

ADC (Anticipatory Dynamic Configuration) (V Poladian, Sousa, Garlan, & Shaw, 2004) facilitates selecting
appropriate services to accomplish a task and allocate resources among these services at runtime. This
work does not consider environmental uncertainty. In a subsequent work (Vahe Poladian et al., 2007),
they extend the original work in order to incorporate anticipatory decisions and considered the inaccuracy
of future resource usage. They used the work in (Narayanan & Satyanarayanan, 2003) and utilized profiling
data to find requirements regarding resources for different configurations. By incorporating resource
availability prediction, the ADC framework chooses a configuration that optimizes the cumulative
expected value of utility over time. This significantly reduces the number of changes and the disruptions
in the system. For the adaptations, the cost of configuration switching is also considered in the work. If
the cost is low, ADC selects a better configuration. On the other hand, if the cost is high, a non-optimum
configuration is selected.
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Camara et al. (Cdmara, Moreno, & Garlan, 2014) proposed a formal analysis technique based on model
checking of stochastic multiplayer games that enables quantification of the potential benefit of
considering adaptation tactic latency in adaptation mechanisms. They conclude that explicit involvement
of this source of uncertainty, i.e., adaptation latency, in adaptation reasoning improves the outcome of
adaptation.

In summary, this category of research intends to mitigate the effects of internal uncertainty, which is
rooted in the difficulty of determining the impact of system change on the quality properties, e.g.,
determining the impact of replacing a component on the systems response time, energy usage, etc.

3.3.3. External uncertainty

FUSION (Elkhodary, Esfahani, & Malek, 2010) uses machine learning, Model Tree Learning (MTL), to self-
adapt the behavior of the system to unanticipated changes. This approach allows the system to mitigate
the uncertainty associated with the change in the environment as it progressively learns the right
adaptation in new contexts. The output of learning consists of a number of relationships between the
adaptation actions and the quality attributes of the system. The quality attributes can be derived based
on measurements by instrumenting the software provided by the underlying runtime platform. The
adaptation actions are associated with variation points in the software that can be applied at runtime.

FUSION has two cycles, a learning cycle and an adaptation cycle that complement each other. In the
learning cycle, the relationships between quality attributes of the system and the adaptation actions are
learned through measurements. In this cycle, the errors in the learned relations are also detected. As soon
as the quality factors of the software decreases below a certain threshold, the adaptation cycle make an
informed adaptation based on the learned knowledge.

RESIST (Cooray et al., 2010) focuses on the reliability of the system by monitoring internal and external
properties, changes in the structure as well as contextual properties to continuously refine reliability
measurements at runtime. The updated reliability measures are then used to decide about configuration
changing in order to improve its reliability. The target domain of RESIST is mobile, embedded and
pervasive software. These systems are highly dynamic and face unknown contexts and fluctuating
conditions. They are typically mission-critical systems and require high reliability. RESIST mitigates the
uncertainty through constant learning.

RESIST measures component level reliability by learning the unknown parameters of Discrete Time
Markov Chains (DTMC). As soon as the reliability measure at the individual component level is measured,
a compositional model is adopted to determine the reliability index at the system level. RESIST models
the uncertainty in the learning process by probability theory.

ADAM (Carlo Ghezzi, Pinto, Spoletini, & Tamburrelli, 2013) supports adaptation aimed at mitigating non-
functional uncertainty. ADAM relies on Markov Decision Processes (MDPs) to model alternative and
optional functionality implementations in self-adaptive software. According to the aggregated quality
metrics, ADAM can find the execution path with the highest probability to satisfy the non-functional
requirements and then enable adaptation by switching to alternative implementations. They do not
consider the inaccuracy of the transition probabilities in such MDP models.

KAMI (A Filieri et al., 2012) enables continuous verification of reliability and performance requirements of
self-adaptive systems by exploiting analytical models such as Discrete-Time Markov Chains (DTMCs) and
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Continuous-Time Markov Chains (CTMCs) respectively. KAMI can update the model parameters of DTMCs
and CTMCs through Bayesian estimation based on runtime observations. KAMI employs model checking
in order to check the satisfaction of non-functional requirements and triggers adaptations accordingly.
Similarly, Sykes et al. (Sykes et al., 2013) proposed to enable self-adaptive systems to cope with
incomplete and inaccurate knowledge by updating their behavior models. They use a probabilistic rule
learning technique to not only update transition probabilities, but also discover new structures of the
model. These studies aim at updating the models used for the knowledge base of planning.

Veritas (E. M. Fredericks, DeVries, & Cheng, 2014)/Loki (A. J. Ramirez, Jensen, Cheng, & Knoester, 2011)
uses utility functions to adapt test cases as part of a runtime MAPE-T framework (E. M. Fredericks,
Ramirez, & Cheng, 2013). More specifically, Veritas adapts test cases at runtime to ensure that the
adaptive software can run reliably in the presence of environmental uncertainty. Veritas monitors an
adaptive system, generates an appropriate test plan, verify the test cases, and adapts test cases as
necessary. Veritas adopts the Loki framework (A. J. Ramirez et al., 2011) to generate unique system and
environmental configurations.

In summary, this category of research aims at mitigating external uncertainty that comes from the
environment or domain in which the software is embedded (Esfahani & Malek, 2013). For example,
external uncertainty for a software system deployed in a cleaner robot may include the likelihood of
colliding with certain objects. Software self-adaptation is one approach in dealing with the effects of
external uncertainty, e.g., in a dirty room the cleaner robot navigator component may be replaced with a
more conservative navigator to avoid a collision. Therefore, appropriate techniques have been developing
to minimize the effects of such external uncertainty in the self-adaptive community.

3.3.4. Design-time uncertainty

The issue of uncertainty control at design-time in requirements engineering has been proposed for
requirements elicitation, disambiguation and inconsistency checks. MAVO (Famelis, Salay, & Chechik,
2012; Salay, Chechik, & Horkoff, 2012) uses partial models to manage requirements uncertainty. Yang et
al. (H. Yang, De Roeck, Gervasi, Willis, & Nuseibeh, 2012) proposed an approach to detect the uncertainty
in natural language requirements. Arora et al. (Arora, Sampath, & Ramesh, 2012) focused on the
uncertainty arising from inconsistent feature interactions.

Letier and van Lamsweerde (Letier & van Lamsweerde, 2004) proposed to specify partial degrees of goal
satisfaction and quantify the impact of alternative designs on the degree of goal satisfaction for guiding
requirements elaboration and design decision making. The partial degree of goal satisfaction is modeled
by an objective function on quality variables, and probabilistic models specify the objective function. This
study uses a probabilistic technique to tackle goal satisfaction uncertainty at design-time, while we focus
on runtime handling of contribution uncertainty, preference uncertainty and effect uncertainty.

GuideArch (Esfahani, Malek, & Razavi, 2013) quantitatively guides the exploration of the architectural
solution space, including ranking the candidate architectures, finding the optimal architecture, and
identifying the critical decisions, under the uncertain impact of architectural alternatives on properties of
interest. The GuideArch framework defines a utility score for each candidate architecture using fuzzy
membership function. This study employs fuzzy logic to represent and reason about uncertainty.
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EAGLE (M Autili, Cortellessa, & Ruscio, 2012; Marco Autili et al., 2011) is a model-based framework that
embrace the incompleteness and inaccuracy of the models with respect to the system goals. EAGLE
supports the explore-integrate-validate adaptation loop that will be realized by exploiting model-driven
techniques such as statistical inference, machine learning techniques, connector synthesis (Inverardi,
Issarny, & Spalazzese, 2010) and goal verification. This integrated framework will support the engineering
of software systems that are built by integrating, under uncertainty, existing components and that are
dynamically evolving within a changing environment.

Leitier et al. (Letier, Stefan, & Barr, 2014) proposed an approach to apply multi-objective optimization
techniques for evaluating uncertainty and its impact on system goals before making critical decisions.
They enable software architects to describe uncertainty about the impact of alternatives on system goals;
to calculate the consequences of uncertainty; to select candidate architectures; and to assess the value
of obtaining additional information before making a decision. Their work is closely aligned to the
GuideArch framework (Esfahani, Malek, et al., 2013). Although they differ in their decision analysis
techniques, these two approaches reached the same conclusion about the consequences of handling
uncertainty: “modelling uncertainty and mathematically analyzing its consequences leads to better
decisions than either hiding uncertainty behind point-based estimates” (Letier et al., 2014).

In summary, these design-time approaches more or less require user involvement, making them infeasible
to be applied in an unsupervised self-adaptation process. This category of research, although proposing a
mechanism for adaptation, does not concentrate on Monitoring or Execution part of MAPE-K loop.
However, the self-adaptive community can utilize the insights that have been produced by this category
of research to introduce novel approaches for controlling and minimizing the effects of uncertainty.

3.3.5. Control theory for handling uncertainty

Apart from the approaches listed above, there are other approaches targeting uncertainty in order to
make dependable self-adaptive software by applying the principles of control theory. The quantitative (or
measurement-driven) adaptation has been studied for decades in control theory (Antonio Filieri,
Hoffmann, & Maggio, 2014). One major benefit of using control theory in this context is the guarantee of
control properties that can be proved mathematically. In this paradigm, adaptive software can be treated
as a controllable plant allowing control theory to be applied to enable self-adaptation. Control theory is
capturing increasing interest from the software and systems engineering community (Hellerstein, Diao,
Parekh, & Tilbury, 2004; Jamshidi et al., 2014; Zhu et al., 2009). The application of control theory in
software engineering, however, is still at a very preliminary stage (Patikirikorala, Colman, Han, & Wang,
2012) and is limited to the design of controllers focused on particular ad-hoc solutions that address a
specific computing problem. Filieri et al. (Antonio Filieri et al., 2014) developed a general methodology,
which reduces the need for strong mathematical background to devise ad-hoc control solutions.

The main difference between the existing control theory approaches and our approach is that the fuzzy
logic controller we employed can handle expert knowledge and numerical data in a unified framework,
and the fuzzy-based approach, in general, has less computational complexity. The other benefit of our
approach is that the fuzzy logic controller does not require the mathematical model of the plant that it
controls. In this work, deriving an accurate mathematical model of the underlying software is a very
difficult task due the non-linear dynamics of real systems (Esfahani, Elkhodary, et al., 2013; Hellerstein et
al., 2004; Lemos et al., 2013; Zhu et al., 2009).
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3.4. Discussions and Conclusions

Uncertainty is a critical challenge in the construction of self-adaptive software and it needs to be taken
into account specifically when the dependability of the system is important. This hinders the widespread
adoption of self-adaptive software in practice. However, as reported by others (Esfahani & Malek, 2013;
Lemos et al., 2013; Perez-Palacin & Mirandola, 2014), there is a shortage of applicable techniques for
controlling the effects of uncertainty in this setting. As also discussed in (Esfahani & Malek, 2013), there
is a need for development of appropriate mechanisms for mitigating the uncertainty underlying self-
adaptation of software that is prone to uncertainty. Only a few researchers have recently begun to address
uncertainty (Esfahani & Malek, 2013). Table 3.1 summarizes their work with regard to the sources of
uncertainty they are dealing with.

According to the approaches positioned in Table 3.1, three areas specifically lack mature mechanisms for
controlling the effects of uncertainty: I. noisy data, Il. change enactment, and lll. user involvement.
However, the areas related to |. adaptation policy specification and Il. dynamic environments are quite
mature with several numbers of mechanisms for controlling the effects of uncertainty.

In the key chapters of this thesis that the core contribution of our work is described (i.e., Chapter 4 on
model calibration, Chapter 5 on adaptation reasoning and Chapters 6 and 7 on adaptation execution and
real-world applicability), we properly positioned our approach. In those particular chapters, we
mentioned some of the concerns that distinguishes our work from existing approaches. However, it is
useful to summarize the main characteristics that make this thesis a novel research considering the
frameworks that we summarized in Table 3.1. In general terms, the most crucial differences that
distinguish our approach from other approaches that have appeared in the literature are:

1. Our approach considers the incomplete and noisy monitoring measurements (aleatory uncertainty,
cf. Section 2.2.1). Our approach is concerned with calibrating analytical models at runtime in the
presence of uncertainty in the input data. This distinguishes it from approaches (cf. seventh column
of Table 3.1) that consider only complete data or approaches that consider noise-free data.

2. Our approach captures the uncertainties associated with users’ incomplete knowledge regarding
system adaptations policies using fuzzy logic (epistemic uncertainty, cf. Section 2.2.1). Our approach
enhances self-adaptive software with adaptation reasoning that can robustly control the
environmental noises. This distinguishes it from approaches (cf. second column of Table 3.1) that
assume the problem of conflicting subjective measures from a group of experts is solved elsewhere.
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Chapter 4

4.Robust Model Calibration for Requirement Verification

“It is the mark of an instructed mind to rest satisfied with the degree of precision which the nature of the
subject admits, and not to seek exactness when only an approximation of the truth is possible.” Aristotle

(384- 322 BQ).
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4.1. Introduction

Component connectors are increasingly adopted as a paradigm for building composite connectors
facilitating coordination and interaction between functional components of software systems (Arbab,
2004). These composite structures are built by composing and integrating individual coordination
channels known as primitive connectors. Consequently, these channels can be executed and managed by
third-party providers. The providers can offer channels with different quality of service (QoS), therefore
the capabilities and quality of coordination among components will depend on the quality of third-party
channels. In other words, component connectors should become robust and resilient against the failure
of third-party channels. However, the environment surrounding the connectors, comprising functional
components and the amount of requests from them, also affect the quality of coordination.

In order to cope with managing the interaction in highly dynamic and unpredictable environments, fraught
with uncertainty, the coordination infrastructure needs to exploit adaptive capabilities. We consider self-
adaptive capabilities as a necessary runtime obligation to ensure robustness and resilience against third
party channels failure and environmental fluctuations. In order to enable self-adaptive connectors, the
feedback control loop, known as MAPE-K loop (cf. Figure 4.1), needs to be realized. One of the tasks
involved in the MAPE-K loop that needs to be realized to accommodate the Analysis activity of this loop
is continual verification of the non-functional properties (NFPs) (Calinescu et al., 2012) of such connectors.
Since the approach of this thesis for self-adaptation is white-box, i.e., using runtime models to enable
such adaptation, the challenge of continual verification of NFPs boils down to the estimation of unknown
parameters of the analytical models and then formal evaluation of the properties. This choice is motivated
by the fact that the current formalisms that are used to specify the underlying behavior of component
connectors, e.g., constraint automata, are inherently state-based and there are available tools to
transform such formalism to the Markovian models, i.e., CTMC, that we use in this thesis (Moon, 2011).
In this thesis, we call the former activity model calibration. The main outcome of this chapter is a model
calibration method that is robust against uncertainties regarding input data, comprising noise and
incomplete observations. Note that for the non-functional requirement verification, we adopt the runtime
efficient approach that is proposed in (Antonio Filieri, 2013).

Autonomic Manager

(i) <
e

N /

Base-Level Software

Users

Figure 4.1. Scope of Chapter 4.
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Online model calibration in different settings, comprising (1) full observation, (Il) partial observations and
(1) partial observation with measurement noise, are employed to tune the model at runtime as depicted
in Figure 4.2. The updated model is then used to detect the violation of requirements. The detection of a
violation may then trigger an adaptation, which should be Planned and Executed to adapt the running

connector.

(3) Reasoning
The requirements are quantitatively
verified against the tuned model

7
Adaptation - e o
. PI pta: Verification (2) Calibration
(4) Planning anning The parameters of the
A cljange plan is \ model is estimated based
derived to adapt the — on the run-time data
configuration of \ Sl
connector
1-Y X,
1-X
( Se
Reconfiguration s, ¥ Runtime
(4) Adaptation Execution Observations (1) Monitoring
The running connector . The running connector
is safely \ — Model@Run-Time and/or the environment
reconfigured \ t/ andjor the
Is Monitored

Running Connector

Monitoring Facilities

-

Interacts

tls Monitored

Middleware Platform + Components (Environment)

Figure 4.2. Overview of the self-reconfigurable component connector.

4.1.1. Problem statement and contributions

Let us consider a situation where the behavior of component connectors is specified by a mathematical
model (cf. the model at the heart of Figure 4.2). This mathematical model, which corresponds to a
connector, contains some parameters. Now, we can consider some scenarios regarding the parameters.
Parameters can be constant over time and known, leading to a time-invariant model without uncertainty.
Let us also imagine a situation where the parameters are constant over time, but only known as a rough
estimations, providing a time-invariant model with uncertain parameter values. We can also consider a
situation, where parameters can change over time, resulting in a time-varying model. In this research, we
consider the last two scenarios. More specifically, in the case of uncertain and varying parameters, we
develop mechanisms to estimate their current values on the fly, based on the available “uncertain”
measurements. The latter part of the last sentence is critical because this is where our contribution lies.
Unlike the existing approaches for parameter estimation, we do not assume that available measurements
are perfect. We rather assume that they may be incomplete or noisy. While there are different sources of
uncertainty in self-adaptive software (Esfahani & Malek, 2013), the incomplete and noisy runtime
measurements are the sources that we consider to tackle in this chapter. It is important to understand
that the incarnation of uncertainty is different from adaptation reasoning which we address in Chapter 5.
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The objective of model calibration is to estimate the unknown parameters of the model based on runtime
observations as depicted in Figure 4.3. This estimation of parameters should be accomplished accurately
and at the right time. Informally, it means that the estimation should detect as many violations as possible
as soon as the actual value of a parameter enters a violation zone. Accurate estimations are important to
avoid the execution of unnecessary adaptations. In addition, estimation at the right time is important in
order not to miss adaptation opportunities resulting from lagging behind the actual value.
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Figure 4.3. Overview of Model Calibration.

As a key contribution of this work, this chapter focuses on the following three important scenarios, which
concerns robust model calibrations for reconfigurable component connectors:

1. Model calibration with full observations: In this case, the unknown parameters of the model at
runtime are estimated based on a full observation of the runtime connector. It means that for the
discrete-time models it is assumed that the full discrete time series of data is available, and for
the continuous-time models, it is assumed that continuous observations are available.

2. Model calibration with partial observations: In this case, incomplete runtime data is monitored
and collected for parameter estimation. It informally means that some components of the model
are unobserved and we have only partial observations.

3. Model calibration with incomplete and noisy observations: In this case, not only a partial
observation is available, but also the data is assumed to be perturbed by noise and measured with
some controlled errors in order to have a more realistic scenario for robust calibration.

Having considered the above realistic cases of data collection and by ensuring the accuracy of model
calibration, the key objective of this work is to enable “robust model calibration” to be adopted in the self-
adaptive loop of component connectors.
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4.1.2. Chapter structure

The outcome of this chapter is a number of parameter estimation techniques that result in accurate
parameter estimations given that the runtime measurements contain uncertainty. In this chapter, we aim
to address RQ1 (cf. Chapter 1) which highlights the needs for a model calibration that supports non-
functional requirement verification at runtime. Non-functional requirement verification triggers the
adaptation reasoning. We discuss the adaptation reasoning in Chapter 5 and the requirement verification
in Chapter 7 of this thesis.

The rest of this chapter is structured as follows. Section 4.2 discusses the concept of models at runtime,
the type of analytical models that can be adopted as well as the robustness of model calibration.
Section 4.3 formally defines the analytical models adopted in this thesis. Section 4.4, as the main section,
introduces the proposed method for model calibration in the presence of uncertainty and
comprehensively evaluates the adopted techniques with thorough discussions on the results. Section 4.5
reviews the most related work in the literature. Section 4.6 discusses the limitations and future
dimensions of this work.

4.2. A Robust Model Calibration

Fundamentally, robustness is the basic organizational principle of dynamic evolving systems. It is attained
by some principles, which are observed by well-designed systems. Kitano (Kitano, 2004) discusses four
mechanisms that he believes ensure the robustness of biological systems:

e System control

e Alternative mechanisms
e  Modularity

e Decoupling

A high-level architectural viewpoint of our model calibration approach in Figure 4.4 shows that our
approach also inherits these underlying principles of a robust mechanism. Runtime data are collected,
unknown parameters of the analytical models representing the connector are updated, adaptation
reasoning based on the adjusted model is performed and the appropriate mode of the connector is
derived and enacted on the running system. Each of these modules, though interconnected, are
decoupled and perform their own functions. There are also alternative mechanisms to handle input data
considering the uncertainty inherent in the observations.
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Figure 4.4. Architectural framework of robust model calibration.

4.2.1. Models at runtime: an enabler for self-adaptive behavior and assurance tasks

One of the key usages of models at runtime is to exploit the causal connection between the model and its
system under investigation at runtime, see Figure 4.5. The usage of this connection has two different sides
(Eder et al., 2013). On the one hand, models and system are in descriptive causal connection by which the
changes in the system are reflected to the models. This enables analysis techniques to verify high-level
models instead of the complex implementation of the application to collect needed information for
verification. On the other hand, they are also in prescriptive causal connection. This means the models can
be changed to originate (or trigger) an adaptation of the application.
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s prescriptive causal connection [ir (ondition){
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lIllllllIllPrlelslclr!I??lflolrlllllll> doAct|on2();
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Figure 4.5. Interactions between model at runtime software and its runtime environment.

In the context of assurance of requirements for software systems, models at runtime can play different
roles for assuring both functional and non-functional requirements of a system. For instance, they may
represent requirements to be ensured, the current system state, adaptations that need to be enforced or
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context that the software uses. They also serve several facilities in this context. For example, they may be
utilized as information sources for monitoring purposes, or change the system via model manipulations,
or model-based analyses such as verification and simulations.

The role of models at runtime specifically as an enabler for self-adaptive behavior of software systems is
represented in Figure 4.6. It uses an equivalent description of the architecture of the software system
(which here corresponds to the connector mode) that is developed at design-time. This model continues
to exist after development time and therefore can be calibrated to monitor the interaction between the
software and its runtime environment. On the other hand, the requirements of the system will be verified
continuously against the calibrated model. When a violation of a requirement is detected, the software
system can be adapted accordingly. The key enabler for this self-adaptive behavior is located at the heart
of Figure 4.6, which should be kept alive at runtime to support the tuning of the model. This extension of
the lifetime of models in this paradigm enables the autonomic adjustment of the system implementation
to tolerate new and possibly unpredictable situations (Luciano Baresi & Ghezzi, 2010).
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Figure 4.6. The role of models at runtime in self-adaptation loop.

4.2.2. The choice of analytical models

A wealth of models has been proposed over time as models at runtime (Ardagna, Ghezzi, & Mirandola,
2008). They differ in the level of formality and precision, the aspects they are intended to describe, and
the types of reasoning they support (Jamshidi et al., 2013).

The type of the models that are employed as models at runtime differs from the more conventional
models used by software architects to express their design choices (Ardagna et al., 2008; Blair et al., 2009).
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The former type, known as analytical models, are mostly used for analysis of non-functional requirements
such as reliability or performance (Cortellessa, Marco, & Inverardi, 2007). A list of potential models at
runtime is summarized in Table 4.1. For a detailed discussion about such analytical models, we refer to

(Ardagna et al., 2008).

Table 4.1. Potential models at runtime and their supports for non-functional requirements (adapted from (Ardagna et al., 2008)).

System L.
. Model Characteristic
Quality
(%]
Model Family Model Name §
>
g > | 2 =
s > = S = >
e £ 5 |2 2 £
5T s 8§ |3 |§ |¢@
& x < O O A
Bound analysis X -- H H H H
Queuing Models Product form X -- M H H M/H
g Non-product form X -- H H M L
Layered queuing networks X -- H H H M
Discrete-Time Markov Chains X X H H L L
Markov Models Continuous-Time Markov Chains X X H H L L
Markov Decision Processes X X H H L L
Stochastic Model Checking X X H H L L
Simulation Simulation Models X X H M M/H L/M
Control-Oriented Linear Time Invariant X - M/L L L H
Models Linear Parameter Varying X -- M/L L L H

A set of characteristics that can help architects to choose an appropriate model are (Ardagna et al., 2008;
Blair et al., 2009; Metzger, Sammodi, & Pohl, 2013) listed in Table 4.1. A qualitative discrete scale is
adopted as High (H), Medium (M) and Low (L) to compare the models. The characteristics are as follows:

e Adaptability: Estimation techniques should support efficient estimations under software

architecture changes.

e (ost-effectiveness: The approach should require less effort than measurement at the system level.
e Composability: Estimation techniques should be able to estimate the system level parameters

based on primitive level values.

e Scalability: Estimation techniques should be able to estimate the parameters even in large and

complex models.

Regarding adaptability, the goal is the capability to revise the model and obtain new estimates, always
remaining in the same model family. Markovian models provide a high degree of adaptability. In this type
of model, a system change can result in a change in a parameter of the model or a different probability
distribution of the state space. Considering cost-effectiveness, Markovian models are very cost-effective

56



since modeling requires a small effort comparing to prototyping. With respect to composability, the
models, which are structured hierarchically, can be composed more easily. Therefore, Markovian models
have a low degree of composability. Finally, considering scalability, Markovian models require
considerable computation time to be analyzed and therefore, have a low level of scalability.

4.2.3. Robustness in model calibration

Robustness is defined as the ability of a system to resist perturbations without adapting its initial key
functions (Kitano, 2004). More specifically, in computing, robustness is the ability of an algorithm to
continue to operate reliably despite abnormities in input, which is the characteristic of unreliable
environments with unreliable components. It is considered the fundamental feature of dynamic adaptive
systems (Kitano, 2004).

Robustness is often misinterpreted to mean remaining unchanged irrespective of environmental noises,
so that the architecture of the system, and therefore the mode of operation, is unchanged (Kitano, 2004).
In fact, it often requires the system to change its mode of operation in a smoothed way. In other words,
robustness allows changes in the structure and components of the system due to perturbations, but
specific functions are preserved.

Model calibration consists of appropriate estimation mechanisms interacting with models at runtime in a
loop as depicted in Figure 4.7. The loop is started with an analytical model, whose structure is determined
by the architecture of the software system, and it is specified by initial estimates that are available at
design-time. This analytical model with its initial estimates and the parametric values determines the
initial model at runtime. These parameters determine the parts of the system that need to be adjusted at
runtime. The observed runtime data is collected and then forms a time series, which is passed to the
estimation mechanism. The appropriate mechanism is chosen based on the characteristics of the data.
The output of the estimation is the refined estimate, which substitutes the previous values in the model
at runtime.
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In the next section, we review the adopted analytical models in this thesis. The models will be delineated
formally to provide an appropriate foundation for later runtime analyses.

Note most concepts defined and used in this chapter are standard concepts in probability theory,
stochastic model checking and quantitative verification that we borrowed from standard literature, e.g.,
(Calinescu et al., 2012; M Kwiatkowska et al., 2007; Marta Kwiatkowska, 2007; Pinsky & Karlin, 2010).

4.3. The Model Framework

Let us now concisely introduce the analytical models we utilize in this thesis and the automatic analyses
we perform on them at run time. Since our focus is on non-functional properties of component
connectors, we specify connectors via Markov models, which support quantitative probabilistic
specifications that are particularly useful to definite reliability and performance properties (Ardagna et al.,
2008; Glinz, 2005). Markov models have been adopted quite a lot in software engineering (Ardagna et al.,
2008) and there are tools available (Moon, 2011) for deriving such models from the architectural design
of Reo connectors as this is the principal language for designing and implementing connectors in this work.
For a more detailed justification of this choice, refer to the comparison and discussion in Section 4.2.2.
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In statistics, a Markov process is a stochastic process satisfying a certain property, called the Markov
property. A stochastic process satisfies the Markov property if the transition probabilities between
different states (i.e., X; = x;) in the state space depend only on the random variable’s current state, i.e.

P (Xn+1 = xn+1|X0 =X, X1 = X1, ., X = xn) =P (Xp41 = Xng1|Xn = xp) (4.1)

Therefore, for a Markov process the only information about the past needed to predict the future is the
current state of the random variable. On the other hand, knowledge of the values of earlier states does
not change the transition probability.

A Markov chain refers to a sequence of random variables (X, ..., X;;) generated by a Markov process.
Generally, the term Markov chain is used to convey a Markov process which has discrete (finite or
countable) state space. More specifically, the possible values of X; form a countable state space of the
chain. A Markov chain either can be defined for a discrete set of times or can take continuous
values {X(t):t = 0}. In the former case, the Markov chain is called Discrete-Time Markov Chain (DTMC)
and in the latter case, it is called Continuous-Time Markov Chain (CTMC).

In the Markov chains (DTMCs and CTMCs), states are directly visible, but in a special class of Markovian
models, the states are not directly observed, but a noisy version of them can be measured. These models
are known as Hidden Markov Models (HMM) or State-Space Models (SSM) in general. This class of models
is especially useful when we have incomplete and noisy observations of the system and we need to
estimate the parameters of runtime models to enable reliable and on-time adaptations.

4.3.1. DTMC models

The difference between DTMC and CTMC is that rather than transitioning to a new (possibly the same)
state at each time step, the system will instead remain in the current state for exponentially distributed
random time and then change its state to a different state.

DTMC is characterized by transition probabilities, p; ; which are the probabilities that a process at state

space x; moves to state x; in a single step,
pij = PX; = x;1X; = x;) (4.2)

If the state space is finite, the transition probability distribution can be represented by a transition matrix
P with the elements p; ;. Each row of P adds to one and all elements are non-negative. Therefore, P is a

proper stochastic matrix.

The following DTMC model in Figure 4.8 represents a state-based system (here, a connector channel)
consisting of 4 states. S represents the “Start” state, T represents a “Temporary” state, L corresponds to
the “Lost” state and D is associated to the “Delivery” state. System start at the start state and move to the
temporary state, then the message either will be delivered to the target or will be lost by their
corresponding probabilities.
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Figure 4.8. A DTMC example
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Figure 4.9. Matrix representation of the DTMC example.

4.3.2. CTMC models

CTMC is characterized by transition rates, q; ; which measure how quickly transitions x; to x; happen.
Precisely, after a small amount of time At, the probability of the state is now

P(X(t + At) = xj|X () = x;) = q; jAt + 0(AD), x; # x; (4.3)

The transition rates g; ; form the transition rate matrix Q. As the transition rates matrix contains rates,
the off-diagonal cells indicating the rate of departing from one state to arriving at another should be
positive and the diagonal cells indicating the rate at which the system remains in a state should be
negative. The rates for a given state should add to zero, resulting in the diagonal element being:

qii = —Z qij (4.4)

By considering p, = P(X(t) = x;), the evolution of CTMC is given by the following equation:

0
a pt = p:Q (4.5)
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The probability that no transition happens in some time h is:
P(X(s) = x;,Vs € (t,t + h)|X(t) = x;) = el (4.6)

That means the probability distribution of the waiting time until the first move is an exponential
distribution with parameter q; ;.

Ao

Figure 4.10. A CTMC example.
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Figure 4.11. Matrix representation of the CTMC example.

4.3.3. HMM models

In HMM, there are basically three involved stochastic process: a hidden one {X;|i = 0,1, ...} and an
observed one {Y;|i = 1,2, ... }. In this model, it is assumed that the hidden process {X;|i = 0,1, ...} is a
Markov chain. Here we assume that the Markov chain is a continuous-time Markov chain {Z(¢t)|t = 0}.
X; is governed by Z(t) and it has a direct influence on Y;. Y; is a noisy version of X;. In other words, we
model runtime data as being noisy observations of some unobserved stochastic process as it is shown in
Figure 4.12. The model consists of:

o IP(X,): Initial distribution
o P(X;|X;_1),i =1,2,...: Transitions
o P(Y|X)),i=12,.. Likelihood
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Figure 4.12. Hidden Markov model with hidden CTMC model as runtime model.

4.4. Model Parameter Estimation

The model calibration as depicted in Figure 4.13 consists of two main tasks: 1) data collection (or runtime
observations), 2) parameter estimation (or model fitting, model calibration, model adjustment, model
update). The observed runtime data is collected and is then processed by the estimation mechanisms.
The runtime observations, in general, can be seen as samples of appropriate stochastic processes. The
outputs of the estimation methods are the refined estimates, which substitute the initial values in the
models at runtime. In this section, we first motivate the need for accurate parameter estimations
considering the uncertainties in the runtime observations. We then describe the proposed methods for
the estimation of the unknown parameters of the analytical models (i.e., DTMC and CTMC) that we
consider in this thesis as the runtime models for connector self-adaptation. As a result of this selection,
the problem of parameter estimation of the runtime models, therefore, reduce to the estimation of
transition probabilities for DTMC models and transition rates for CTMC models.
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Figure 4.13. Overview of parameter estimation using mathematical model.

4.4.1. The need for an accurate parameter estimation

In order to perform adaptive changes to running component connectors especially in a self-managed
manner to respond to the requirement violations, the connectors need to be enhanced with an estimation
capability to detect the violations as soon as possible. A key objective of such approaches is to estimate
the parameters of the analytical model at runtime (here, DTMC and CTMC models) accurately. By accurate
we mean most of the violations of non-functional requirements should be detected, while generating as
few false “need for adaptation” decisions as possible. In other words, the more “true” and less “false”
violations that can be detected by an estimation approach, the more accurate it would be. In this section,
we elaborate on the relevance of accurate estimation for self-adaptive component-connectors.
Figure 4.14 illustrates different situations, which may occur when performing parameter estimation of

the runtime models and their correlation to accurate self-adaptations.
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Figure 4.14. Different scenarios in parameter estimation (adapted from (Metzger et al., 2013)).

We assume here that the monitoring mechanisms are in place and once the running connector changes
its state to a different state according to its analytical model, its runtime data including this state change
is observed. These observations provide the main input for the estimation of the parameters of the
runtime models. The diagram above illustrates this by sketching a CTMC model corresponding to a running
connector. The changes in the connector in terms of its runtime state represent the points in time when
monitoring is assumed to be performed and thus the state-changes in the model can be observed.

According to Figure 4.14, two important cases may occur during estimation:

Unnecessary adaptations: False positive estimations may trigger the self-adaptation of the
component connector although the connector would have in fact worked as expected. Such
unnecessary (Metzger et al., 2013) or unrequired (Amin, Colman, & Grunske, 2012) adaptations
can have the following consequences: Firstly, the adaptation execution takes time and would
leave less time to address the actual violations. Secondly, the replaced connector mode might be
unreliable (e.g., if the new channels have bugs) leading to an ultimate failure of the connector.
Missed adaptations: False negative estimations will not trigger a self-adaptation, although the
connector will actually violate some requirements and this violation could have been
compensated. In this case, where an adaptation opportunity is missed due to an inaccurate
parameter estimation of the runtime models, or the need for adaptation is detected very late, it
can lead to costly repair strategies or the restart of the connector. This implies that inaccurate
estimations would reduce the overall efficiency of the self-adaptation mechanism.
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4.4.2. Estimation of transition matrix of a DTMC

Estimating a transition probability matrix of a DTMC with discrete observation data for each model X =
{X¢|t =1,...,T}is simple. Let us assume that each model has K states and we have a time series of m
observations of the model.

4.4.2.1. Parameter estimation with complete data

Let us assume that we want to estimate a two-step transition matrix and the data is from a collection that
was followed for four steps with two two-step observation intervals. In this case, the observed two-step
intervals coincide with the desired two-step transition matrix. Because the DTMC models are
homogeneous, the observed transitions between the first two steps can be summed up with the transition
between the second two steps to form an observed two-step transition count matrix as follows.

N = (4.7)

niyp - nu(‘
Ng1  ° Mgk

Given the observed count matrix, the maximum likelihood estimate of the transition matrix is the row
proportions of N,

K
P ={p;;},wherep;; = ni,j/z Nk (4.8)
k=1

Unfortunately, assuming complete runtime data is far from reality. Usually, we can only obtain noisy
measurement of a small fraction of the runtime status of connectors, captured at discrete time points.

4.4.2.2. Parameter estimation with incomplete data

In this section, we develop a relationship between the observed data D of size d, the DTMC model X of
size K and model parameters P. The objective in estimation (learning) of model parameters (transition
probabilities) is to compute the posterior probability density P(P|D, X). This is the probability of the
model parameters, treated as a random variable, given the monitored (observed) data and the model
structure. In order to find the posterior distribution, a common approach in statistic is to consider the
joint distribution P(P, D|X) given a certain model structure. This joint distribution can be computed in
two ways: P(P|D, X)P(D|X) or P(D|P,X)P(P|X). This results in the Bayes’ theorem as follows:
P(D|P,X)P(P|X)

P(P|D,X) = POIX) (4.9)

It consists of three components. The prior probability P(P|X) indicates our assumptions at design-time
regarding the model parameters. These assumptions regarding design-time estimations are based on for
example previous experience of the designer or empirical data about the connector collected in previous
runs. The likelihood P(D|P, X) specifies the probability of the observations given the model and its
parameters. Finally, the evidence or marginal likelihood IP(D|X) is the probability of the observation given
the model.
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For computing the likelihood, we make a simplifying assumption that the first observation is given. Then
the probability of observations is the probability of the second data given the first, times the probability
of the third given the second and so on:

d K K
210 = [pen=] [[ [ a0

k=1 i=1 j=1

The prior P(P|X) is utilized to specify assumptions about the model. We use conjugate distributions in
order to make posterior tractable with respect to the prior. It means that the posterior distribution has
the same functional form as the prior. We model each row of P with a Dirichlet distribution. This choice
is justified in (Diaconis & Ylvisaker, 1979).
0).(0) _(0)_ (0 0). (0
(i1 Pizs - P )~Dir(@p L, a¥pY, ... PP (4.11)

Generally, a Dirichlet distribution Dir(a4, a,, ..., ax ) with positive parameters is a joint distribution for a
vector Xy = 1 — X; — -+ — Xk _1 with density evaluated in X; = x;, ..., Xx = x¢

(a) a-
- lil(al) 1_[

(4.12)
K
a= Z a;
i=1
With the following properties:
al
E(X) = ’
( ) (4.13)
a;(a—a;
Var(X;)) = ———
(X1) a(a+1)

Given the likelihood and prior, the evidence P(D|X) is a simple normalization in Bayes’ theorem.
P(D|X) = f P(D|P,X)P(P|X)dP (4.14)

Now, by using Bayes’ theorem, the estimation of parameters boils down to estimation of the posterior.

K K

I'(a+ N; AN -

PCPID, X) = | [t [ et
i Ta+ Ny 44

(4.15)

K
Ni = ENi’j

=1
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Since the Dirichlet distribution is a conjugate distribution, the posterior of the transition matrix P is a
product of independent Drichlets with the following properties:

E(x) =— (4.16)
a
This is the posterior mean estimate (PME) of the model parameter.

a: N: ;
(@24 n et (4.17)

1
E(X) = ——
() = - N

+ N;
Therefore, the PME is a weighted sum of prior expectation and maximum likelihood estimate (MLE). As a
result, we summarize the estimation as a more intuitive and computationally appealing form as follows:

N; (0)
a N; Yosq N
pi(’t]%) __“ (0) + i o=1""j

X Di (4.18)
a+ Ni pl'] a+ Ni Ni

Note that the full details of the mathematical reasoning above is given in (Strelioff, Crutchfield, & Hiibler,
2007). Formula (4.18) is the Bayes rule, which yields the new estimates based on the weighted sum of two

terms. The former term is associated with design-time estimates pl.((}) and represents a priori knowledge

about the transition probabilities in the DTMC model. The latter term is related to runtime data, which
has been observed from a running system. More specifically, it provides monitoring data about the
occurrence of transitions among states of system. The variable a is smoothing parameter, which
guantifies our belief in a-priori knowledge. A high value of the smoothing parameter means that we are
confident with our estimate at design-time and the runtime data produces a smaller contribution in
changing the parameter. The low value of the smoothing parameter highlights the runtime data and as a
result, the probability of ever changing the parameters will increase. In case of a = 0, the estimator
reduce to the MLE estimator. Note that the smoothing parameters need to be treated differently for
highly dynamic environments than for fairly stable environments and we can estimate the model
parameters with high confidence at design-time. Therefore, in the case of the latter situation, it is better
to set a higher number for a.

It is important to mention that the Bayes rule, i.e., Formula (4.18), has been previously applied for
estimating unknown parameters of Markovian models in (Calinescu, Johnson, & Rafiqg, 2011; Epifani et al.,
2009) and we do not claim this as a contribution of this thesis. A minor contribution that we made in this
regard is the comprehensive experimental qualitative and quantitative observations of applying this
estimation technique to the parameter estimation of component connectors in different settings as
reported respectively in Section 4.4.2.6 and Section 4.4.2.7.

4.4.2.3. Failure detection using the Bayes estimator

In the context of the analysis in the MAPE-K loop, a failure is detected if the system experiences a
nonconformity to the expected behavior described by a requirement. For instance, consider the system
described by the DTMC model in Figure 4.8 and a requirement as follows:

R1: The probability P1 that messages are successfully delivered is greater than

4.19
0.89. ( )
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A failure of R1 may be detected by considering the number of successful message deliveries over time.
For instance, let us consider a runtime data of length 40 each representing the final state of the message
delivery/lost. Suppose that the following trace (dy,d, ..., d4o) represents runtime data with each d;
showing a message delivery/lost. We assume that among these 40 observations, 5 of
them {d3, ds, dyo,d;1,d3s} represent messages lost. It means that the system that corresponds to the
DTMC in Figure 4.8, in these moments moves from state T to L and in the other moments goes from T
to D. By assuming a = 20, after observing the runtime trace and by using Formula (4.18), we have the
following parameter update.

20
@ ___ 27 «09+

_ > 88 4.20
P10 = 20+ 40 20 + 40 (4.20)

Having calculated the updated parameters associated with transitions from state T to D, we can deduce
that based on the observed data, the probability associated with the successful delivery of messages was
overestimated at design-time. By using the new calibrated value 0.88 instead of 0.9, the probability of the
path from state S to T to D would be P = 1 * 0.88 = 0.88, which is lower than 0.89, thus violating R1. In
this case, the violation of R1, which is interpreted as failure of the system, is detected. After detecting the
violation, the exception associated to the violated requirement will be fired. This will trigger the
adaptation reasoning module, which decides the appropriate mode for the connector. As a result, the
current architectural configuration of the connector would be changed and new configuration will be
enacted. The details of the adaptation reasoning are given in Chapter 5.

4.4.2.4. Bayes estimator with exponential smoothing

Exponential smoothing is a mathematical technique that can be applied to time series data to produce
smoothed data (Kalekar, 2004). Time series data are a sequence of observations. For instance, here we
can see the runtime data as a time series of random noisy data collected based on monitoring the
observed system. In Formula (4.18), the past observations are weighted equally, while exponential
smoothing assigns smoothed exponentially decreasing weights over time. More specifically and in a
simple way, we want to assign rather different weights to the older observations in a way to differentiate
between them by putting more importance on recent observations. This is a logical extension, because as
each observation after a while becomes less important compared with more recent runtime data.

In general, the data sequence is represented by {x;} and the smoothed data is written as {y;} which is
regarded as an estimate of what the next value of x would be y,,~x,,,1.
44241, The simple moving average

A simple way to smooth a set of sequential observations is to ignore the old ones and consider the latest
k observations.

k—1
1 X — Xy
Ye = ‘Z Xeei = Voo + ——E k> 1 (4.21)
k & k

=

, Where k is an arbitrary integer higher than one. A small value of k leads to more sudden changes because
of recent changes in the data. On the other hand, a larger k will result in a greater smoothing effect. This
method cannot be used until the first k observations have been produced.
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4.4.2.4.2. The weighted moving average

A more sophisticated method for smoothing the time-series data is to calculate a moving average by
choosing a set of weighted factors.

k k
1
Ve = Ez Wixt_iﬂ,wherez w; =1 (4.22)
i=1 i=1

In general, the weights are often chosen in a way to give more weight to the more recent observations
and less weight to the older ones.

4.4.2.4.3, Single exponential smoothing

Both the exponential smoothing techniques weight the history of the workload data by a series of
exponentially decreasing factors. An exponential factor close to one gives a large weight to the first
samples and rapidly makes old samples negligible. Exponential smoothing is commonly applied in finance,
however, it can be applied to any discrete set of sequential observations. Let the sequence of observations
begin at time t = 0, the simplest form of exponential smoothing is:

Yo = Xo

4.23
yve=ax;+(1—a)y,_,t >0,0<a<1 (4.23)

The choice of a is quite important. If it is too close to 1, it has less of a smoothing effect and gives a higher
weight to recent changes in the observations and as a result the estimate may fluctuate dramatically.
While values of a closer to zero have a better smoothing effect and as a result, the estimate is less
responsive to very recent changes.

4.4.2.4.4, Double exponential smoothing

Double exponential smoothing is an extension of the simple version. The output of estimation is now F; .,
an estimate of the value of x at time t + m.

V1= Xp
bl = x1 - xO
Ve =axe + (1 —a)Ye—q + beq) (4.24)

by = Byt —ye-1) + (1 — B)be—4
Fiym =S¢ + mb;

4.4.2.5. An extended DTMC estimation algorithm

The Bayes rule as derived in (4.18), as we will show in the experimental evaluations, and is also

demonstrated in (Epifani et al., 2009) is effective in scenarios where the runtime estimate pi(?) differs
from the design-time estimate pi((]).), but is not changing rapidly after the first estimations and tends to be

. . . . d) . ..
constant at runtime. However, in real scenarios involving component connectors, pi(j) is likely to change

dynamically. For such circumstances, Equation (4.18) is not be able to detect requirement violations
quickly. This is logical because even the oldest observation is as important as the most recent one. In some
situations, this become even more problematic. It cannot detect violations at all specifically when the
violation period is quite short. We demonstrate some of these scenarios in Section 4.4.2.6.3. In order to

69



avoid such situations and provide a better estimation mechanism, we can use the idea behind exponential
smoothing (see Section 4.4.2.4) as first has been proposed in (Calinescu, Johnson, et al., 2011). In the
extended Bayes approach, appropriate weights are assigned to the observations. In order to derive an
updated equation for the extended Bayes rule, we first define weights for each observation as:

1

- a(to—ts) (4.23)

Wo

, Where a > 1, t, is the time that oth observation is made and ¢, is the time of the observation that
requires to be weighted according to its distance to the latest observations.

Now we can obtain the extended updating rule by multiplying each observations Nl.(j) by its associated
weight as defined in Equation (4.25):

Ni ()
0) n Ni % ZoélwoNi,j

()
= —X s
a+ Ni pl'] a+ Ni Zg;l w,

D (4.26)

Note that if we set a = 1, then the Equation (4.26) is then turned back to its original Bayes rule as in
Equation (4.18).

4.4.2.6. Experimental evaluation

In order to evaluate the appropriateness of the proposed parameter estimator as a calibration method
for DTMC models in the context of reconfigurable component connectors, we decided to perform
controlled experiments (Pfleeger, 1995). The central factor was the good level of control that we have
over the variables, which we describe in Section 4.4.2.6.2. In addition, we need to change the values of
controlled variables easily. The other key factor was the high degree to which we needed to replicate the
situations we want to investigate. Table 4.2 summarizes the key concerns we consider in choosing the
right approach for evaluation.

Table 4.2. Factors related to the choice of evaluation approach.

Empirical concerns | Controlled experiment | Case study

Level of control High Low
Difficulty of control | Low High
Level of replication | High Low
Generalization Statistical Analytic
Place to conduct In the lab In context

This section discusses some experimental results and their evaluations through a number of controlled
experiments. To be more specific, we simulate the runtime data by using statistical distribution and we
apply our estimation algorithm to estimate the parameters of the runtime models.

44261, Experimental conception

This section contains a subset of the scenarios that involve estimating the probability of successful
message delivery in a number of component connectors based on initial design-time estimates and on
runtime data obtained through monitoring the connectors. Message delivery was selected because it is a
critical semantic in each channel of connectors and influences the performance and reliability of each
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connector. For instance, in the task queue connector in Figure 4.15, the DTMC model in Figure 4.8
represents the semantics of the channel between nodes A to B.

The objectives of the controlled experiment are:

e (O1: To show that the Bayesian estimator is an appropriate estimator for model calibration of
DTMC models as runtime models for enabling self-adaptive component connectors.

e (02:To show that the extended version of Bayes estimator based on exponential smoothing is a
superior estimator in terms of identifying the violation of requirements.

Then the objectives are translated into the following hypotheses:

e Null hypothesis (Hy): There is no difference in parameter estimation between the estimation
derived from the base Bayesian estimator and an extended version.

e Alternative hypothesis (H1): The estimates of the DTMC parameters of the component connectors
based on extended version of Bayes estimator is more accurate in terms of detecting the
violations and with less errors in terms of point estimations than the base version of it.

The experimental design is a complete plan for applying different experimental conditions to experimental
subjects so that one can determine how the conditions affect the result. In particular, the experiment
design is to plan how the application of these conditions will help to test hypotheses and answer objective
questions.

sied Task_Queue

= Writer =] Reader
= requests=1 = 3.—:—).—:'—)0 = requests=1
yi B [ b
out in

Figure 4.15. Task queue connector.

4.4.2.6.2. Experimental setup

In empirical software engineering, the key discriminator between experiments and case studies is the
degree of control over the experimental variables (Pfleeger, 1995). The difference between these two
types of evaluation approaches can be stated more rigorously by considering the notion of experimental
variables. There are in general three types of variables in the context of controlled experiments:
Independent variables, control variables and dependent variables. The independent variables influence
the application of a treatment and thus results of an experiment. The dependent variables are the factors
that we expect to change as a result of applying the treatment. The control variables (controlled variable
or extraneous variable) are specific independent variables, which are kept constant and unchanged in an
experiment.

By assuming that the probabilities assigned to the other state transition in the model represented in
Figure 4.8 are fixed, it is straightforward to check that the connector satisfies the requirement R1 (cf.
Statement (4.19)) if and only if the message delivery has a probability of success greater
than p_Threshold = 0.89. We assume that, at design-time, the model is specified by an estimation of
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the successful message delivery. This estimation at design-time determines the starting point of the
estimation algorithm and is one of the controlled variable in our experiments. Let us assume that the
actual probability is also one of our controlled variables, which might change over time. More specifically,
by controlled we mean that it may take different patterns from constant value to a sophisticated change
pattern over time. At some times, the actual probability may be above the threshold p_Threshold = 0.89
and satisfies the requirement R1 and sometimes it may below the threshold, which leads to a
requirement violation. The variance of runtime data is also one of our controlled variables. The variance
determines how the runtime observations may vary and fluctuate over time. The smoothing factor is also
a controllable variable, which determines the level of confidence with respect to the design-time estimate.
The number of simulations for generating the observations in each scenario of experimentation is also a
controlled variable. More simulation rounds increase the time for each experiment, but also increase the
accuracy of the estimates. For generating runtime observations, we use Bernoulli distributions and their
timestamps are generated by exponential distribution with specific parameter A, which is also one of our
controlled variables. In most of the experiments, we put it by default to A = 1. However, we consider one
medium and one large value for this parameter as well. The reason behind this is that we should have
enough samples to represent different environmental conditions. The exponential smoothing
coefficient a is also one of our controlled variables, which directly determines the weight of the
observations. Finally, the variance in the threshold of acceptance/rejection of requirements is also a
controlled variable, which determines the accuracy of estimation by identifying the false positives
estimates.

Model@Run-Time

S
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1-Y X Non-Functional Requirement
1-X
<X Xg e X > P s, NFR1: R{"'message lost'"}<1
S, Y
" Threshold
Feed c 0
5 p,0
ew®
Discrete g > Parameter E iimate r"”’“‘H SO
Event 0 Estimator PN L
Simulator § 2 Mechanism
X O
Experimental
Controlled | Setup
Variables

Figure 4.16. Experimental setup overview.
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The controlled variables that we use in our experiments are summarized in Table 4.3.

Table 4.3. List of controlled variables and their purpose in our experiments.

Controlled variable | Purpose

p_Threshold Threshold of violation/satisfaction of requirement
pgg) Design-time estimate
p_Actual Actual probability of the simulated parameter
var_Actual Variance in the actual probability of the parameter
a Smoothing parameter
M Number of simulation rounds
A Exponential distribution parameter
a Exponential smoothing coefficient
var_Threshold | Variance in the threshold of violation/satisfaction
N Number of runtime observation (time interval of simulation)
4.4.2.6.3. Running the experiments

The goal of experiments is to assess how the Bayes estimator of the probability of the transition evolves
over time, as runtime observations are collected from the running connector by simulation. We generate
runtime data that follows Bernoulli distribution representing the observation of state transitions between
states T to D, which means successful message delivery. We run different experiments to evaluate the
Bayes estimator and its extended version. In each experiment, we use the average estimate of the
probability of the transition over M number of simulation rounds. In order to have enough statistically
sound data we should consider the value of M to be large enough. The result of each experiment is
represented by a figure. The horizontal axis of each figure represents the runtime data and the vertical
axis represents the estimation value, which starts from a prior value and steadily converge to the actual
probability. In each figure, the straight black line represents p_Threshold . The red line
represents p_Actual and its changes over time determine the variance of runtime data. The blue line
shows the estimated value by the basic Bayes estimator and the purple line is associated with the
extended version of Bayes estimator.

In order to have the results of all the combinations of the variables summarized in Table 4.3, we take into
account some representative values for each variable. For each experiment, we fix the value of some
variables and change a couple of them in comparison with the previous experiment, which are highlighted
in each of their settings. In this way, we have a sufficient number of representative experiments that could
be interpreted as a sample of all the hypothetical experiments, which could have been otherwise
determined by all the combinations of variables, which would have been unfeasible for the purpose of
this chapter. Note that all the experiments in this chapter were run on a desktop machine with the
specifications as in Table 4.4.

Table 4.4. The platforms used in the controlled experiments.

Platform category | The adopted platform

Hardware Intel Core i7 CPU, 2.80 GHz, 12 GB memory
Operating system 64-bit Windows 7 Professional OS
Application MATLAB R2012a
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4.4.2.6.4. Experimental results and interpretations

In this section, we present comprehensive experimental results that we have observed by investigating
the impact of different settings to the characteristics of the model calibration method. In order to evaluate
the effectiveness of the extended model calibration (see Section 4.4.2.5), we carried out a broad range of
experiments in which we compared results with those produced by the basic Bayes method. We designed
the experiments in a way that covers most of the situations that may happen at runtime in order to make
sure that the proposed model calibration performs well in different occasions. For designing the
experiments, we considered different degradations in connector reliability at different time points with
different change patterns (cf. Table 4.5). We cannot claim that the change patterns that we embed in the
experiments cover all possible scenarios at runtime, but it provides sufficient evidence that they cover
most of the potential scenarios. These experimental evaluations enable us to claim that the estimation
accuracy of the proposed approach is not by chance, under restricted circumstances that may not happen
in reality.

Table 4.5. Change pattern in the performed experiments.

Index | Change pattern Experiment number
1 Normal behavior 1

2 Short degradation 2

3 Early degradation 3

4 Late degradation 4

5 Shallow degradation 5,6

6 Far starting 7

7 Deep degradation 8

8 Irregular degradations 9,10

9 Constant with no degradation | 11

10 Balanced degradations 12,13,14

The aim of these relatively comprehensive scenarios was to simulate a degradation in the reliability with
which a connector channel that passes a given message within a predefined amount of time, and to test
the ability of the two estimation methods to identify this degradation. The 14 designed scenarios
considered different types of reliability degradation a shorter (i.e., scenario 2), shallow (i.e., scenarios 5,
6), more significant (i.e., scenario 8), very early (i.e., scenario 3), very late (i.e., scenario 4), uneven,
unequal, asymmetrical, and unbalanced (i.e., scenarios 9, 10), balanced degradation (i.e., scenario 12, 13,
14), no degradation (i.e., scenario 11). We also considered a scenario where the design-time estimation
is very far from the actual reliability (i.e., scenario 7). Note that in each experimental setting (i.e., Table 4.6
to Table 4.19), we highlighted the change in the controlled variables (corresponding rows in the tables)
from the previous setting to the current setting. For each experiment, we also report experimental
observations and the interpretation of the results. This helps us to better understand the implications of
such stochastic approach for parameter estimations on connectors. Such implications are also part of the
contributions that we made in this research.

In other words, we consider different situations in which the target environment changes in its operating
conditions and therefore the probability of successful message passing in connector channels evolves over
time. In particular, we consider scenarios where initially the probability of successful message passing is

varying according to the red lines and the prior guess is equal to pg‘(}). We assume that a sudden change
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in the running environment shifts the value of the probability according to the changes in the red lines
(we embed different patterns of change in different scenarios). The graphs (Figure 4.17 to Figure 4.30)
show the results obtained with the two estimation approaches. The figure in each scenario shows how
the accuracy of estimation constantly improves until there is sudden change in the red line and after that
our simulation starts generating data from the new value. As soon as enough new runtime data are
collected, the estimation accuracy of estimation improves again since the estimated parameter begins to
converge to the new probability characterizing the new situation.

In the following, we first figuratively illustrate the performance of the two approaches, the setting of the
experiment and then discuss the observations and interpretations of the results for each experiment
separately.
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Experiment number: 1 (Normal behavior)
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Figure 4.17. Experiment 1’s result.

Table 4.6. Setting of the experiment 1 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89

(0) 0.89
Pij
p_Actual (0.893,0.887,0.893)
var_Actual [0,500,1500]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

In the experiment, h1 < h2 are time intervals during which the violation of requirements is undetected
(erroneous estimation). Both estimations approach quite fast towards p_Actual, but the blue line is more
close to the red line before the value of p_Actual drops and a violation happens as a result. Additionally,
during the violation and after the actual probability goes to a satisfactory area, the purple line is more
close to the actual probability than the blue line.
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Experiment number: 2 (Short degradation)
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Figure 4.18. Experiment 2’s result.

2000

Table 4.7. Setting of the experiment 2 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
pg}) 0.89
p_Actual (0.893,0.887,0.893)
var_Actual [0,500,800]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

2500

Although the blue line approaches the actual probability quite fast in the beginning, it could not detect
the violation that happens during 300 interval time of simulation.
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Experiment number: 3 (Early degradation)
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Figure 4.19. Experiment 3’s result.

Table 4.8. Setting of the experiment 3 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
pg;) 0.89
p_Actual (0.893,0.887,0.893)
var_Actual [0,100,800]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

Although the blue line detects the violation of requirements when the red line drops below the threshold
quite close to the purple line, but close to 800 simulation time, the blue line incorrectly classified the
observations as violation.
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Experiment number: 4 (Late degradation)
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Figure 4.20. Experiment 4’s result.

Table 4.9. Setting of the experiment 4 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
Pg}) 0.89
p_Actual (0.893,0.887,0.893)
var_Actual [0,2500,2800]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

Even though the violation has happened when there are enough observations, the blue line again could
not detect the violation.
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Experiment number: 5 (Shallow degradation)
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Figure 4.21. Experiment 5’s result.

Table 4.10. Setting of the experiment 5 (cf. Table 4.3).

2500 3000

Controlled variable | Value(s)
p_Threshold 0.89
pgf}) 0.89
p_Actual (0.891,0.889,0.891)
var_Actual [0,2500,2800]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

Even though the actual probability is very close to the threshold, but again the blue line could not identify

the violation.

The purple line has some false positives (cf. Figure 4.14) when it crosses the black line both when the
requirement is satisfied and when it detects the violation.

80



Experiment number: 6 (Shallow degradation)
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Figure 4.22. Experiment 6’s result.

Table 4.11. Setting of the experiment 6 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
pg}) 0.893
p_Actual (0.891,0.889,0.891)
var_Actual [0,100,800]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

Even when we change the starting point based on estimations at design-time, it did not change the

previous observations. We still have unidentified violations and false positives.
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Experiment number: 7 (Far starting)
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Table 4.12. Setting of the experiment 7 (cf. Table 4.3).
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Figure 4.23. Experiment 7’s result.
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Controlled variable | Value(s)
p_Threshold 0.89
pg}) 0.884
p_Actual (0.893,0.887,0.893)
var_Actual [0,100,800]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

3500

In this setting we chose a faraway starting point, but still the same observations of the previous

experiments remained.
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Experiment number: 8 (Deep degradation)

0.9

0.895

0.885

Estimate (Probability)

0.88

0.875

——— Extended Bayes

Bayes

.‘ly‘n.u’m/km A

PP

P T

Ty

500

1000 1500 2000
Time

Figure 4.24. Experiment 8’s result.

Table 4.13. Setting of the experiment 8 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
pg]!) 0.89
p_Actual (0.893,0.87,0.893)
var_Actual [0,1000,1200]
a 50
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

2500 3000

In this setting, we chose a deep drop in actual probability and the blue line could successfully detect the
violation, but in a very slow manner after half of the violation interval is gone.
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Experiment number: 9 (Irregular degradations)
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Figure 4.25. Experiment 9’s result.

Table 4.14. Setting of the experiment 9 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
pg]!) 0.89
p_Actual (0.893,0.892,0.895,0.891,0.897,0.885,0.891)
var_Actual [0,200,500,700,1200,1600,2000]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

In this setting, we put a variance into the actual probability which represents one of the features of
dynamic environments. The estimation which corresponds to the purple line followed the variation quite
well, but most of the time the blue line was insensitive to the variation with a very slow and inefficient
approach. Even in this setting the blue line could not detect the violation which injected for 400 simulation
time.
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Experiment number: 10 (Irregular degradations)
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Figure 4.26. Experiment 10’s result.

Table 4.15. Setting of the experiment 10 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
Pg,(}) 0.89
p_Actual (0.893,0.892,0.895,0.891,0.897,0.885,0.891)
var_Actual [0,200,500,700,1200,1600,2500]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

2500

3000

In this setting, we have the same variance in the runtime data, but we injected a much longer violation
time around 900. Still the blue line could not identify the violation.
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Figure 4.27. Experiment 11’s result.

Table 4.16. Setting of the experiment 11 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
pg}) 0.89
p_Actual (0.891)
var_Actual [0]
a 25
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

In this setting we consider a constant actual probability quite near to the threshold. The purple line
produced a significant number of false positives in this setting. On the other hand, the blue line had a

constant estimation close to the actual probability.
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Experiment number: 12 (Balanced degradations)

0.894

ayes

Extended Bayes

) .Nﬂ\\
0.892 h

0891 wﬂ \-\\ \ lﬂh

Estimate (Probability)
o
®
3

AL

—
i \
'VW\W%f%L L/L%

| \
I AR

0.887

0.886
0

500 1000

1500 2000 2500
Time

Figure 4.28. Experiment 12’s result.

Table 4.17. Setting of the experiment 12 (cf. Table 4.3).

Controlled variable | Value(s)

p_Threshold 0.89

pgflv 0.89
p_Actual (0:893,0.887,0.893,0.887,0.893,0.887,0.893,0.887,,
0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887

var_Actual [0,200,400,600,800,1000,1200,1400,1600
1800,2000,2200,2400,2600,2800,3000

25

a
M 1000
A 1
a (1,1.01)
var_Threshold | Constant
N 3000

Experiment observations and interpretations of the results:

In this setting, we put an equivalent satisfaction/violation change pattern in the actual probability and we
observed that the purple line could track the changes quite well, but the blue line could identify none of

the violations and stayed in the satisfactory area.
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Experiment number: 13 (Balanced degradations)
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Figure 4.29. Experiment 13’s result.

Table 4.18. Setting of the experiment 13 (cf. Table 4.3).

Controlled variable | Value(s)
p_Threshold 0.89
(0) 0.89
Pij
p_Actual (0.893,0.887,0.893,0.887,0.89 3,0.887,0.89 3,0.887,>
0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887

var_Actual

0,200,400,600,800,1000,1200,1400,1600
,1800,2000,2200,2400,2600,2800,3000

a 1

M 1000

A 1

a (1,1.01)
var_Threshold | Constant

N 3000

Experiment observations and interpretations of the results:

We kept the same setting as in Experiment 12, but we considered a very low smoothing parameter and
we observed that the blue line could identify the violations, but it could not track the actual probability

change pattern very well.
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Experiment number: 14 (Balanced degradations)
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Figure 4.30. Experiment 14’s result.

Table 4.19. Setting of the experiment 14 (cf. Table 4.3).

2500

Controlled variable | Value(s)
p_Threshold 0.89
(0) 0.89
Pij
p_Actual (0.893,0.887,0.893,0.887,0.89 3,0.887,0.89 3,0.887,>

0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887

var_Actual

0,200,400,600,800,1000,1200,1400,1600
,1800,2000,2200,2400,2600,2800,3000

a 200

M 1000

A 1

a (1,1.01)
var_Threshold | Constant

N 3000

Experiment observations and interpretations of the results:

In this setting, we considered a high smoothing parameter and we observed that the blue line could still

not identify the violations.
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4.4.2.6.5. A qualitative summary of the results

A gqualitative analysis of the experimental results in 4.4.2.6.4 shows that the extended Bayes estimation

method outperforms the basic Bayes method as summarized in Table 4.20:

In the experiments, the estimated probability for the extended Bayes approaches the actual
probability faster than the basic Bayes. Accordingly, the extended Bayes performs better in detecting
the violations.

In half of the experiments, the basic Bayes method does not produce false positives and even in two
experiments (i.e., 4, 5) that produced false positives instances, it performs better than extended
Bayes. Both experiments 4 and 5 have one common characteristic. We hypothesize that this
outperformance of extended Bayes by its basic counterpart can be attributed to this feature: the lack
of change in the actual probability of the parameter, i.e., p_Actual. The only change in the actual
probability happens at 300 simulation time between [2500,2800].

In most of the experiments except 4, 5, 6, 11, the extended Bayes estimates are far more close to the
actual probability.

Although some of the estimates produced by a higher a in the extended Bayes approach much faster
than the basic Bayes when a degradation happens, this is achieved at the expense of significant
oscillation. Such oscillation is likely to trigger false positives in a real-world scenario, which has the
consequences that we described in 4.4.1.

Table 4.20. Overview of the experimental observations; first column: N: could not detect, Y: could detect, Y<: could detect sooner
than the other method, Second column: Y: has false positives, Y<: has less false positives than the other method, Third column: Y:

is more close to the actual probability.

Detection of Appearance of Closeness to

Experiment violations false positives actual values

Base Ext. Base Ext. Base Ext.

1 Y Y< Y Y< - Y
2 N Y - Y - Y
3 Y Y< Y Y< - Y
4 N Y Y< Y Y -
5 N Y Y< Y Y -
6 N Y - Y Y -
7 N Y Y Y< - Y
8 Y Y Y Y< Y
9 N Y - Y - Y
10 N Y - Y - Y
11 - - - Y Y -
12 N Y - Y - Y
13 Y Y Y Y< - Y
14 N Y - Y - Y

Until this point, we reported some observations regarding qualitative evaluation of the proposed
estimation approach. In order to claim that the approach provides an accurate parameter estimations for

requirement verification, as we claimed in Chapter 1 (see RQ1 and research claim 3), we need to
objectively show some evidence of such accuracy. In the following section (i.e., Section 4.4.2.7), we
provide quantitative evaluations to assess the accuracy of the proposed approach.
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4.4.2.7. Quantitative evaluations: measuring estimation accuracy

For evaluating the accuracy of the quantitative estimation technique, in the literature, various
guantitative metrics have been utilized. In Section 4.4.2.6.3, we described a number of experiments; we
also reported the observations and interpreted the results. In this section, we use some metrics for
assessing the estimation methods (basic Bayes and the extended version) that we described in previous
sections. More specifically, the effect of different settings for the experiments in estimating the model
parameter can be measured more objectively through the error metrics. The estimation of parameters
are numerical, but each estimation point have also binary interpretations (satisfaction/violation) as well.
This enables us to compare the results through both numerical and binary metrics. An overview of the
measurement process is depicted in Figure 4.31.

Model@Run-Time

Stochastic Process S
1-v X Non-Functional Requirement
<Xy X X > P Y S, NFR1: R{"message_lost"}<1
s, Y
Threshold Estimation
Feed P (0) X Accuracy
i]
- Run-time
Discrete Observations| Parameter gpoiimate
Event Estimator
Simulator Mechanism

Experimental
Setup

Controlled | Actual parameter

Variables value >< Estimation
Error

Figure 4.31. Estimation analysis in the context of experimental setup.

4.4.2.7.1. Assessing numeric estimation

Metrics for assessing quantitative estimation measure the size of the error when estimating the value of
parameters alongside the runtime data. Table 4.21 lists typical metrics from the literature, which are
mostly used in prediction and the data mining domain. Here, we use them for assessing our estimation
accuracy. These metrics are meant to quantify the difference between values implied by an estimator and
the actual values of the parameter to be estimated.

In statistics, Mean Squared Error (MSE) is the most basic metric, which incorporate both the variance of
the estimator and its bias. In an analogy to standard deviation, taking the square root of MSE yields the
Root Mean Squared Error (RMSE), which has the same units as the parameter being estimated. Mean
Absolute Error (MAE) takes the average of the absolute errors and is known to be more robust against
data points that are very much higher or smaller than the next nearest data points. Relative errors
including RSE, RRSE and RAE, which are normalized by the error of a naive estimator (average of the past
actual probabilities) to ease comparison. For the above metrics, smaller values indicate a more accurate

estimation.
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Table 4.21. Estimation error metrics (Witten & Frank, 2005). p estimated, p_Actual actual probability, p_Actual average
of actual probability.

Metric Formula

@D — p_ActualM)? + -+ (PP — p_Actual@)?
d

Mean Squared Error (MSE)

BD —p_Actual®)2 + - + (P@D — p_Actual(®)?
d

Root Mean Squared Error (RMSE) \/

[p® — p_Actual®| + -+ + |[p@ — p_Actual@|

Mean Absolute Error (MAE) ,

@Y — p_ActualM)? + -+ P — p_Actual@®)?
(p_Actual® — p_Actual)2 + -+ (p_Actual@® — p_Actual)2

Relative Squared Error (RSE)

BD — p_Actual®)2 + - + (P@ — p_Actual(®D)?
p_Actual® — p_Actual)2 + -+ (p_Actual@ — m)z

Root Relative Squared Error (RRSE) \/(

[p® — p_Actual®| + -+ + |[p@ — p_Actual@|
|p_Actual® — p_Actual| + -+ + |p_Actual@ — p_Actual|

Relative Absolute Error (RAE)

It is evident that it is not feasible, and no specific value will be added, if we measure and compare the
performance of the method quantitatively for all the performed experiments. We, therefore, chose
experiment number 14 to investigate more carefully the two estimation approaches through the error
metrics. We had one specific reason for this choice: the number of variations in p_Actual is quite high in
this experiment and this makes it appropriate for quantitative evaluation of the estimation approach.
Note that the quantitative results that we report in this section are specific to this experiment. However,
all conclusive remarks and interpretations of the results are backed up with the other experiments as well.
As we mentioned earlier, it is not practical in terms of space to report them all here in this document.

Figure 4.32 shows the point estimate errors of the basic Bayes (blue line) and the extended Bayes (purple
line). The point estimate errors are summarized by boxplot in Figure 4.33. Two observations can be made.
First, the mean error for the extended Bayes is smaller than the basic version. Second, there are some
estimates (those as outliers and in the third quintiles) that produced higher errors than the highest error
produced by a basic Bayes.
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Figure 4.32. Point estimation error for the experiment number 14.
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Figure 4.33. Comparison of point estimation errors for the experiment number 14.

We measured the metrics defined in Table 4.21 for experiment number 14 and the results are shown in
Table 4.22. Based on this comparison, some observations can be made. Since MSE incorporates both the
variance of the estimator and its bias and, as it is evident in Figure 4.33 that there are some noticeable
outliers, the basic Bayes rule, according to the MSE metric, performs better than the extended version.
However, the values of the other 5 metrics reveal that the extended Bayes performs better than the basic
version especially according to RMSE that has the same units as the parameter being estimated.
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Table 4.22. Estimation error measurements for the experiment number 14.

Metric | Value (& = 1) | Value (& = 1.01)
MSE 9.6745e-06 6.9190e-06

RMSE 0.0031 0.0026
MAE 0.0030 0.0024
RSE 1.0780 0.7710
RRSE 1.0383 0.8781
RAE 0.9866 0.8052
4.4.2.7.2. Deficiencies of the error metrics

The estimation error metrics have been utilized for SLA violation prediction in service-oriented systems
(Cavallo, Di Penta, & Canfora, 2010; Leitner, Michlmayr, Rosenberg, & Dustdar, 2010). Although the
metrics show the accuracy in terms of difference between the estimated value and the actual value, they
are not be able to reveal that the violation of requirements actually occurred. More specifically, let us
consider the following two scenarios:

1. The difference between the estimated and the actual value is small, but the actual value is just below
the threshold and the estimated value is just above as depicted in Figure 4.34 (Experiment number
8). In this scenario, the metrics show relatively low values, but actually, the estimation is incorrect.

2. The difference is quite large, but both the actual and estimated value are above or below the
threshold as depicted in Figure 4.34 (Experiment number 8). In this scenario, the metrics show a
relatively high value, but the estimation on the other hand is correct.

This shows that the metrics are not comprehensive for evaluating the accuracy of estimation approach.
Therefore, we should also consider accuracy metrics that consider violations, not only the numerical
values. They are introduced in the next section.
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Figure 4.34. Shortcomings of estimation error numerical metrics.
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4.4.2.7.3. Assessing binary estimation

The decision to perform adaptation not only depends on the estimated value of interest, but also depends
whether or not it actually is a violation of requirements. Therefore, in order to examine how accurately
we can estimate the necessity for adaptation, we need to take into account how accurately those
violations can be detected.

In this section, we discuss metrics that can be utilized to evaluate the accuracy of such estimation, i.e.,
estimation of violation or non-violation. These metrics are derived from the well-known contingency table
(Table 4.23), which characterizes the four cases, which can result from a binary estimation of violation.

Table 4.23. Contingency table.

Estimation
Violation Non-violation
Violation True Positive (TP) False Negative (FN)
Actual
Non-violation False Positive (FP) True Negative (TN)

A number of metrics derived from the contingency table have been proposed in the literature, e.g.,
(Salfner, Lenk, & Malek, 2010). Table 4.24 lists a selection of the most commonly used metrics. Precision
(P) can be used to evaluate incorrectly detected violations, i.e., unnecessary adaptations. Higher precision
means less unnecessary adaptations. On the other hand, recall (R) can be associated with missed
adaptations. Higher recall means more actual violations being estimated and therefore less missed ones.
Generally, in order to perform well, an estimation algorithm should attain both high precision and recall.
However, improving precision may result in worse recall. For instance, if an estimation algorithm detects
only 1 true violation, its precision becomes 1. In addition, if an algorithm reaches recall 1 by always
detecting violations, its precision becomes low. Therefore, there should be a tradeoff between these two
metrics, which is reflected by the F-measure (Fg). The false positive rate (FPR) is defined as a ratio of
incorrectly estimated violations to the number of all non-violations. The smaller it is, the better. On the
other hand, the negative predictive value (NPV) is defined as the ratio of incorrectly predicted violations
to the number of all non-violations. The higher it is, the better it reflects prediction accuracy. Similarly to
precision, specificity (S) can be utilized to evaluate incorrect adaptation needs. Higher specificity implies
fewer unnecessary adaptations. Accuracy (A) is the ratio of correct estimation to all estimations
performed. In order to have a comprehensive picture of prediction accuracy, we use all of the metrics to
measure the accuracy of the estimations in our controlled experiments.
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Table 4.24. Contingency table metrics (Salfner et al., 2010).

Metric Formula Meaning
. TP How many detected violations
Precision (P) _— N
TP + FP were actually a violation?
TP How many actual violations were
Recall (R) —_— S
TP + FN correctly detected as violations?
TN How many actual non-violations
Specificity (SP) _ were correctly detected as non-
TN + FP violations?
. FP H iolati
False Positive Rate (FPR) _— ow many deted?d VIo ations
FP+TN were actual non-violations?
TN . s
Negative Predictive Value (NPV) _— How many pred'Ct.ed non violations
TN + TP were actual non-violations?
TP +TN How many detections were
Accuracy (A)
TP+ TN + FP + FN | correct?
1+ B%)P*R
F-measure (Fp) % Harmonic mean of P and R
B?P +R

Let us now consider a situation in which a violation is detected if the estimated probability p®
(representing the reliability of a system connector channel, as explained above) drops below a threshold
value p_Threshold. The threshold value is shown as a horizontal black solid line in all graphs representing
the experiments in Section 4.4.2.6.4. Assuming that the estimation methods are used to detect such
violations of a reliability threshold, we measured the following properties of the estimated p® values
from Experiment number 14:

e The number of false positives (FP), i.e., instances when p® drops below p_Threshold although
p_Actual® has its normal value.

e The number of false negatives (FN), i.e., instances when p@ has its normal value while p_Actual®
were below p_Threshold.

e The number of true positives (TP) and true negatives (TN), i.e., instances when both p® and
p_Actual® drop below p_Threshold or both have their normal values.

We then measured the metrics defined in Table 4.24 for experiment number 14 and the results are shown
in Table 4.25. Based on this comparison, some observations can be made. Since all the estimations by the
basic Bayes were above the threshold in the non-violation area, the precision and F-measure are not
defined for this case. Nonetheless, these two measures are quite promising for the extended Bayes
approach. In terms of recall and accuracy, the extended version shows its superiority over the basic one.
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Table 4.25. Contingency metrics measurement for the experiment number 14.

Metric | Value (@ = 1) | Value (¢ = 1.01)

P - 0.7155
R 0 0.3615
S 1 0.8673
FPR 0 0.1327
NPV 1 0.7222
A 0.52 0.6245
F -- 0.4803
4.4.2.7.4. Deficiencies of the contingency table metrics

Although the contingency table metrics enable us to evaluate the accuracy of the need for adaptations,
they are heavily sensitive to the threshold values used by the system for determining violations during
estimation. Figure 4.35 shows the experiment in the previous section with an additional threshold value
with a slight increase. It is apparent that many false negatives now become true positives and a number
of true negatives become false positives. The metrics are reevaluated and shown in Table 4.26. Although
the difference in threshold values is just 0.04, the differences in the binary metrics are significant.
Table 4.26 shows the value of these binary metrics, separately for the basic and extended Bayes. These
results indicate that the extended Bayes is suited for identifying the change in the actual probability
p_Actual(d), whereas the basic Bayes method yields probability estimates that follow the changes in
p_Actual(d) with far less accuracy. As a result, it does not perform as well as the extended version in
terms of the binary metrics.

In order to have more informed decisions and to avoid missed or unnecessary adaptations, the estimation
error metrics should be employed along with the contingency table metrics. In this way, we are able to
better understand how reliable the estimation algorithm is in terms of accuracy.

97



0.895

Threshold 2:=0.8904

0.894

1) T T
i N T M
, FARRED

T LT

0.888

Estimate (Probability)

¥
=
i
H

| _—=F |

0.887

0.886
0

500 1000 1500 2000 2500 3000
Time

Figure 4.35. Sensitivity of contingency table metrics to the threshold.

Table 4.26. Evaluated contingency metrics for the experiment 14 after changing the threshold value.

Metric | Value (¢ = 1) | Value (@ = 1.01)
P 0.5430 0.5935
R 0.7117 0.7394
S 0.4290 0.5173
FPR 0.5710 0.4827
NPV 0.3874 0.4233
A 0.5670 0.6257
F 0.6160 0.6585

4.4.2.8. Limitations and Threats to validity

The experiments in Section 4.4.2.6.4 indicate that the effectiveness of the DTMC parameter estimation
methods depends on the choice of the smoothing parameter, which is the confidence with initial design-
time estimation, and @, which is used in Equation (4.25). Additionally, no combination of values for these
two parameters is actually suitable for all potentially infinite runtime scenarios. To address this limitation,
one may actually select suitable parameters for these two values depending on the runtime condition.

In Section 4.4.2.6.4, we only showed 14 experiments by combining different values for the controlled
variables and the objective was to design enough experiments to demonstrate the effectiveness of the
extended Bayes method for estimating the unknown parameters of the runtime models in different
situations. We also compared their effectiveness for detecting requirement violations at runtime.
However, the comparison is only limited to these 14 settings, but the runtime situations are potentially
infinite. Although we reported both qualitative observations in Section 4.4.2.6.5 and quantitative
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comparison in Section 4.4.2.7, the limitations of the controlled experiments is one of the threats to the
validity of this work. The only strategy for mitigating this threat was to extend the experimental setting
and perform a case study evaluation. We will report the results regarding this in the evaluation chapter,
i.e., Chapter 7.

4.4.3. Estimation of transition matrix of a CTMC

In Section 4.4.2, we proposed an approach based on the principles of Bayes theory to estimate the
unknown parameters of DTMC models based on runtime measurements. We experimentally evaluated
the performance and effectiveness of the approach for verifying a reliability requirement R1 as specified
in Statement (4.19). DTMC models are suitable for specifying reliability properties as in the case of R1,
see Section 4.2.2 and background Chapter 2. However, some other non-functional properties are required
to be verified at runtime to trigger an adaptation. For example, performance properties within which we
can specify an end-to-end delay of message transmission (i.e., the time that it takes to transmit a message
when it enters to the connector from one of its source ends to the time that it leaves the connector from
one of its sink ends) are typically used for specifying service level agreements. As a result, such
performance properties need to be considered for enabling a self-adaptation of connectors. CTMC models
as we discussed earlier in Section 4.2.2 are appropriate models that we can adopt to specify such non-
functional properties. In this section, a similar flow of content as in Section 4.4.2 is followed, but we
propose an approach to estimate the unknown parameters of CTMC models.

For estimating the parameters of a CTMC model (in statistics, the inference of generator matrix is a more
popular term), given continuously observed sample paths of the model is straightforward. In our context,
the interpretation of continuously observed sample path refers to fully time-stamped runtime data, which
in most cases improbable or infeasible.

In this case, the maximum likelihood estimation is fully tractable if continuous observations for the
stochastic process {X(t)|0 < t < T} are available. Let us consider the likelihood of observations with a
transition from state i to state j at time 1, followed by a subsequent transition from j to k at time 7, and
so on. Supposing that an initial state probability is known, the likelihood will be:

K
L(Q) = e~ 9Tt g, x UT g, w = 1_[ 1_[ e~ iRi(T) qg;,;<T) (4.27)

i=1 i#j

, where R;(t) is the total time during which the model is in state i by time t and N; ;(t) is the number of
transitions between state i to state j by time t. The log-likelihood is:

K K
Log L@ = ) Y 1og(ai) Niy(M) = > > ag; Ri(T) (4.28)
i=1i%j i=1i%j

Therefore, the maximum-likelihood estimator for the parameters of CTMC (elements of a generator
matrix) is:

(4.29)
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In this ideal case, given continuously observed sample paths, the sufficient statistics are simply the
number of transitions between any two states and the total time spent in each state. In a real-world
context and especially in our application domain of component connectors, however, a complete runtime
observation is not given, but only an incomplete and noisy observation of the runtime data is available.
This level of uncertainty concerning the running system and its environment is due to a number of reasons
(Esfahani & Malek, 2013). The reasons may include:

e Different levels of abstractions between the system and runtime models
e Adaptive and not continuous monitoring

e Unobservable phenomena

e Measurement error

We deal with incomplete observations at runtime, which is a realistic approach for continuous-time
models in this section. More specifically, the stochastic process {X(t)|0 < t < T} serves as a continuous-
time model for data sampled at discrete time points: t; =0 <¢t; <-- <ty =T. In this work, we
estimate the parameters based on simulation of continuous sample paths from the CTMC conditional on
X(ty), ..., X(ty). By considering the Markov property, knowledge of the runtime data X(t;), ..., X (ty)
partitions the model into independent models {X(t)|t; <t <t;;1} whose endpoints (i.e.,
X(t;) and X(t;;,)) are known. Therefore, sampling a realization from the stochastic process {X(t)|0 <
t < T} given the observed data is equal to sampling from N independent and identical (i.i.d.) models each
conditioned on their endpoints X (t;) and X (t; 1) between two time points [t;, t;;1]. In the next section,
a number of well-known sampling strategies are reviewed.

4.4.3.1. Sampling strategies for endpoint-conditioned CTMC

In this section, we review the strategies for constructing a realization of a finite-state CTMC {X(t)|0 <
t < T} conditional on its beginning state X(t,) = a and ending state X(ty) = b. Sampling is the heart of
the estimation approach we propose for estimating the parameters of CTMC models. A CTMC is
characterized by its generator matrix Q consisting of transition rates, which are specified at design-time
based on the available data.

Simulating a sample path of the CTMC model {X(t)|0 < t < T} is a simple iterative loop. The key point is
that the waiting time for the first move (state transition) is exponentially distributed with the mean -

da,a

If T, > T, then there is no move in the interval time [0, T] and the corresponging sample path is constant

X(t) = a. Otherwise, a new state s, is drawn from the discrete random variable with mass ‘:ﬂ and the
aa

loop is iterated for the time interval of [t4, T].
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4.43.1.1. Forward sampling

Algorithm 1. Forward Sampling (adapted from (Inamura, 2006))

1. Sample T~Exp (qqq).

a. Ift > T, the algorithm terminates and X(t) = a forall T € [0, T].

b. If T <T,choose anew state s; # a from the discrete random variable with mass dasy,

9Qaa

2. Repeat the procedure with the new start state s4 and new time interval [z, T]

Forward sampling proceeds under the assumption that the ending state X(T) is unobserved. However,
under the assumption that the end state X(T) = b is observed, conditioning excludes all the paths
sampled from the forward sampling that fail to reach the state b at the end.

4.43.1.2. Rejection sampling
Naive rejection sampling uses forward sampling to produce candidate sample paths of the CTMC model
and then rejects those paths that cannot end in the observed end state. In particular, when sampling
forward the probability of hitting the observed end state X(T) = b is P, , (T) = e%abT. In the case where
b # a, the time 7T to the first move given 7 < T is drawn from:

qaqe” 1o’
foesN =1 7 0<t<T (4.30)
The corresponding cumulative distribution function (CDF) is:
F(T,TST)=11__CI+_QCI;Z‘:T,OSTST (4.31)
Therefore the inverse of F is:
F7'(w) = —log(1 — u(1 — e~%a")) /qqq (4.32)

Therefore, sampling from uniform distribution U(0,1) the F~1(u) yields the waiting time to the first
move in CTMC model.
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Algorithm 2. Modified Rejection Sampling (adapted from (Inamura, 2006))

Ifa=b:

1. Simulate the CTMC model {X(t)|0 < t < T} using the forward sampling in Algorithm 1.
2. Accept the path if X(T) = a; otherwise return to step 1.

Ifa # b:

asy
da )
2. Simulate the rest {X(t)|t < t < T} using forwards sampling from the beginning state X(t) = s4

1. Sample T from the (4.30) and choose a new state with the probability P (s; # a) =

3. Accept the simulated path if X(T) = b otherwise return to step 1.

The modified rejection sampling, simply avoids simulating constant paths when we know that there will
be a move in between. This is particularly beneficial when T is small and the naive approach in Algorithm
1 will waste time by sampling constant paths.

4.43.1.3. Uniformization

This strategy samples from X(t) through the construction of an auxiliary DTMC model Y (t) with the
transition probabilities p; ; as follows:

( ij Jifi#]j
< Zq” »y V>maXIquI (4.33)
i#j

On the other hand, the matrix representation of the transition probabilities of the auxiliary DTMC is:
1
P=1I+ ;Q (4.34)

The following calculation of P(t) shows that a CTMC can be described by a DTMC with a transition
probability matrix P where moves can occur according to a Poisson distribution with rate yt.

o (P £)"
P() = 00 = 1t = ot N WV N oyt U0 (4.35)

n!

n=0 ) n=0

This approach is usually called uniformization. The transition matrix of the CTMC in this approach is
given by:

(yt')n P} (4.36)

Pl}(t) =PX(t) —]|X(O) =i)=e Yt]l -+ Z —yt

Therefore, the number of state changes N including the virtual moves for the conditioned process start
at X(0) =i and ends at X(t) = j is given by:
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oy YT o
_ _ _ N — 'y 4.37)
P(N =n|X(0) = i, X(T) = j) = ———— (
P;;(T)
Given the number of moves N = n, the times t4, ..., t,, at which the moves occur are uniformly distributed

in [0, T]. Moreover, the moves X(t,) = a, ..., X(t,) = b are determined by a DTMC with transition matrix
R.

Algorithm 3. Uniformization Sampling (adapted from (Inamura, 2006))

Simulate the number of state changes n from the distribution (4.37)

Ifn=0,thenX(t) =a,0<t<T

fn=1anda=b,thenX(t)=a,0<t<T

If n = 1and a # b, then simulate t; from uniform distribution between [0, T] and X(t) = a,0 <
t<t;X@)=bt;<t<T

5. If n>=2, simulate 0 < t; < - < t, <T and X(tq), ..., X(t,) from a DTMC with transition matrix
P and conditional on starting point a and ending point b. Determine which changes are virtual and
return the rest.

P wnN e

4.4.3.2. The proposed estimation algorithm

The estimation method that we adopted here approximates the posterior distribution for model
parameters Q, given runtime observations X = x and design-time estimations of the parameters Q(®),
through samples obtained by generating a sequence of Markov chains {Q®, XD} from the posterior
distribution P(Q|X). As a result, this provides the opportunity to estimate model parameters by

summarizing the statistics of these simulated samples. Figure 4.36 illustrates a high-level overview of the
proposed approach.

R® X =x

Sampling

(-
Initial POXIRTE0)
Estimates P(RIX®,x)

Update Posterior

1

I'——,
P ((Ri(T)+/3})

Nij(T)+aij)

210

Figure 4.36. Overview of our estimation approach.
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Note that by applying the Bayes rule, we can factorize the posterior distribution into the components as:
P(QIX) = P(X|Q) X P(Q) (4.38)
, where P(Q) is the prior distribution of model parameters.

Here, we assume the presence of a prior distribution. The prior distribution allows us to impose statistical
constraints on the parameters estimation. For example, for estimating the unknown parameters of
CTMCs, we can choose appropriate P(Q), in order to have positive rates gq; ;.

Therefore, one of the key issues in parameter estimation is the choice of a prior distribution P(Q) and the
method used to generate the sequence {Q(i),X(i)}?Ll, from the joint posterior distribution on partial
observations X = x. Here we use Gibbs sampling (Bladt & Sorensen, 2005) for generating the sequence.
This sampler, given an initial Q(°), generates sequences as:

Draw X ~ ]P)(X|Q(°), x)

Draw QW ~ P(Q|X™, x)
Draw X® ~ P(X|QW, x)

P wnNR

This sampling process generates a sequence {Q®, X®}Y_, which converges to IP(Q, X|x). The choice of
the prior distribution for the unknown parameter q;; € Q is of crucial importance in a Bayesian framework
that we follow here. The selected prior distribution for Q must be a reasonable approximation to the true
beliefs about Q. In addition, the prior distribution must be such that the posterior distribution is tractable.
For the choice of prior distribution of Q, Bladt and Sgrensen (Bladt & Sorensen, 2005) prescribe the
Gamma distribution:

K
P(Q) x Hne-quﬁi vqf™ (4.39)

i=1 i#j

, where a;;, B; > 0 are constant given values. Here and below, « means proportional. By comparing this
equation with the likelihood function for complete observations in (4.27), the posterior distribution for Q
can be derived as:

P(Q1X,x) = P(Q|X) < P(X|Q) x P(Q)
K
= 1_[ 1_[ e~ AR o Nis M= (4.40)
ij
i=1 i#j

Equation (4.40) shows that the posterior distribution of Q also follows the same distribution as its prior
one that is a Gamma distribution. This makes the drawing Q® ~ P(Q|X(i),x) tractable. Bladt and
Sgrensen (Bladt & Sorensen, 2005) suggest that a simple rejection sampling (cf. Section 4.4.3.1.2) for
drawing of the Markov process XD ~ P(X|Q(i),x) is an appropriate sampling strategy. In the
estimation algorithm that is proposed in (Inamura, 2006), they have used a similar process.

The estimation mechanism comprising the sampling process is given in Algorithm 4.
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Algorithm 4. Parameter estimation algorithm (adapted from (Inamura, 2006))

1. A sample of holding time S, at each observation points t,,, is simulated by drawing from
qre " tntn-1),

2. Ift,_q+ Sk <t,, then the algorithm lets the CTMC make a transition from current state k to
another state j with the probability of qy;/qy. This process will be continued if the CTMC reaches
an observed state by t,,. If the sample is accepted, the holding times at each state and the
transitions between states of the CTMC model are recorded to be added up later for updating the
posterior distribution (cf. Figure 4.36). This process will be continued until all the other transitions
in the period [t,_4, t,,] are realized.

3. Repeatsteps 1,2 for the next period, i.e., [t,, t,+1] again and again until the time associated to the
last observation that is T.

4. The statistics Nij(T), R;(T) regarding the number of transitions from state i to state j in the CTMC
model recorded until time T and the time that the model was in state i until T respectively. Note
that only accepted samples were recorded in Step 2.

5. Anew Q is estimated by drawing the parameters q;; from the Gamma distribution as delineated in
Equation (4.40).

6. Steps 1to 5 are repeated until we derive good enough estimation of the unknown parameters of

the CTMC or statistically speaking until the posterior distribution sampling becomes stable. Then

we have a number of estimations. Let us assume we iterated N times, {qg.l

WN_. . We can then
calculate different statistics from these estimations. The most notable one is the average of these

estimations as the final estimation for each parameter.

The estimation mechanism that we proposed in this section is categorized as a class of algorithm that
samples from a probability distribution (here we use Gamma distribution for the purpose of tractability)
based on constructing a Markov chain that has the desired distribution as the stationary distribution. In
this statistics, this class of algorithm is called Markov Chain Monte Carlo (MCMC) (Bolstad, 2011). Note
that the method is implemented in MATLAB.

Note that the MCMC algorithm that we presented in this section has been previously applied in different
application domains for example in stock price estimation as in (Inamura, 2006) or segmentation of
strands in genetics. However, for applying such estimation algorithm for model calibration in self-adaptive
software, we need to have a runtime efficient mechanism. We report the runtime overhead of our
implementation in Section 4.4.3.3.7.

4.4.3.3. Experimental evaluation

This section discusses some preliminary results regarding CTMC model parameter estimation and its
evaluation through a controlled experiment. To be more specific, we simulate the runtime data by using
statistical distribution and we apply our estimation algorithm to estimate the parameters of the runtime
models. Note that, for the experimental evaluation of the proposed estimation algorithm, i.e., Algorithm
4, we do not assume that the runtime data are complete and this is one of the benefits of our estimation
algorithm over existing model estimation approaches in self-adaptive software, such as (Epifani et al.,
2009). The main contribution of this work is that the proposed approach can estimate unknown
parameters of CTMC models for enabling requirements verification at runtime, even though the runtime
measurements may not be perfect and contain uncertainties.

105



4.4.3.3.1. Experimental conception

This section contains a subset of the scenarios that involve estimating the rate of transitions between the
states of a CTMC model corresponding to a component connector based on initial design-time estimates
and on runtime data obtained through monitoring the connectors. Here, we use the same case as we
selected for the DTMC model calibration in Section 4.4.2.6.1.

4.4.3.3.2. Experimental setup

For the estimation algorithm, 2000 intensity matrices, including a burn-in period of 500 iterations, are
drawn for each estimation. Note that the data regarding the burn-in period will be discarded for
quantitative analyses. In this experiment, we set both «;; and ; to 1. We generally use the posterior
mean of the distribution from the samples of §;; as the point estimate of the unknown model parameters.
However, in some circumstances when the values of the parameters are skewed as recommended in
(Inamura, 2006), we choose the posterior mode estimate from the samples of §;; instead of the mean
estimate. The controlled variables regarding this experiment are specified in Table 4.29.

Q¥ X=x
Sampling
Initial P(X1Q™.x)
Estimates PQIX®,%)

Model@Run-Time
Update Posterior

1
2 R X Non-Functional Requirement N r(mx’\].ja)‘*aij)
S NFRLR{'Re sponseTimé}<600ms ' '
S, ¥
0 Th hold Internal A (k)
Qi j( ) resho Procedure Q
Run-time A (k)
Continuous |Observations | Parameter Qi,j
Event Estimator
Simulator Mechanism

Experimental

Controlled Setup - . .
Variables

Figure 4.37. Experimental setup overview.
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The controlled variables that we use in our experiments are summarized in Table 4.27.

Table 4.27. List of controlled variables and their purpose in our experiments.

Controlled variable | Purpose

q_Actual Actual transition rates matrix
States Number of non-absorbing states of q_Actual

Abs Number of absorbing states of g_Actual
T Determine the whole observation time period [0, T
At The observation times (sampling frequencies) in [0, T]

Obs The observation size for each parameters in the period [t,, t;41]
a Shape parameter of Gamma distribution I'(a, 1/8)
B Scale parameter of Gamma distribution I'(@, 1/8)
M Number of simulation rounds
b Number of burn-in rounds

4.4.3.3.3. Running the experiments

In this experiment, we assume that an actual transition rates of a CTMC model with 7 states is given to us
as q_Actual in Table 4.28. The setting of the experiments in terms of the defined controlled variables is
given in Table 4.29.

Table 4.28. The q_Actual matrix in the experiment.

-0.0804761 | 0.074790 | 0.00640 0 0 0 0 0
0.007695 -0.012246 | 0.200742 | O 0 0 0 0
0.00130 0.040003 | -0.095042 | 0.10010 0.010093 | O 0 0
0.000999 0.000734 | 0.077212 | -0.091115 | 0.058184 | 0.005551 | 0.000621 | O

0 0 0.008226 | 0.200345 | -0.199912 | 0.100043 | 0.002223 | O

0 0 0.00301 0.009131 | 0.100037 | -0.300028 | 0.200148 | 0.009954
0 0 0 0 0 0.131351 | -0.600318 | 0.39992
0 0 0 0 0 0 0 0

Table 4.29. Controlled variables in the experiment (cf. Table 4.27).

Controlled variable | Value(s)
States 8
Abs 1
T 7
At 1
Obs 100
a 1
B 1
M 2000
b 500
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4.4.3.3.4, Experimental results and interpretations

In the following, we provide for each experiment some graphs for the estimated posterior density,
autocorrelation plot and sample path by the estimation algorithm. Figure 4.38, Figure 4.39, and
Figure 4.40 illustrate the plots of §15, §13, 24 With respect to the same 2000th estimated Q matrix after
putting aside the data items regarding the first 500 burn-in rounds.

Sample Autocorrelation Function

0.8

0.6

0.4

Sample Autocorrelation

0.2

0.2 0.03 L
0 500 1000 1500 0 500 1000 1500

Lag

Figure 4.38. Posterior distribution, autocorrelation plot and sample paths of Q(1,2).
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Figure 4.39. Posterior distribution, autocorrelation plot and sample paths of Q(1,3).
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Figure 4.40. Posterior distribution, autocorrelation plot and sample paths of Q(2,4).

Note that none of the figures of autocorrelation plots and sample paths shows any problematic issue in
the sampling.

Table 4.30. Mean estimates of default probabilities and their differences with default probabilities of actual matrix.

States Default probability = Default probability of | Difference Error
of mean estimate actual matrix

1 1.4871e-07 1.1294e-08 -1.3742e-07 | 12.1675
2 2.5178e-06 1.8460e-07 -2.3332e-06 | 12.6394
3 3.6433e-05 6.7224e-06 -2.9710e-05 | 4.4196
4 0.0011 2.0873e-04 -9.3313e-04 | 4.4705
5 0.0069 0.0016 -0.0053 3.3175
6 0.0461 0.0304 -0.0156 0.5135
7 0.3249 0.3262 0.0013 0.0041
|Sum| 0.0206 37.5239

To make a more clear evaluation of these estimated default probabilities, we run a bootstrapping
algorithm to derive the distribution of the default probabilities. In the bootstrapping, 100,000 rounds of
simulations were carried out. The procedures for bootstrapping are summarized as follows:

1. Generate the history of observations according to the CTMC model.
2. Calculate IVU- (T), R;(T) and estimate Q from the equation (4.29).
3. Compute P(Q).

4. lterate 1 to 3 up to the simulation rounds.
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Figure 4.41 shows the bootstrapped distribution of default probabilities for 7 states of the CTMC model
of Experiment 1. Figure 4.42 and Figure 4.43 provide the resulting boxplot of default probabilities from
the bootstrapped distributions. The data demonstrates that the mean default probabilities of the model
parameters are all within the confidence intervals of the bootstrapped distribution. This means that the
estimation method performs well for estimating the unknown parameters of the analytical model in the
given the finite and incomplete noisy observations. To further investigate the performance of the
estimation method, we employed quantitative measures for evaluating the estimation accuracy.
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Figure 4.42. Box plot of default probabilities in different scales.
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Figure 4.43. Box plots of default probabilities in one scale.

Independency of estimates. To get an idea of how independent the estimates are, we generate scatter
plots of the posterior values of (g;1 j1, izj2) for all 1500 matrices we have generated for each of the 136
combinations of (i1, 1), (i2,j2),il # j1 & i2 # j2 & q;; # 0. Most of the plots were similar, so we have
chosen 7 typical patterns in Figure 4.44. By analysis of the scatter plots, we can see that the estimates are
not very dependent on each other.
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Figure 4.44. Scatter plots of the posterior distribution of estimates that show typical pattern.
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4.4.3.3.5. Summary of observations and interpretations of the results

Regarding the proposed parameter estimation approach (see Section 4.4.3.2), a number of observations
can be made:

e Based on avisual inspection of the sample paths in Figure 4.38, Figure 4.39 and Figure 4.40, the series
settled into a stationary mode after an initial 20 iterations and this is certified with Figure 4.47 as well.

e The auto-correlation diagrams in Figure 4.38, Figure 4.39 and Figure 4.40 were seen to approach to
zero very quickly.

e Estimates of the parameters that are not too close to zero were not sensible to the choice of « and 8
as parameters of the Gamma distribution, while the parameters which are too close to zero will
depend on the choice of the prior because N; ;(T) is small.

e The draws in Figure 4.38, Figure 4.39 and Figure 4.40 show that the posterior distribution of the
parameters deviate strongly from normal distribution for small parameters. This indicates that the
parameter estimates are non-normal.

e Thedrawingsin Figure 4.41 show that the distribution of the default probabilities deviate from normal
distribution (for state 7 which is relatively far away from zero (Figure 4.43) were approximately
normal).

e According to Table 4.30, the relative errors for states 1 and 2 are too high and for state 7 are small.

4.4.3.3.6. Quantitative evaluations: measuring estimation accuracy

For evaluating the accuracy of the quantitative estimation technique, various quantitative metrics have
been utilized in the literature. In Section 4.4.3.3.3, we described a number of experiments; we also
reported the observations and interpret the results in Section 4.4.3.3.4. In this section, we use some
metrics for assessing the estimation method that we described in Section 4.4.3.2. An overview of the
measurement process is depicted in Figure 4.45.
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Variables Error

Figure 4.45. Estimation analysis in the context of experimental setup.
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Metrics measure the size of the error when estimating the value of parameters alongside the runtime
data. Table 4.31 lists typical metrics from the literature and here we use them for assessing our estimation
accuracy. These metrics are meant to quantify the difference between values implied by the MCMC-based
estimator that we proposed in this chapter and the actual values of the parameter to be estimated.

Table 4.31. Estimation error metrics.

Metric Formula
N N _ o
D,1(P,Q) i:lz,-:;\lllji_,- Qi)
2
D,:(P,Q) \/Z 121 1(P11 Qi.j)
N N
F P
1P - Qll, S Yo, -0
i=1 j=1

Dsyp(P,Q) = Mgyp(P) — Msyp(Q)

Dsyp(P,Q) K, /Ai (P'P) _
Mgyp(P) = ————— P=P—1
K
Although D;1,D,2 and Norm are simple to compute, these methods offer no absolute measure for an
individual matrix. They only provide a relative comparison between two matrices. For example, if the L,
distance between two matrices turns out to be, let us say, 0.01, it is not clear if this is a “large” or a “small”
distance, nor is it possible to infer which matrix is the “larger’” of the two. However, Dgyp is more
appropriate in measuring the difference of the transition matrices than other ordinary metrics since it
captures the off-diagonal differences better (Jafry & Schuermann, 2004).

Table 4.32 provides the evaluation of the error metrics of the model parameter matrix Q and default
probabilities of Q based on the full set of 1500 estimates. As it is evident from the error measures, the
proposed estimation approach produces acceptable estimations.

Table 4.32. Estimation error measurements.

Experiment

Q | P(@
D, 0.0060 | 0.0046

Metric

D, 0.0014 | 0.0010

”0—0”2 0.0615 | 0.0481

Dgyp | 0.0015 | 0.1840
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4.43.3.7. Runtime performance

Since the process of requirement verification integrated in a feedback control loop triggers the adaptation
of connectors, it needs to be runtime efficient to be applicable in such a setting. In other words, a lengthy




requirements verification process hinders the usefulness and, as a result, the adoption of self-adaptive
software. Model calibration is an integral part of requirements verification and, consequently, needs to
be performant at runtime. In this section, we investigate the runtime overhead of the proposed MCMC-
based approach to estimate model parameters.

In order to assess the runtime overhead of the proposed model calibration mechanism (see
Section 4.4.3.2), we have conducted a set of experiments using simulations with different settings by
changing the controlled variables as listed in Table 4.27. One of the most critical parameters that influence
the runtime overhead of the estimation mechanism is the number of observations controlled via Obs (cf.
Table 4.27). Therefore, for evaluating the scalability of our approach, we vary the number of observations
by changing the values of this variable in our experimental evaluations by an order of magnitude in the
range [1 — 500] (cf. Table 4.33). We kept the rest of the controlled variables exactly the same as the
previous experiment as in Table 4.29. We performed the experimental evaluations on a dedicated
machine for our experiments with the specification as in Table 4.4.

Table 4.33. Experimental settings for runtime performance evaluations (cf. Table 4.27).

variable Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp.5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10 Exp. 11 Exp. 12

States 8 8 8 8 8 8 8 8 8 8 8 8
Abs 1 1 1 1 1 1 1 1 1 1 1 1
T 7 7 7 7 7 7 7 7 7 7 7 7
At 1 1 1 1 1 1 1 1 1 1 1 1

Obs 1 2 3 4 5 10 20 30 40 100 200 500
a 1 1 1 1 1 1 1 1 1 1 1 1
p 1 1 1 1 1 1 1 1 1 1 1 1

M 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
b 500 500 500 500 500 500 500 500 500 500 500 500

Based on the results that are reported in Table 4.34, Figure 4.48, Figure 4.49 and Figure 4.50 regarding
the comparison between estimation accuracy and runtime efficiency of a number of experiments, a
number of observations can be made:

e Increasing the number of observations (cf. Table 4.33), increases the estimation accuracy (cf.
Table 4.34 and visually in Figure 4.48). However, it also increases the runtime overhead of the model
calibration.

e Initially increasing the number of observations dramatically decreases the estimation errors and does
not cause a high runtime overhead (cf. Exp. 1 to Exp. 2 in Figure 4.48 and Figure 4.50).

e Increasing the number of observations from a certain point only decreases the estimation error up to
a certain point, but imposes a large runtime overhead instead (cf. Exp. 9 to Exp. 12 in Figure 4.48 and
Figure 4.49).

e The data in Figure 4.49 confirms “10x increase in the number of observations approximately results
in ~10x increase in runtime overhead”. The data indicate that the model calibration mechanism
performs well even when we obtain a large historical observation set (i.e., 40 X 7 in Exp. 9 for
example). It took approximately less than 500ms to provide an acceptable estimation for all 32
unknown parameters of the model (see Table 4.28). In other words, the runtime overhead for each
parameter is around 15ms.
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Table 4.34. Estimation error comparison between experiments (cf. Table 4.33).

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
Q P(Q) Q P(Q) Q P(Q) Q P(Q) Q P(Q)
0.1053 0.0637 0.0399 | 0.0308 | 0.0238 | 0.0179 | 0.0331 | 0.0246 | 0.0261 | 0.0176
0.0362 0.0191 0.0106 | 0.0079 | 0.0068 | 0.0048 | 0.0088 | 0.0061 | 0.0074 | 0.0048
1.9969 1.0113 0.5197 | 0.3840 | 0.3524 | 0.2246 | 0.3691 | 0.2198 | 0.3624 | 0.2064
-0.3370 | 0.1840 | -0.0247 | 0.1840 | -0.0144 | 0.1840 | -0.0531 | 0.1840 | -0.0861 | 0.1840
Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10
Q P(Q) Q P(Q) Q P(Q) Q P(Q) Q P(Q)
0.0137 0.0112 0.0124 | 0.0092 | 0.0126 | 0.0085 | 0.0080 | 0.0062 | 0.0078 | 0.0058
0.0038 0.0031 0.0034 | 0.0024 | 0.0037 | 0.0024 | 0.0020 | 0.0014 | 0.0024 | 0.0016
0.2057 0.1645 0.1516 | 0.1082 | 0.1930 | 0.1253 | 0.0911 | 0.0622 | 0.1330 | 0.0858
-0.0232 | 0.1840 | -0.0172 | 0.1840 | -0.0118 | 0.1840 | -0.0110 | 0.1840 | 0.0060 | 0.1840
Exp. 11 Exp. 12
Q P(Q) Q P(Q)
0.0059 0.0044 0.0050 | 0.0034
0.0019 0.0012 0.0022 | 0.0014
0.1059 0.0654 0.1373 | 0.0857
0.0096 0.1840 0.0124 | 0.1840
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Figure 4.48. Visual comparison of estimation errors between experiments (cf. Table 4.34).
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Figure 4.49. Runtime performance w.r.t. observation size (cf. Table 4.27 and Table 4.33).
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Figure 4.50. Runtime performance w.r.t. observation size (only the first 9 experiments, cf. Table 4.33).

117

9

+
1
1
1
1
+ H
1
1
+ +
y
+
¥ 1
1
1
1
1
1
1
-t
1
1
1
+ i
N ‘
+ t
+ 1
+ i
—r
+ i
+ + * .
—r
+ + +
.- &
1 2 3 4 5 9 10 11 12




4.4.3.3.8. Sensitivity of the estimation errors to simulation and burn-in rounds

In order to assess the sensitivity of the proposed model calibration mechanism (see Section 4.4.3.2) to
the number of simulation rounds, we have conducted a set of experiments using simulation with different
settings by changing the simulation and burn-in rounds as listed in Table 4.27. In parameter estimation
approaches in statistics, burn-in periods are considered to discard the initial erogenous estimations
(Inamura, 2006). However, we claim that our approach converges to the actual value of the parameters
quickly in order to avoid a large runtime overhead. In order to evaluate the claim, we increased the
number of burn-in periods from Exp. 1 to Exp. 7 in Table 4.35. Based on the results, which are reported in
Table 4.36 and visualized in Figure 4.51, the estimation accuracy has not been increased after increasing
the burn-in period. These observations based on the experimental results support our claim regarding the
quick convergence of our approach. Even increasing in the simulation rounds (cf. Exp. 8 to Exp. 10 in

Table 4.35) does not show a decrease in estimation errors necessarily as depicted in Figure 4.51.

Table 4.35. Experimental settings for sensivity analyses (cf. Table 4.27).

variable | Exp.1 | Exp.2 | Exp.3 | Exp.4 |Exp.5 | Exp.6 |Exp.7 | Exp.8 | Exp.9 | Exp.10
States 8 8 8 8 8 8 8 8 8 8
Abs 1 1 1 1 1 1 1 1 1 1
T 7 7 7 7 7 7 7 7 7 7
At 1 1 1 1 1 1 1 1 1 1
Obs 100 100 100 100 100 100 100 100 100 100
a 1 1 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1 1 1
M 2000 2000 2000 2000 2000 2000 2000 200 500 10000
b 0 10 20 30 100 200 1000 = 150 50 1000
Table 4.36. Estimation error comparison between experiments (cf. Table 4.33).
Metric Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
Q P(Q) Q P(Q) Q P(Q) Q P(Q) Q P(Q
D, 0.0186 | 0.0142 | 0.0182 | 0.0119 | 0.0146 | 0.0108 | 0.0265 | 0.0176 | 0.0215 | 0.0151
D, 0.0047 | 0.0034 | 0.0056 | 0.0034 | 0.0041 | 0.0029 | 0.0090 | 0.0053 | 0.0063 | 0.0041
@@, 02060 | 01267 | 0.2945 | 0.1539 | 0.2029 | 0.1398 | 0.5038 | 0.2522 | 0.3153 | 0.2008
Dgyp 0.0025 | 0.1840 | -0.0584 | 0.1840 | -0.0332 | 0.1840 | -0.1069 | 0.1840 | -0.0336 | 0.1840
Metric Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10
Q P(Q) Q P(Q) Q P(Q) Q P(Q) Q P(Q)
D, 0.0231 | 0.0169 | 0.0156 | 0.0120 | 0.0109 | 0.0079 | 0.0168 | 0.0128 | 0.0172 | 0.0132
D, 0.0074 | 0.0050 | 0.0046 | 0.0032 | 0.0027 | 0.0019 | 0.0041 | 0.0030 | 0.0047 | 0.0034
[@-@|, 03643 | 0.2325 | 0.2100 | 0.1430 | 0.1351 | 0.0892 | 0.1751 |0.1168 | 0.2155 | 0.1454
Dgyp | -0.0269 | 0.1840 | -0.0134 | 0.1840 | -0.0167 | 0.1840 | -0.0225 | 0.1840 | -0.0050 | 0.1840
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Figure 4.51. Visual comparison of estimation errors between experiments (cf. Table 4.36).

4.4.3.3.9. Limitations and threats to validity

The experiments in this section indicate that the effectiveness of the proposed CTMC parameter
estimation approach depends on the number of sampling rounds (cf. Figure 4.36), which directly
determine the time overhead of the approach. In other words, the more sampling rounds, the more
accurate estimations the approach can provide, but this is less appropriate for runtime requirement
verification because of the timing constraints (cf. Sections 4.4.3.3.7 and 4.4.3.3.8). To address this
limitation, we found out that the choice of the Gamma distribution for prior distribution enables the
estimation approach to quickly converge to the real value of the unknown parameter. However, this does
not mean that we can expect to derive an accurate estimation in a couple of rounds. This is one of the
limitation of our proposed estimation approach and a fruitful avenue for future improvements in terms
of decreasing runtime overhead.

In Section 4.4.3.3, we only evaluated the approach with 1 experiment but for the estimation of 32 non-
zero parameters of the q_Actual matrix in Table 4.28. In this experimental evaluation, our aim was to
measure the effectiveness of our estimation approach quantitatively as we have done and reported in
Section 4.4.3.3.4, Section 4.4.3.3.5 and Section 4.4.3.3.6. However, as opposed to the first experimental
evaluations in Section 4.4.2.6 where we combined different values for the controlled variables to
demonstrate the effectiveness of the extended Bayes method in different situations, here, we only
considered such measurements by changing a limited number of controlled variables (see
Sections 4.4.3.3.7 and 4.4.3.3.8). Although we reported both qualitative observations in Sections 4.4.3.3.4
and quantitative comparison in Section 4.4.3.3.5, the limitations of the controlled experiments is one of
the threats to the validity of this work. The only strategy for mitigating this threat was to extend the
experimental setting and perform a case study. We will report results regarding this in the evaluation
chapter, i.e., Chapter 7.
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4.5. Related Work

In this section, we review only the most closely related approaches to parameter estimation for
requirement verification that have been published in software engineering venues.

Several methods and techniques support measurement or analyses of non-functional properties of
running software systems. In general, two approaches are possible: (1) measurement and (2) modeling.
The former is established based on direct measurement of the selected requirement of the system
through the use of dedicated tools (e.g., profiler, tracer, etc.). For example, JMeter (“JMeter,” 2014) can
perform load testing for identifying bottlenecks in software applications, specifically cloud-based
software. As another example, we can mention Load Runner (“Load Runner,” 2014), which performs
scalability analyses. Data extracted from these software can help in identifying critical parts of the system
that require a modification to achieve the desired quality based on the analyses on non-functional
properties. Modeling can solve restrictions of direct measurements specifically in large systems, because
it may abstract away from the complexities of systems. In general, measurements and modeling are
complementary rather than alternative techniques (Epifani et al., 2009).

The approach that is presented in this thesis for model calibration promises the benefits provided by both
approaches based on measurement and those based on modeling. In this thesis, analytical models (i.e.,
Markov models) are kept alive at runtime and, via measurements, they can become gradually more
precise. As a result, the decision for adaptations can become more accurate based on this latest situation
of the running system.

In particular, (Woodside & Litoiu, 2008) describe a method for estimating model parameters through a
control-based approach. This work is based on a runtime monitoring solution that provides data feeding
a Kalman filter, aimed at updating the control-theoretic performance model. This approach differs from
the approach presented in this thesis since it explicitly supports uncertainty handling in runtime data.
Conversely, the approach is limited to the performance model, while the approach in this thesis is based
on both discrete and continuous Markov models, which are appropriate to handle different sorts of
properties comprising performance, reliability and so on.

The work in (Sato & Trivedi, 2007) is based on a CTMC formulation of composite services to predict
performance and reliability bottlenecks by applying a sensitivity analysis technique. Although this work
focuses on design-time, this thesis utilizes CTMCs for run time analyses.

The work in (L. Cheung et al., 2008) presents a framework for predicting component reliability at design-
time. The objective of this work is to construct a stochastic reliability model allowing software architects
to explore alternative designs. Specifically, the authors address the problem for parameter estimation at
architectural level. The problem of correct parameter estimation is also discussed in (Gokhale, 2007) and
(Smith & Williams, 2002).

Another work (Calinescu, Johnson, et al., 2011) proposes a novel approach for learning the parameters of
DTMC parameters based on runtime observations of the system. This approach learns DTMC parameters
through analyzing the system workload over time by adopting time series analysis. A very similar approach
is also presented in (Epifani et al., 2009). The difference between the two approaches (i.e. (Calinescu,
Johnson, et al., 2011) and (Epifani et al., 2009)) is that the former adopts a smoothing approach, which
makes the estimations at runtime more effective in terms of precisions. These two pieces of work are the
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closest approaches to what we proposed here in this chapter and both were inspiring for the research
reported in this thesis. Both approaches are based on Bayes formula (cf. Equation (4.18)) for model
update. However, the main difference is that our approach is capable of estimating model parameters in
the presence of measurement errors. In general, they (i.e. (Calinescu, Johnson, et al., 2011) and (Epifani
et al., 2009)) explicitly assume that the observations based on which they derive the estimations at
runtime are complete and contains no measurement errors. The other difference is that we
experimentally evaluate the model update mechanisms through which some insights have been revealed.
But, in general, in terms of underlying theory that has been adopted in these approaches, there is no
critical difference.

There are also some established frameworks for facilitating evolution based on model updates at runtime,
specifically in the domain of service-based systems. For example, KAMI (C Ghezzi & Tamburrelli, 2009) is
a framework for runtime model updates for service-based systems. It focuses on nonfunctional models,
which are typically dependent on some parameters that are provided a-priori by domain experts or
extracted from other similar systems. Even if these values are initially correct, they can change during the
operating life of the system. Consequently, accurate models must be updated over time. KAMI focuses on
keeping nonfunctional models up to date with the current behavior of the modeled system by updating
model parameters. Updated models can then be used to recheck at runtime the requirements that were
initially verified at design-time to guarantee the correctness of the system. This may trigger appropriate
adaptations of the system at runtime in order to adjust the system to satisfy system requirements.

As another example, QoSMOS (Calinescu, Grunske, et al., 2011) is a framework as well as supporting tools
for QoS management of service-based systems. QoSMOS implements the full self-adaptation loop that
combines formal specification of requirements, model-based QoS evaluation, monitoring and parameter
adaptation of the QoS models, and planning and execution of system adaptation. The proposed
framework integrates extended versions of existing tools such as KAMI (C Ghezzi & Tamburrelli, 2009) to
realize the feedback control loop.

The approach presented in this chapter differs from existing work because we emphasize model
calibration without considering that the runtime data are precise and free of noise. In fact, we strongly
believe that self-adaptation must be based on explicit assumptions that the runtime data may be
incomplete and contain noise.

4.6. Conclusions, Limitations and Future Work

In this chapter, we provided an answer to RQ1 that requires the development of methods and techniques
for estimating model parameters and serves as a pre-requisite for runtime requirement verification in the
feedback control loop of self-adaptive component connectors.

Conclusions. In this chapter, our approach to analytical model evolution by runtime adaptation is
presented. Our approach exploits Bayesian and Markov Chain Monte Carlo techniques to extend and
develop estimators which produce updated model parameters considering the uncertainty in runtime
observations. The updated analytical models provide a progressively better representation of the
connectors that allows continuous automated verification of requirements at runtime. The analytical
models updated at runtime support failure detection and prediction, and contribute to achieving self-
adaptive component connector as the key thesis of this work. The main contribution of this work, rather
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than providing the statistical machineries to perform runtime adaptation of DTMCs and CTMC s, is
handling runtime uncertainties by the mechanisms. We provided experimental evidence by conducting
extensive simulation campaigns to shed light on issues like the mutual effects of the choice of different
values for smoothing parameters, and the distance between design-time estimation and real values of
parameters, and different change patterns in runtime data. In our experimental evaluations, the estimates
converge to real values of probabilities (in the case of DTMCs) and transition rates (in the case of CTMCs)
even in case of uncertain noisy runtime data, but the speed of convergence depends on several factors.
For example, we investigated the influence of smoothing parameters and the dependence on the variance
of runtime data.

Limitations and threats to validity. There are some threats to the validity of this work. The estimation
approaches presented in this chapter can be categorized as time series estimation. The time series
estimators in general imply certain limitations when used for short-term prediction of certain quality
factors. As observed in the experimental evaluations, there is a conflict between being responsive enough
to changes in observation data and being too responsive and thus being perturbed by fluctuations in very
recent observations. In other words, if the smoothing parameter is too high, this may lead to a delay in
the estimations. On the other hand, too little smoothing may lead to limited precision in highly variable
scenarios. Although the value of the parameter can be set at deign-time based on the type of the system,
however, the behavior of the system may change dramatically at runtime and the parameter requires to
be adapted. We hypothesize that an adaptive filtering such as Kalman filtering approach can be a solution
for adjusting the smoothing parameter dynamically at runtime. This can be considered as a potential
future direction of such estimation techniques.

The other factor that influences the required time for the estimation to approach to the true value of the
unknown parameter is the length of the observations. This means that if monitoring observations occur
only very infrequently, the estimators in fact need to estimate based on long runs. Thus, the accuracy of
the estimation approach may be severely limited in the setting of the runtime platform that provides
observation data.

Threats to construct validity depend on how unknown model parameters were measured. This work
considers DTMC and CTMC parameter measurement for self-adaptive component connectors performed
through simulations. This can be affected by the load in the real setting of the connectors being deployed
in for example internet-wide systems. However, this still reflects a realistic situation, as we generate the
data using statistical distributions exactly the same way that simulation embedded in for example the Reo
tool sets works (Moon, 2011).

Future directions. The future directions of this work will consist of refining the approach investigating its
scalability in real-world noisy data. Currently our approach modifies models through the estimation of
their unknown parameters and we do not take into account structural changes in the analytical models.
In other words, model structures should be known when the estimation process is started and cannot
change during estimations. This would be one of the most challenging future directions of this work mainly
because of the difficulties in the theoretical background of structural model evolution and the runtime
efficiency which is required in self-adaptive software, see (Antonio Filieri, 2013). However, this direction
of research, although challenging, is also promising, as new techniques have been recently coming out,
e.g., (Bianculli, Filieri, Ghezzi, & Mandrioli, 2014), based on incremental and compositional techniques,
which are relevant to the domain of self-adaptive software.
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Chapter 5

5. Adaptation Reasoning

“There are many different styles of composition. I characterize them always as Mozart versus Beethoven.
When Mozart began to write at that time he had the composition ready in his mind. He wrote the
manuscript and it was ‘aus einem Guss’ (casted as one). And it was also written very beautiful.
Beethoven was an indecisive and a tinkerer and wrote down before he had the composition ready and
plastered parts over to change them. There was a certain place where he plastered over nine times and
one did remove that carefully to see what happened and it turned out the last version was the same as the
first one.” — Edsger Dijkstra (1930-2002).
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5.1. Chapter Overview

Adaptation reasoning is the core reasoning process in self-adaptive systems (Lemos et al., 2013). The
pieces of software that realize adaptation reasoning make decisions that affect how the base-level system
interacts with the environment in which it is embedded and how it satisfies its quantifiable (non-
functional) requirements. The decision is made over a reasoning space, which represents a dynamic and
situational environment. Such decisions are dependent on domain knowledge and influenced by the
historical behavior of the system over time. Note that the entities that reason about adaptation of a
software perceive and use historical behavior of the system as a means to support the decision making
process.

In the previous chapter, we introduced a number of stochastic methods to calibrate analytical models of
component connectors in order to enable the requirement verification in the feedback control loop of
self-adaptive connectors. The key challenge that we addressed there is the need to provide acceptable
estimations of model parameters given that the input monitoring data are not perfect and contain
uncertainties. This ensures that the requirement verification, which triggers connector adaptations, does
not trigger unnecessary adaptations or miss necessary ones. In this chapter, the focus is on the reasoning
part of the feedback control loop. We introduce a mechanism to select from many connector
configurations the one that is most appropriate to obtain some specific performance result based on fuzzy
adaptation reasoning. The key challenge that we intend to address here is the uncertainty corresponding
to the specification of adaptation policies. More specifically, when specifying adaptation policies, different
users have different and even conflicting opinions about adaptation action. We need an adaptation
reasoning approach that considers such conflicting policies and decides about the adaptation of
connectors considering these sources of uncertainty. Note that the scope of this chapter, as illustrated in
Figure 5.1, is to Plan the adaptation (in the context of MAPE-K control loop).

Autonomic Manager E

N /

Knowledge

Base-Level Software

Users

Figure 5.1. Scope of Chapter 5.

The outcome of this chapter is a framework, called RobusT2, for adaptation reasoning using type-2 fuzzy
logic systems. In this chapter, we aim to address RQ2 (cf. Chapter 1) that highlight the need for an
adaptation reasoning mechanism that can determine the connector mode appropriate for current
situation of the system. We called for a dependable mechanism that performs well in the presence of
noisy inputs and imprecise adaptation policy specifications.

The rest of the chapter is organized as follows. Section 5.2 gives some fundamental definitions regarding
adaptation reasoning. Section 5.3 reviews existing adaptation reasoning techniques for dynamic adaptive
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systems and self-adaptive software. Section 5.4 discusses how we specify non-functional requirements
for component connectors based on type-2 fuzzy membership functions. Section 5.5 proposes a
framework, called RobusT2, for adaptation reasoning using type-2 fuzzy logic. The RobusT2 framework,
as the main outcome of this chapter and the main contribution of this thesis, contains the methods for
designing the adaptation reasoning engine. This section also contains experimental results and discusses
the significance of the main results. Finally, Section 5.6 summarizes the chapter.

5.2. A High-level Overview of Adaptation Reasoning

In this section, we briefly review fundamental concepts regarding adaptation reasoning comprising a
definition of basic concepts in self-adaptive software, a high-level overview of autonomous reasoning and
types of reasoning.

5.2.1. Environment representation

Environmental situations for software systems in general and self-adaptive software (SAS) in particular
can be represented with a number of different techniques. These techniques represent environmental
situations through variables as properties of the environment. These variables have well-defined discrete
or continuous domains. For instance, the battery level of an autonomous robot or the reliability of a
software component or the performance of a connector might be environmental variables for a software-
intensive system. Each variable gets a value of its domain that conveys the current state of environment.
For instance, battery level as a variable with a discrete domain space may be quantified as low, medium
or high. On the other hand, reliability and performance may be quantified by continuous values within a
well-defined range.

Environmental variable values determine the current state of a specific property of an environment at a
very particular instant and a set of variables with their values represent the current state of the
environment.

Definition 18. An environment state is a set of pairs each comprising an environmental variable and its
current value at a precise time instant.

Definition 19. An environment situation of a self-adaptive software system is an environment state
(Definition 18) which is important for the system and needs to be considered for the reasoning process.
A set of situations, which obviously is a subset of all environmental states, might be predefined and
encoded by domain experts or might be learned during the reasoning process.

5.2.2. Autonomous reasoning

Domain experts of the self-adaptive software know how the system must respond to environmental
change. For example, an expert in robotics knows which camera resolution a robot should use when it has
low battery level. As another example, an architect knows which communication channel must be used in
connectors when the number of requests is high and the messages should not be lost in any circumstance.
In adaptive systems in general and self-adaptive software in particular which operate in a specific domain,
the reasoning process encodes the knowledge of that domain into a mapping between different
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environmental situations and the actions for system adaptations (Dobson et al., 2006; Miiller, Pezze, &
Shaw, 2008).

The reasoning process is typically delegated to a piece of software, which is responsible for linking a
particular environmental state to an action, which leads to an adaptation of the underlying software
system. For example, in the task queue connector example in Chapter 4, when the rate of receiving
messages at the receiving port increases, an environmental change happens. The reasoning mechanism
in this case processes the change and based on the environmental information, it decides to use another
channel with better quality of service.

The reasoning process typically consists of two critical steps: (i) processing a time-series runtime data,
which are collected through monitoring facilities; and, (ii) decision making about the adaptation action to
perform when a specific environment state (Definition 18) occurs. The first step is covered in the model
calibration chapter (i.e., Chapter 4). The second step, which is known as adaptation planning, is the main
subject of this chapter.

One important and critical issue is that how this decision making can be performed in self-adaptive
software. Let S be a finite set of situations (Definition 19) that a software system might encounter based
on different environmental states occurs. Also, let C be a finite set of valid architectural configurations
that the software system can take. As soon as a specific situation s € S is detected, the reasoning
mechanism chooses a (possibly optimal) architectural configuration ¢ € C from possible configurations of
the software system. This process can be formally delineated by:

P:S—-C

U(s;, P(sy)) = argmax {U(c;, s;)|Vc; € C: } 5.1)
Where P in equation (5.1) is a reasoner, which maps each situation s € S into an appropriate architectural
configuration ¢ € C during the adaptation process, which might be performed in a self-managed manner
in particular. The notion of a reasoner here generalizes that of a planner by covering a broader domain of
reasoning consisting of analysis and planning altogether. The notation U is a function which quantifies the
appropriateness of a configuration ¢; € C for the given situation s; € S. The main goal here for reasoning
is to find the most appropriate and (possibly optimal) configuration given the constraints such as timing
or frequency of adaptation in dynamically changing environments.

The problem of building efficient reasoners as a self-adaptive controller has been the target of several
projects, which resulted in various approaches that differ regarding the types of reasoning with respect
to the required level of flexibility and adaptability, and for the techniques to identify a suitable
configuration while reacting to the changes in environment. One of the key requirements for this kind of
reaction to the environment is to achieve the adaptation in a timely manner.

5.2.3. Types of reasoning in self-adaptive software

There are two different types of reasoning in general and planning in particular here: offline (design-time)
and online (runtime) planning.
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5.2.3.1. Offline reasoning

Design-time planning (or offline reasoning) means that decisions to relate environmental situations to
architectural configurations (plans) are made statically at design-time. More specifically, whenever a self-
adaptive software system encounters a specific environment situation s; € S, the self-adaptive controller
selects one specific architectural configuration ¢; € C. The next time when the same situation s; is sensed,
the reasoner chooses exactly the same plan ¢; for the software system. These predefined plans, which
freeze the adaptation space, are referred to as tactics (Georgiadis, Magee, & Kramer, 2002) or strategies
(D Garlan et al., 2004), change operation (Oreizy, Medvidovic, & Taylor, 1998), policy (Georgas & Taylor,
2008) or even a combination of them (S.-W. Cheng & Garlan, 2012).

These approaches can be effective if it can be demonstrated that the set of frozen change plans are
sufficient to deal with any possible environmental situations (Kramer & Magee, 2007). These fixed plans
might be sufficient for domains such as embedded software or fault-tolerant architectures. However, it is
very difficult to identify a sufficient set of them due to the nature of planning problems (Klein, 2007).

Runtime planning, however, is a more flexible alternative to overcome the shortcoming of offline planning
approaches.

5.2.3.2. Online reasoning

Runtime planning (or online reasoning) means that the decisions to relate environmental situations to
architectural configurations are made dynamically at runtime. In other words, the planner autonomously
generates a configuration, which suits the current situation of the surrounding environment.

Online reasoning, in general, consists of three major steps (Park, 2009): selection, evaluation,
accumulation. In the selection step, the planner autonomously chooses a suitable configuration for the
current configuration. In the evaluation step, the planner measures the effectiveness of the chosen plan.
Finally, in the accumulation, the planner stores the configurations alongside their evaluations for future
planning purposes.

In the next section, we review existing techniques that have been applied for enabling adaptation
reasoning in open-loop dynamic adaptive software and in closed-loop self-adaptive software.

5.3. Existing Reasoning Techniques in Self-Adaptive Software

There are several techniques (or strategies) to be employed for adaptation planning with different
capabilities and characteristics. These techniques comprise rule-based, goal-based, utility-based planning,
reactive, heuristic-based, test-based, learning-based, model-based and control-based. Note that among
these techniques, rule-based, goal-based and utility function reasoning have been applied a lot in practice
and are mature enough to be used by most self-adaptive systems. However, other techniques are still in
early formative stages of maturity; for instance, test-based techniques (Metzger et al., 2013) have just
recently been proposed in the self-adaptive community.

5.3.1. Rule-based reasoning

In rule-based planning, decisions are made for a set of predefined environmental situations. Generally,
they are specified by "if (situation) then (action)" statements (Fleurey & Solberg, 2009; Georgas &
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Taylor, 2008). When a set of environmental states from the situation occur then the action takes place.
An alternative version of rule-based reasoning are event-condition-action (ECA) rules. In this form when
a special event occurs, it may activate rules with specific conditions that, if satisfied, activate a set of
actions (Georgas, Hoek, & Taylor, 2009; Brice Morin, Barais, Jezequel, Fleurey, & Solberg, 2009). The
conditions are usually quantitative values of environmental variables. However, there are some
approaches that enable qualitative descriptions, which handle imprecision and variation instead of exact
guantitative values (Franck Chauvel, Barais, Borne, & Jezequel, 2008). A special kind of rule-based
reasoning considers the notion of reasoning based on some temporal properties. By adopting this type of
rule, one can specify conditions over a sequence of the past environmental states.

By adopting this technique, the adaptation behavior can be analyzed and validated at design-time. It is
also efficient at runtime. However, it requires the identification and enumeration of all possible
configuration variants and adaptation rules at design-time. The number of rules may also become
unfeasibly large. For example, although writing new rules is straightforward, it is hard to foresee errors
that might be introduced based on conflicts between rules (Serugendo, Fitzgerald, Romanovsky, & Guelfi,
2007).

However, some new advances address some of the issues. In the DiVA project (Brice Morin et al., 2009),
the rules can be deduced at runtime by comparing the resulting product model with the model of the
running system. The rules in rule-based reasoning can be enhanced by learning new rules, which are
derived based on the past facts (Abbas, Andersson, & Weyns, 2011).

5.3.2. Goal-based reasoning

Goal-based planning is inspired by multi-agent planning within which a number of agents cooperate to
achieve a specific goal. In goal-based reasoning, high-level goals drive the adaptation process (JO Kephart
& Chess, 2003). The goals are typically expressed using a declarative language such as PROLOG. When an
environment changes, the controller of the system decides if the system still holds its declared goals. If
not, the controller selects a set of adaptation actions in order to lead to the goal.

A number of approaches have explored goal-based planning in self-adaptive software (Eliassen, Gjgrven,
Eide, & Michaelsen, 2006; Heaven, Sykes, Magee, & Kramer, 2009; Morandini, Penserini, & Perini, 2008;
Salehie & Tahvildari, 2012; Sykes, Heaven, Magee, & Kramer, 2007). The general process is as follows.
These approaches first define the high-level goals the system should attain. Then a number of primitive
change operations are defined. Finally, a number of processes are defined to connect the goals and
actions. However, in contrast to rule-based reasoning, the writing of goals is not situational and therefore
straightforward. As a result, a number of researchers (Sykes et al., 2007; Sykes, Heaven, Magee, & Kramer,
2008) propose to declare the goals using linear temporal logic (LTL). Then, the plans can be generated
automatically to achieve the goals.

In general, adopting goal-based reasoning avoids the problem of fixed configurations, which are
enumerated at design-time, but usually at the cost of runtime overhead. This approach suffers from
scalability issues. One of the other difficulties of goal-based reasoning is whether all the goals are
achievable, because in the system of goals, one special goal might be prevented from being attained
because of mutual conflicts between goals.
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5.3.3. Utility function reasoning

Utility function planning has its root in functional optimization, which consists of a given mathematical
function, and the goal is to find its optimal value with respect to a set of parameters. In self-adaptive
software, utility function-based reasoning is used to find and select the most appropriate architectural
configuration for a given environmental situation using functional optimization. The function to be
optimized is called utility function and is defined in terms of the utility that each architectural
configuration can provide given a particular state of the environment. More specifically, this function
defines a quantitative basis of desirability of a given configuration. The desirability is a mapping such as U
in equation (5.20) between each configuration ¢; € € and its worthiness with respect to environmental
state s; € S. Therefore, in the case of environmental changes, the adaptation is decided based on the
optimization (maximization or minimization) of the utility function. To do so, there are many approaches
in mathematics from linear programming to meta-heuristic approaches that can be applied to find the
optimal value.

A number of approaches have investigated the application of utility function optimization for decision
making in self-adaptive software (Bennani & Menasce, 2005; S.-W. Cheng, Garlan, & Schmerl, 2006;
Georgas et al., 2009; Jeffrey Kephart & Das, 2007; Marzolla & Mirandola, 2010; Sykes, Heaven, Magee, &
Kramer, 2010). Typically, the utility function is defined as the sum of the utility value of the adaptable
parts of the architectural configuration in relation to the environment. The utility function may be defined
by several parameters and even combinations of continuous and discrete functions. Sometimes, the utility
functions need to be defined by multiple functions (S.-W. Cheng et al., 2006). Therefore, in this case the
problem of optimizing the utility function can be categorized as a multi-objective optimization problem
whose goal is to reach the best compromise among different competing functions.

Utility functions can discriminate between different architectural configurations and evaluate them, but
without the need for constructing them. Although this makes the reasoning process quite straightforward,
constructing the utility function itself is not an easy task.

5.3.4. Reactive planning based reasoning

A reactive planning explores gradually the space of architectural configurations. As opposed to traditional
planning which searches for a sequence of actions satisfying predefined objectives, reactive planning
searches for a single action, which contributes to a better satisfaction of the objectives, which themselves
might change according to environmental changes. A number of approaches have explored reactive
planning based in architecture-centric self-adaptive software (F Chauvel, Song, & Chen, 2010; Sykes et al.,
2010). These approaches do not need to freeze the adaptation space by predefined architecture
configurations as in Plastic (Batista, Joolia, & Coulson, 2005), C2 (Oreizy et al., 1998), Genie (Nelly
Bencomo, Grace, Flores, Hughes, & Blair, 2008). Or by predefined architecture-change operations as in
Rainbow (S.-W. Cheng et al., 2006; D Garlan et al., 2004), MADAM (Floch et al., 2006), DiVA (Fleurey &
Solberg, 2009), Sykes et al. (Sykes et al., 2007, 2008). Instead, they can explore unforeseen architecture
configurations in dynamic environments.

5.3.5. Heuristic-based reasoning

As the state space of adaptation grows, the management of adaptation rules becomes difficult. In order
to solve this, a number of approaches have investigated heuristic-based approaches such as genetic
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algorithms (e.g., Plato (A. J. Ramirez, Knoester, Cheng, & McKinley, 2009, 2010)) or hill climbing (C Ghezzi
& Sharifloo, 2013) in order to make adaptation plans.

A key benefit of this approach is that there is no need for prescribing adaptation plans beforehand to
address environmental situations warranting adaptation. Instead, they use the power of heuristic search
to generate suitable adaptation plans at runtime. They also exploit computationally inexpensive fitness
functions, which is akin to utility functions in order to evolve the plans in response to changing
environmental states. Therefore, they can handle more environmental situations than traditional
prescriptive approaches. One potential drawback of this approach is that the heuristic approaches cannot
guarantee that the best adaptation plan will be found.

5.3.6. Test-based reasoning

Online testing (E. M. Fredericks et al., 2013; Hielscher & Kazhamiakin, 2008; Metzger et al., 2013) means
that the self-adaptive software system is fed with test data in parallel to its normal run in order to detect
or predict failures. Whenever a test fails, it can trigger an adaptation in order to prevent the system from
actual failure. Since online testing actively engages in collecting runtime data and complement monitoring
runtime data, the accuracy of reasoning process can be improved significantly (Metzger et al., 2013).
However, there are some limitations including increasing the runtime load and imposing additional costs
(Metzger et al., 2013).

5.3.7. Learning-based reasoning

By using learning data, which are accumulated during system execution, the self-adaptive system can
determine the best configuration when the environment changes (Park, 2009). Generally, by repeating
the process of execution, accumulation, learning and decision-making, the system can make better
decisions over time.

Gambi et al. (Gambi, Toffetti, & Pezze, 2010) use online machine learning to update surrogate models in
order to limit violations of SLAs of software applications within data centers. However, their approach
does not apply any state space reduction heuristics to improve runtime convergence.

Tesauro et al. (Tesauro, 2007) proposed a hybrid approach to combine white-box analytical modeling (i.e.,
QN model) with Reinforcement Learning. Online learning uses a black-box model of the running system,
while the white-box QN model is used as a training facility. They assume white box QN model of the
system is available and can accurately predict its behavior under different adaptation decisions.

Kim and Park (Park, 2009) use a reinforcement learning approach for online planning. Their work is based
on behavior improvements of robots by learning from design-time training and by dynamically discovering
adaptation plans in response to changes in the environment in which the robots are operating. Similarly,
Zhao et al. (Zhao, 2011) combine supervised learning and reinforcement learning to develop an adaptive
real-time cruise control system.

FUSION (Elkhodary et al., 2010; Esfahani, Elkhodary, et al., 2013) is a general-purpose framework for self-
adaption of the software systems, which is fundamentally different from the above, as it works in a way
that it is a general-purpose framework, while the above mentioned works have concentrated on specific
problem domains. FUSION combines a number of techniques comprising feature-based modeling,
significance testing, and heuristic search to reason about adaptation.
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5.3.8. Model-based quantitative reasoning

In general, analytical models can be categorized into two broad groups (Esfahani, Elkhodary, et al., 2013):
white-box and black-box. The former requires an explicit model of the internal organization of the
software system (i.e., typically an architectural model), while the latter does not need such knowledge.

Queuing Networks (QN) (Ardagna et al., 2008) are mathematical models used for performance analysis of
a software system, represented as a collection of Queues (i.e., system resources) and Customers (i.e., user
requests). Markov models (Ardagna et al., 2008) are often used for reliability analysis. They are comprised
of a stochastic model that captures the state of the system using random variables that change overtime
according to the probability distribution of the previous state. These white-box approaches require an
explicit model of the internal structure of the software system. Such models are typically used at design-
time to analyze the tradeoffs of different architectural decisions before implementation, but recently
these models are used at runtime to dynamically analyze the system properties (Ardagna et al., 2008).
However, the structure of these models cannot be easily changed at runtime in ways that were not
accounted for during their formulation (e.g., addition of new states in a Markov model due to emerging
software behavior).

Artificial Neural Networks (ANN) are an effective way of solving a large number of nonlinear estimation
problems (Esfahani, Elkhodary, et al., 2013). These approaches do not require knowledge of the internal
structure of the system. However, they require enough sampling of the input/output parameters to build
a rough calculation of the relationship between the inputs and outputs. A main advantage of black-box
approaches is that they can be used to detect changes to the underling properties of a software system
over time. FUSION (Esfahani, Elkhodary, et al., 2013) follows the black-box approach.

5.3.9. Control theory based reasoning

Control theory is recently gaining momentum in the software engineering community (Hellerstein et al.,
2004; Jamshidi et al., 2014; Zhu et al., 2009). For instance, in the proceedings of the most recent ICSE,
Companion Proceedings of the 36th International Conference on Software Engineering (Briand & van der
Hoek, 2014), as well as the proceedings of the most recent SEAMS, Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (Engels & Bencomo, 2014),
we have seen an increasing number of control theory-based approaches applied to address the challenges
in software engineering. The application of control theory in software engineering, however, is still at a
preliminary stage (Patikirikorala et al., 2012) and is limited to the design of controllers focused on
particular ad-hoc solutions that address a specific computing problem (Antonio Filieri et al., 2014). Filieri
et al. (Antonio Filieri et al., 2014) developed a general methodology, which reduces the need for strong
mathematical background to devise ad-hoc control solutions.

As a notable control theory-based approach that has been applied for adaptation reasoning, we can
mention the work of Filieri et al. (Antonio Filieri, Ghezzi, Leva, & Maggio, 2012). In this work, the bindings
among services are dynamically set at runtime. They formulated the dynamic binding problem as a
feedback control problem, and solved it with simple controller synthesis.

Yang et al. (Q.-L. Yang et al., 2013) proposed a type-1 fuzzy logic system to adjust system parameters (as
opposed to ours on architecture change) in mission-critical systems. They deal with uncertainty in the self-
adaptation loop by representing adaptation logic with type-1 fuzzy membership functions. Gmach et al.
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(Gmach et al., 2008) and Chuang and Chan (Chan, 2008) proposed the use of type-1 fuzzy logic systems
for adaptive service management to remedy exceptional situations and manage quality of services
respectively. They applied fuzzy control theory to manage and balance resources of enterprise service. In
a recent published work (Jamshidi et al., 2014), we proposed an extended fuzzy controllers for solving
similar problem of elasticity reasoning in the context of autonomic resource provisioning for cloud-based
applications. The main challenges that we addressed in this work were to control the measurement
uncertainties and uncertainty related to specifying elasticity policies (corresponding to the adaptation
policies here in this thesis).

5.3.10. Summary of reasoning techniques

Table 5.1 summarizes the adaptation reasoning approaches we reviewed earlier for enabling self-
adaptation of software systems. In this table, a check mark (v) indicates where the approach proposes
solutions or deals with the criteria, and a blank () in the opposite case.

Note that among the reviewed approaches, rule-based, goal-based and utility function reasoning are
mature and other techniques are still in early formative stages of maturity.

All of the reviewed techniques have their own pros and cons and are mostly situational, i.e., they are more
appropriate for addressing the challenges in a particular domain. For example, rule-based reasoning is
useful in situational contexts, in which predefined responses are triggered by predefined events. Such
approaches based on rule-based reasoning can also consider learning to update the rule set at runtime.
One of the downsides of such approaches is that, it is difficult to manage rule-based reasoning, especially
when thousands of rules are in the rule base. In contrast, goal-based and utility-based reasoning use very
different approaches. The first one introduces the concept of goals that enable the reasoning process, and
uses a variation of goal models to derive each particular adaptation decision. It enables decision making
by accomplishing a set of goals. The later defines a priori mapping in terms of a utility functions between
reasoning variables and architectural configurations of the system. The utility-based approaches evaluate
a decision and pick one option out of many. More concretely, goal-based reasoning can select the best
configuration given the encoding in utility function. However, rule-based and goal-based reasoning cannot
ensure such optimum selection.

This domain is not yet mature, and as a result, new adaptation reasoning approaches appear in the
software engineering and self-adaptive communities. These techniques use heuristics, models and test
cases, machine learning, control theory and reactive techniques to drive the system adaptations and
produce promising results. Nevertheless, they are still at a formative stages and subject of current ongoing
research. In this thesis, we use fuzzy control as the adaptation reasoning technique. The rationale that
motivates this choice is that fuzzy control use rules elicitation from users that properly captures the
relationship between particular environmental conditions, historic observations, and decision-making in
the reasoning process. The main difference between the existing control-based approaches and our
approach is that the fuzzy logic controller we employed in this work can handle expert knowledge and
numerical data in a unified framework, and the fuzzy reasoning approach, in general, requires less
computational complexity. The other benefit of our approach is that fuzzy logic controllers do not require
the mathematical model of the system that it controls. In this work, deriving an accurate mathematical
model of the underlying software is a very difficult task due to non-linear dynamics of real systems
(Esfahani, Elkhodary, et al., 2013; Hellerstein et al., 2004; Lemos et al., 2013; Zhu et al., 2009).
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Table 5.1. Classification and comparison of adaptation reasoning approaches.

Reference
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Reasoning Technique
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Model
Code

Requirement (Spec)
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Goal-based

Utility function
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Learning-based
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Reactive planning
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Control-based

Context

Mobile

Embedded System

Smart-*

Robotic
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5.4. Non-functional Requirements for Component Connectors

In contrast to traditional requirements, self-adaptive software systems require a new class of
requirements (Lemos et al., 2013). We consider two types of quantitative non-functional requirements:
1) crisp (hard (Glinz, 2005)), and 2) fuzzy (elastic (X. (Frank) Liu, Azmoodeh, & Georgalas, 2007), soft (Glinz,
2005)). A crisp quantitative non-functional requirement imposes rigid constraints on a non-functional
property (e.g., end-to-end response time or reliability) of a system or more precisely for component
connectors in this work. After verifying the satisfaction of a crisp requirement, it is either satisfied or
unsatisfied. While a fuzzy non-functional requirement imposes a flexible constraint on a non-functional
property of a connector using a membership function of a qualitative term to characterize its satisfaction.
Note that a membership function quantifies a degree of membership of a qualitative term in a fuzzy set
(zadeh, 1965).

5.4.1. A specification of non-functional requirements with Type-1 (T1) fuzzy sets (FS)

Below is an example of a crisp quantitative non-functional requirement NFR; with satisfaction function
in Figure 5.2. In this case, if the coordination time between the two specific points (one source node and
one sink node) takes, for example, 1.005 milliseconds, it does not satisfy the requirement and it leads to
an adaptation of the connector.

NFR;: The period of time between receiving a message from a component to (5.2)

dispatching it to another component must be less than a millisecond.
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Figure 5.2. Satisfaction function for requirement NFR1.

However, in the case of the following a fuzzy non-functional requirement, i.e., NFR, with membership
function in Figure 5.3, if the coordination takes 0.8 milliseconds, its satisfaction degree is one, which is
the highest. It actually points out that the requirement is fully satisfied by the connector. If it takes, for
example, 1.4ms its satisfaction degree is around 0.6 and it partially satisfies the requirement though it is
acceptable.

NFR,: The period of time between receiving a message from a component to (5.3)
dispatching it to another component must be SHORT.

“SHORT” in (5.3) is a linguistic term, whose membership function (see Figure 5.3) characterizes satisfaction
of the requirement NFR,.
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The constraint imposed by an imprecise or fuzzy requirement R is characterized by a satisfaction function
(X. Liu & Yen, 1996).

Definition 20. A satisfaction function, denoted by up, maps an element of R’s domain or universe of
discourse D to a number in [0,1] that represents the degree to which the requirement R is satisfied.
Ur:D — [0,1] (5.4)

Intuitively, the satisfaction function characterizes a fuzzy subset of a requirement’s domain, which
satisfies the fuzzy requirement. In fuzzy non-functional requirements, a minimum threshold is usually
specified. It shows that a connector configuration, whose value is below this threshold, is not acceptable
and it should trigger an adaptation to lead to a configuration that has a satisfaction degree of a value
higher than zero. For instance, if a coordination takes 2.1 milliseconds, which is greater than the threshold
of two, in this case, its satisfaction degree is zero and it is totally unacceptable.

The satisfaction function (cf. membership function in fuzzy set theory (Zadeh, 1965)) for fuzzy
requirements must vary in [0,1]. The function itself can be of any shape that defines a function, which is
simple enough to interpret the satisfaction degree. The simplest satisfaction function is formed using
straight lines. Figure 5.4 and Figure 5.5 respectively illustrate a simple triangular and a trapezoidal
satisfaction function.
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Figure 5.4. A triangular satisfaction function.

A number of key characteristics of satisfaction functions are as follows (cf. Figure 5.5):
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The height of a satisfaction function is the largest degree, which satisfies the requirement R.
height (R) = sup ug(x) (5.5)

The support of a satisfaction function is the crisp set containing all elements with non-zero satisfaction
degree.

support (R) = {x|ug(x) > 0} (5.6)

The core of a satisfaction function is the crisp set containing elements with satisfaction degree equal to
one.

core (R) = {x|ug(x) = 1} (5.7)

The boundary of a satisfaction function is the crisp set with satisfaction degree higher than zero and lower
than 1.

boundary (R) = {x|0 < ugp(x) < 1} (5.8)

The a — cut of a satisfaction function is the crisp set that contains all the elements whose satisfaction
degree are greater than a.

ap —
R = {x|ug(x) = a} (5.9)
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Figure 5.5. A trapezoidal satisfaction function.

Due to their smoothness, Gaussian satisfaction functions are appropriate for specifying fuzzy sets. As
illustrated in Figure 5.6 and Figure 5.7, the curve has the advantage of being smooth and non-zero at all
points. However, since in self-adaptive software we need to reason about the satisfaction of
requirements, and since in this function there is no point with satisfaction degree zero, this type of
function is of limited use.
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Figure 5.6. A Gaussian satisfaction function.
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Figure 5.7. A bell satisfaction function.

Although Gaussian and bell functions have the advantage of being smooth, they are unable to specify
asymmetric functions, which are critical in some requirement specifications. Figure 5.8 shows a sigmoidal
satisfaction function, which is open to the right.
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Figure 5.8. A sigmoidal satisfaction function.

One of the main advantages of using fuzzy non-functional requirement specification in self-adaptive
software is the avoidance of unnecessary adaptation of connectors due to transient violations of
constraints. Let us consider the coordination time in a connector that oscillates between 0.99 and 1.01.
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By considering NFR{, each time the coordination times goes up to 1.01, it violates the requirements and
an adaptation will be necessary. However, by considering NFR,, the satisfaction degree is close to one
and far greater than the minimum threshold of satisfaction based on the function illustrated in Figure 5.3.
This result is more desirable than the one obtained using crisp function as depicted in Figure 5.2 because
it avoids several unnecessary adaptations during runtime execution of the connector.

Such a specification of non-functional requirements through type-1 fuzzy membership function is not new
and it has been adopted mainly to specify flexible requirements in (Luciano Baresi et al., 2010; X. Liu &
Yen, 1996; Whittle et al., 2009; Yen & Tiao, 1997). The challenge is where there is uncertainty about the
membership function itself. In the following, we first raise this concern by providing concrete scenarios
and we address this challenge by adopting T2 fuzzy logic in order to incorporate uncertainty about the
adaptation policies. The RobusT2 framework is proposed in Section 5.5, to address this challenge and
provide a mechanism to reason about adaptation handling such sources of uncertainties.

5.4.2. The need for revisiting non-functional requirement specifications

In order to deal with uncertainty, it needs to be quantified. In this section, we discuss why the self-adaptive
software community needs to revisit approaches for quantifying uncertainty. Users provide input for
different aspects of a self-adaptive software system (Esfahani & Malek, 2013; Lemos et al., 2013). The
most prominent user inputs are: 1) Non-functional requirements or quality preferences. 2) Particular
system properties that cannot be monitored. 3) Certain environmental properties that can be specified
by engineers based on their experiences, hardware specification, or similar systems. 4) Adaptation
policies and their effects on the quality factors. However, eliciting user preferences for the
aforementioned inputs in terms of a mathematical function or an absolute value is a well-known challenge
(Lemos et al., 2013) and introduces subjective and imprecise data to the system. Thus, in order to cease
the effects of this uncertainty, we need to adopt an appropriate mathematical theory to quantify them.

There are four different possibilities when extracting a user input: 1) One user provides a crisp value
representing an estimation of the expected value for the input. 2) One user estimates a range of
uncertainty based on the expected level of variation in the input. 3) A group of users provides a set of
crisp values as estimations of the expected value for the input. 4) A group of users provides estimations
of the range of uncertainty based on the expected variation in the input. Although it has been commonly
used in self-adaptive software domain, we argue that the first three approaches are not scientifically
accurate enough to capture the uncertainty regarding adaptation knowledge specification. The first issue
is with the crisp estimation of the input (i.e., 1, 3). In this way, the possibility distribution of the input
becomes like a step function that takes either “zero” or “one” and the tradeoffs between different quality
factors become impossible. The second issue is with the elicitations based on a single user (i.e., 1, 2). Users
often have diverse opinions about specific inputs. Therefore, inputs based on just one user is partial and
the approaches such as (Luciano Baresi et al., 2010; S. Cheng & Garlan, 2007; Esfahani et al., 2011; Whittle
et al., 2009) pursuing this way of knowledge elicitations ignore the uncertainties associated with collecting
inputs from different users. This assumption based on one user opinion is, in fact, unrealistic for certain
types of applications such as multi-tenant systems. Figure 5.9 shows how a user estimates the range of a
requirement with a trapezoidal function.
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Figure 5.9. A trapezoidal possibility distribution.

The current work for handling uncertainty in self-adaptive software assumes one can accurately specify
the possibility distribution. When someone specifies a possibility distribution of an input, as soon as the
function is specified, there remains no uncertainty in that function. For instance, as soon as the possibility
distribution of the performance of a component is specified in Figure 5.9, the three associated regions are
precisely determined. Yet, as we mentioned in the fourth approach for eliciting the input, each user might
come up with different distributions (see Figure 5.10). The challenge is how to accommodate all
preferences in one coherent distribution.
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Figure 5.10. Possibility distributions elicited from different users.

We address this challenge by adopting type-2 fuzzy sets (Zadeh, 1975) in order to incorporate uncertainty
in the distribution function.

5.4.3. A specification of non-functional requirements with Type-2 (T2) fuzzy sets (FS)

The concept of imprecise requirements (X. Liu & Yen, 1996) is not a new phenomenon. Fuzzy theory is
mainly used to specify uncertain, flexible and imprecise requirements (Whittle et al., 2009), to
accommodate adaptive goals (Luciano Baresi et al., 2010) and to perform trade-offs among conflicting
functional (Yen & Tiao, 1997) and non-functional requirements (Esfahani et al., 2011). In these works, they
exploit fuzzy theory to specify at design-time and assess at runtime the satisfaction degree of
requirements, which is specified by a membership function. The idea is to prevent violations of
requirements by tolerating some small transient deviations. The presumed benefit of such imprecise
requirements is that it gives the system room to behave flexibly (Chopra, 2012). More specifically, a
system can partially satisfy a requirement depending on circumstances. However, the state-of-the-art in
this domain assumes one can specify the satisfaction function precisely. However, this is not practical and
realistic in real-world applications. The question is what to do when there is uncertainty about the value
of the membership function. In this section, we intent to address this shortcoming by adopting type-2
fuzzy logic (Zadeh, 1975) in order to incorporate uncertainty about the satisfaction function. The
fundamental difference between type-1 and type-2 fuzzy logic is in the model of individual fuzzy sets.
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Type-2 fuzzy sets employ membership degrees that are not a crisp value, but fuzzy sets themselves. This
additional uncertainty dimension provides new degrees of freedom for modeling dynamic uncertainties.

54.3.1. Requirement specifications with IT2-FS

Although a number of analytical frameworks (Luciano Baresi et al., 2010; X. Liu & Yen, 1996; A. Ramirez &
Cheng, 2012) based on type-1 fuzzy sets have been proposed by researchers in requirements engineering
and self-adaptive software, we intent to extend the concepts based on interval type-2 fuzzy sets. We
therefore call the previous imprecise requirement specification approaches based on type-1 fuzzy logic
traditional approaches. Those traditional approaches based their satisfaction function on Definition 20.
However, we specify the satisfaction function according to the definition that is given in Definition 21.

Definition 21. A satisfaction function, denoted by pi5, maps an element of R’s domain or universe of
discourse D to an interval [Eg(x),ﬁﬁ(x)] that represents the spectrum of degrees to which the
requirement R is satisfied.

ur(x): D = [pg(x), 1 (x)] (5.10)

By adopting this definition for requirements specification, the satisfaction degree is not a crisp value in
the interval [0,1] anymore, but it is a spectrum of values in [uz (x), 15 (x)]. This provides an opportunities
to accommodate the scenarios that we have discussed in 5.4.2 and specify a satisfaction function that
considers different opinions of different users as shown in Figure 5.10. Figure 5.11 illustrates a type-2
fuzzy membership function that is discussed in detail in Chapter 2.
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Figure 5.11. An interval type-2 fuzzy set based possibility distribution.

5.4.3.2. Measure of relationships between requirements

Four types of relationships between requirements have been introduced and defined in (X. Liu & Yen,
1996) based on type-1 fuzzy sets. Here we intend to redefine these classes of relationships with regard to
interval type-2 fuzzy sets. These relationship types are: 1) conflicting, 2) cooperative, 3) mutually
exclusive, 4) irrelevant. This classification is based on the relationships between satisfaction functions (cf.
Definition 20, Definition 21) of the requirements involved in a specific context.
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Two imprecise requirements are categorized as conflicting if an increase in the mean interval of the
satisfaction degree (cf. Definition 22) decreases the mean interval of the satisfaction degree of the other
(cf. Figure 5.12).

Definition 22. The mean interval of satisfaction function, denoted by 6z, maps an element of R’s
domain or universe of discourse D to the mean of interval [uz (x), 1z (x)].

0r(x):D - (pg(x) + uz(x))/2 (5.11)

On the other hand, two imprecise requirements are classified as cooperative if an increase in the mean
interval of satisfaction degree often increases the mean interval of satisfaction degree of the other. If the
mean intervals of the satisfaction degree of two imprecise requirements cannot be satisfied at the same
time, they are categorized as mutually exclusive requirements. Finally, if the mean intervals of the
satisfaction function of two requirements have no impact to each other, the requirements are called
irrelevant.
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Figure 5.12. Conflicting imprecise non-functional requirements.

5.4.3.3. Non-functional requirements tradeoff analysis

In order to perform tradeoff analysis, multiple non-functional requirements need to be aggregated to
formulate an overall aggregated function to be verified. As a result, we introduce and define a number of
aggregation operators according to fuzzy logic to enable the tradeoff analyses. The aggregation operations
are as follows: union of requirements (cf. Figure 5.13) is given in Definition 23 and illustrated in
Figure 5.14; intersection of requirements is given in Definition 24 and illustrated in Figure 5.15;
complement of requirements (cf. Figure 5.13) is given in Definition 25.
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Figure 5.13. Two IT2-FSs, A and B (adapted from () Mendel & Wu, 2010)).

Definition 23. The union of two imprecise requirements R, and R, is
g, (¥): D > g, (), Tig, ()]
i, 0:D = [, (), T, ()] (5.12)

HR,uR, (0): D = [z, () V pg, (), T, () V T, (%))

A

FOU(AUB)

X
Figure 5.14. Visual representation of union of two IT2-FSs (adapted from () Mendel & Wu, 2010)).

Definition 24. The intersection of two imprecise requirements R; and R, is
g, (0:D > |1z, (), g, ()]
g, (x):D - [ggz (x),ﬁﬁz(x)] (5.13)

Haynk, (0): D = [, () A pi, (), T, () AT, ()]

A
FOU(ANB)

» X
Figure 5.15. Visual representation of intersection of two IT2-FSs (adapted from () Mendel & Wu, 2010)).
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Definition 25. The complement of an imprecise requirement R is
HR(O): D = [1g (), B ()

(5.14)
H(O:D = [1-Hz (0,1~ (@) |

Finally, the tradeoff between requirements is defined in Definition 26.

Definition 26. Let R be a list of non-functional requirements R = (R, R,, ..., R,,) that a component
connector is supposed to satisfy and u = (ug, (x), pg, (x), ..., kg, (x)) be the associated satisfaction
degrees. Let W = (wy,wy, ..., w,,) contain a list of real numbers representing the normalized relative
importance of the requirements. The overall satisfaction degree is as follows:

n
Up = Z w; X iz, (x) (5.15)
i=1
5.4.3.4. Non-functional requirement change analysis

We consider here three types of change in non-functional requirements and their analysis with type-2
fuzzy sets: 1) relaxing a requirement, 2) strengthening a requirement, and 3) changing the priority of a
requirement.

Definition 27. The requirement R; is considered to be relaxed to R, and R, is considered to be

strengthened to R, if:
Vx €D, Gﬁl(x) < Bﬁz(x) (5.16)

Definition 28. Let R be a requirement, then the feasibility of R in domain D can be defined as
Feasibility (R) = supyeppz(x) (5.17)

Intuitively, according to Definition 28, relaxing a requirement improves the feasibility of the system
realizing the requirement.

Theorem 2. Llet R =R, ®..QR,®..®R, and R = R,® ..QR";® ...QR,, and assume that R; is
relaxed to R';. Then,

Feasibility (R;) < Feasibility (R';) (5.18)

In the next section, we introduce the main outcome of this chapter, i.e., the adaptation reasoning
framework.
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5.5. RobusT2: A Framework for Autonomous Adaptation Reasoning using Type-
2 Fuzzy Logic Systems

In this section, we develop a framework, called RobusT2, to reason about adaptation of component
connectors, in which adaptation rules are based on a data collection from a group of users who have
potentially conflicting opinions about adaptation policies. As we discussed in earlier sections, we chose to
develop a fuzzy controller to give software architects more flexibility to accommodate their preferences
even when they are conflicting.

The overall view of the autonomous controller for adaptation reasoning, as the main artifact of the
RobusT2 framework, is shown in Figure 5.34. As illustrated, the controller covers both design-time and
runtime. During design-time, the aim is to design a fuzzy controller, specify its rule-base, and derive
appropriate satisfaction functions. At runtime, while the controller starts operating for connector self-
adaptation, it keeps monitoring quality and environmental data that may affect non-functional
requirement satisfaction. The requirements are continuously verified with respect to runtime data that
may reflect changes in the environment's behavior. In the case of detection of any violations, appropriate
adaptation actions (in terms of mode changes here) are generated through the fuzzy logic controller and
applied via an execution actuator. More specifically, the controller adjusts the system configuration with
respect to runtime data that may affect changes in the connector’s behavior. The key mechanism for
decision-making at runtime is the fuzzy inference process.

In the following, we discuss each phase in turn and describe the relevant activities. Section 5.5.1 presents
basic concepts and phenomena in fuzzy inference and the main entities and processes involved in fuzzy
reasoning. We provide concrete examples, in this section, to enable readers to easily grasp the involved
intricacies in fuzzy reasoning and prepare them to fully understand the outcome of this chapter, which is
the proposed method for designing the fuzzy controller. Section 5.5.2 introduces a running example.
Section 5.5.3 provides concrete challenges that motivated us to pursue such solution. Section 5.5.4 gives
a high-level overview of the proposed autonomous reasoning providing an abstract overview of the
approach. Section 5.5.5 proposes our knowledge elicitation approach for enabling adaptation rule
elicitation from different users. Section 5.5.6 proposes a technique for transforming the collected data to
design a fuzzy logic controller that acts as the main outcome of this chapter. Section 5.5.7 reviews the
benefits of the designed type-2 fuzzy logic controller over traditional type-1 controllers. Section 5.5.8
contains experimental evaluation results regarding the designed and implemented controller. Finally,
Section 5.5.9 discusses the significance of the main results.

5.5.1. Fuzzy logic systems and uncertainty control

From a software engineering perspective, fuzzy logic can be interpreted as a theory that allows using
linguistic words and human knowledge 1) to represent or model adaptation knowledge and 2) to design
their reasoning mechanisms. Fuzzy control has been used in different application areas such as industrial
control, mobile robots control and ambient intelligent environments control (Hagras, 2007).

The human brain reasons based on linguistics such as slow, fast, near or far and it execute control actions
accordingly. Therefore, human activities exemplify the concept of fuzzy control. For instance, people do
not need to measure acceleration to be able to safely control the car they are driving.
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551.1. The Concept of Uncertainty in Fuzzy Logic Systems

Uncertainty exists in any situation with a lack of knowledge. For example, knowledge may be incomplete,
imprecise, noisy, patchy, not reliable, vague, contradictory or deficient (Klir & Yuan, 1995). Different
authors define and classify different types of uncertainty. The classification proposed in (Esfahani &
Malek, 2013) fits to describe and interpret the effects of uncertainty in self-adaptive software. There are
some other classification of uncertainty in this domain such as (A. J. Ramirez et al., 2012).

Uncertainty is also exists in fuzzy logic systems as explained in (JM Mendel, 2001; Wu, 2012):

e Uncertainty about the meaning of the words that are used in the rules used for reasoning.
e Uncertainty about the consequence of the rules.

e Uncertainty about the input data that activate the fuzzy logic systems.

e Uncertainty about the data used to tune the design parameters of fuzzy logic system.

As we discussed in the background chapter, T1 MFs are precise and, as a result, T1 FSs as used in T1-FLS
cannot capture the uncertainty. This is the reason why Zadeh proposed to represent this uncertainty by
using T2 FSs (Zadeh, 1975). T2 FLSs are to some extent different from classical fuzzy logic systems, see the
difference in Figure 5.16 and Figure 2.3. The next sections presents these differences by introducing the
subsystems of a T2 FLS as presented in Figure 2.3.
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Figure 5.16. The architecture of type-1 fuzzy logic system (adapted from (JM Mendel, 2000)).
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Figure 5.17. The architecture of type-2 fuzzy logic system (adapted from (JM Mendel, 2000)).
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5.5.1.2. Knowledge base (Rule base)

The knowledge base (or in some literature it is known as rule base) allows the representation of human
knowledge by using linguistic rules. A fuzzy rule is specified with the structure below:

IF (some conditions are satisfied) THEN (perform a control action) (5.19)

In general, the fuzzy rules are organized using tables whose objective is to represent all the different
combinations of the inputs of the system. The structure of the rule-base are the same in both type-1 and
type-2 fuzzy logic systems, except that in the former the linguistics have type-1 MFs, while in the latter
the linguistics have type-2 MFs.

5.5.1.3. Membership functions

Membership functions (MFs) enable forming a connection between crisp values and linguistic words.
Type-1 fuzzy MFs (T1-MF) are two-dimensional and characterize the membership value u for a variable
x € X. Type-2 fuzzy MFs (T2-MF) are three-dimensional by considering an uncertainty u of the
membership value. T1-MFs are a special case of T2-MFs where the uncertainty value is zero. In general,
membership functions can be classified as:

e Singleton MFs. A membership function that is unity at one particular point and zero everywhere else.
See Figure 5.18.

_1 x=x1

H= {0 otherwise (5.20)

01’ X |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2
X1

Figure 5.18. Singleton membership function.

e Interval type-1 MFs. A membership function that is zero except in the interval defined by its left and
right bounds. See Figure 5.19.

0 otherwise
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Figure 5.19. Interval type-1 membership function.

Type-1 MFs. A membership function that is a crisp value which vary in the interval [0,1]. See Figure 5.2

to Figure 5.8.

Type-2 MFs. A membership function that is characterized by a secondary degree MF pz. This type of

MF can further classified as:
1. Interval type-2 MFs. If ug(x,u) is an interval type-1 MF.
2. General type-2 MFs. If ug(x,u) is a type-1 MF.
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Figure 5.20. An interval type-2 membership function.
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Figure 5.21. General type-2 membership function.
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5.5.1.3.1. Interval type-2 membership functions

General T2 MFs are complicated to implement and the computational overhead of processing based on
this type of MF is high (N. Karnik & Mendel, 1999) and obviously not appropriate for time-constrained
applications such as adaptation reasoning in a self-adaptive control loop. However, interval T2 MFs are
straightforward to implement and have been used in almost all works about type-2 fuzzy logic (Hagras,
2007). Therefore, an interval type-2 membership function has been also selected for this research.

An IT2 MF can be created with two T1 MFs. An Upper Membership Function (UMF), which represents the
maximum value and a Lower Membership Function (LMF), which represents the minimum value of u for
each x. The uncertainty u is represented by the area between the UMF and the LMF. This region is called
Footprint of Uncertainty (FOU) and is illustrated in Figure 2.2. Note that T1 MFs are a particular case of
T2-MFs that does not consider the uncertainty; the same MF represents both the UMF and LMF and,
therefore, the area of the FOU is zero.

5.5.1.3.2. Membership function creation

In this thesis, for representing the IT2 MFs, trapezoidal and triangular membership functions are used to
construct the FOU. IT2 MFs are completely described by 9 points (a, b, c,d, e, f, g,i, h), see Figure 5.22.
Note that triangular MFs are a particular case of trapezoidal MFs where the two middle points coincide.
For example, in Figure 5.22, if f = g then the IT2 MF X is a trapezoidal MF with trapezoidal UMF and
triangular LMF. If both b = c and f = g then the MF is triangular. An special case of triangular MF, all the
middle pints could meet, b =c = f = g.

u X

h _———

|
|
|
|
|
|
gc i1 d
Figure 5.22. The nine points that represent an IT2 FS (adapted from () Mendel & Wu, 2010)).

5.5.1.3.3. The Concept of centroid of an interval type-2 MF

An IT2 MF can be approximated with a set of N IT1 MFs located at the points x; and with upper and lower
bounds pyyr and pyr as illustrated on Figure 5.23. Then, the centroid of the IT2 MF is calculated as the
centroid of the N IT1 MFs. Note that the accuracy of the calculation depends on N.
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Figure 5.23. A discretized IT2 MF.

The centroid of a T1 MF, R, discretized in N points is located at x = c. This point is defined in Definition
29.

Definition 29. The centroid of a type-1 fuzzy set R is defined as:
EDXEENTIED)

N BT (>:22)

Similarly, the centroid of an IT2 MF discretized in N intervals is located at the interval [¢;, ¢,-]. This interval
is defined in Definition 30.

Definition 30. The centroid of a type-2 fuzzy set R is the union of the centroids of all its embedded type-
1 fuzzy sets R,:

Cp = U c(Re) = [ci(R), cr(R)]

VRe
a(R) = r\%?c(Re) (5.23)

cr(ﬁ) = r\rflgf c(R.)

In order to exemplify this concept, the centroid of the IT2 MF in Figure 5.23 is presented. Note that we
consider a 4 points discretization of the IT2 MF for simplicity in this example, but a different discretization
has been used in our experimental evaluation. The IT2-MF is discretized into the following 4 IT1 MFs:

x1 =4,u =1[0,0.25]

x, = 8,1 =[0.48,0.75]
x3 = 14,u = [0.3429,0.6]
x, = 18,u =10,0.2]

(5.24)

Table 5.2 summarizes all the possible weighted averages defined in Equation (5.22). Since the
discretization number is 4 and there are two boundaries for each MF in this example, there are 16 (2V)
weighted averages. Note that the centroid of the IT2 MF in Figure 5.23 can be approximated by finding
the minimum and maximum values of the weighted average, c, in the last column in Table 5.2 as defined
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in Equation (5.23). Therefore, ¢ = [min(c), min(c)] = [8.7874,12.3750]. Note that this is only an
approximation for the centroid of the IT2 MF and in order to find a better approximation, we need to
increase the discretization number.

Table 5.2. Weighted averages of the interval T1 MF.

p(xq) u(xz) p(xs3) p(xy) 4
0 0.48 0.3429 0 10.5002
0 0.48 0.3429 0.2 11.9666
0 0.48 0.6 0 11.3333
0 0.48 0.6 0.2 12.3750
0 0.75 0.3429 0 9.8825
0 0.75 0.3429 0.2 11.1382
0 0.75 0.6 0 10.6667
0 0.75 0.6 0.2 11.6129
0.25 0.48 0.3429 0 8.9856
0.25 0.48 0.3429 0.2 10.4019
0.25 0.48 0.6 0 9.9549
0.25 0.48 0.6 0.2 11.0065
0.25 0.75 0.3429 0 8.7874
0.25 0.75 0.3429 0.2 9.9816
0.25 0.75 0.6 0 9.6250
0.25 0.75 0.6 0.2 10.5556

However, once the value of N is increased to find better approximations of the centroid, the number of
weighted averages grow exponentially, and the computational time will then become unsuitable for the
self-adaptation feedback loop application. Karnik and Mendel proposed an iterative algorithm to find the
lower and upper bounds of centroid. This algorithm, called KM (N. N. Karnik & Mendel, 2001), dramatically
reduces the number of iterations to find the solutions. The KM algorithm is further enhanced in (JM
Mendel, 2009).

Table 5.3 presents the results of the centroid of the IT2 MF in Figure 5.23 calculated using the KM
algorithm with different values of discretization, N. The number of iterations to find the value of the
centroid with respect to a naive calculation as in Table 5.2, the KM algorithm and its enhanced version. As
it is evident in this table, the enhanced KM algorithm enables the efficient calculation of the centroid even
with a large N. As a result, the enhanced version of the KM algorithm is adopted here to calculate the
centroid of IT2 MF used in the IT2 FLS for adaptation reasoning. For details of the KM algorithm, we refer
to (N. N. Karnik & Mendel, 2001; JM Mendel, 2009).

Table 5.3. Computational complexity of centroid calculation for our IT2 MF example.

KM Enhanced KM N: .
N Cr iterations | (EKM) iterations 27iterations
4 [9.8824,11.3333] 4 1 16
16 [9.4114,11.9426] 6 1 65536
100 | [9.3870,11.9615] 6 2 1.2677e + 30
256 | [9.3865,11.9623] | 7 2 1.1579 + 77
1024 | [9.3864,11.9623] 8 3 > 8.9885¢e + 307
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5.5.1.4. Fuzzifier

The functionality of the fuzzifier in IT2 FLS (cf. Figure 2.3) is to map a crisp input (x4,x, ..., x,) € X; X
X, ... X X, into their corresponding IT2 MFs to produce a set of IT1 FSs. This mapping is needed to activate
rules that are specified in terms of linguistic words. The inputs to the FLS prior to fuzzification module (cf.
Figure 5.16 and Figure 2.3) may be certain (e.g., perfect measurement and noise free) or uncertain (e.g.,
noisy measurements). IT2 FLSs can handle either kind of measurement (JM Mendel, 2007). Note that the
number of sets depends on the number of inputs and the number of MFs. First, we must state how the
numeric inputs u; € U; are converted to fuzzy sets (with a process called "fuzzification" (Jerry M. Mendel
et al., 2006)) so that they can be used by the FLS, see the input-output of the fuzzifier module in Figure 2.3.
A fuzzification can be defined by a transformation F: U; — U}, where F(u;) = R; and U; is a set of all FSs
that can be defined on U;. In this thesis, we use singleton:

1 x=uy

KR = {0 otherwise (5.25)

In order to show the methodology to implement the subsystems of an IT2 FLS, we use a concrete example
here. We present the whole process of an IT2 FLS step by step through this example. This process can be
viewed as a mapping from crisp inputs to crisps output (cf. the solid path in Figure 2.3): from fuzzification,
all the way down to the defuzzification. Note that this mapping can be delineated as y = f(x).

Let us consider a normalized crisp input (xq,x;) = (40,50) € X; X X, of the IT2 FLS whose MFs with
respect to the two elements of the input are illustrated in Figure 5.24 (corresponds to X;) and Figure 5.25
(corresponds to X;). Figure 5.24 illustrates the MFs of the first input (i.e., x;), and Figure 5.25 shows the
MFs of the second input (i.e. x;).
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Figure 5.24. IT2 MFs for input x; (workload).
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Figure 5.25. IT2 MFs for input x, (response time).

First, the input needs to be fuzzified into the MFs. It can be seen in Figure 5.24 and Figure 5.25 that the
first element of the input (i.e., x,) is fuzzified into two MFs (i.e., L, M) and the second element of the input
(i.e., x,) is fuzzified into three MFs (i.e., M,S,VS). Figure 5.26 illustrates the non-null fuzzified sets
regarding the former element of the input (i.e., x;) and Figure 5.27 shows the non-null fuzzified sets with
respect to the latter element (i.e., x5).
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Figure 5.26. Non-null fuzzified sets for x;.
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Figure 5.27. Non-null fuzzified sets for x,.

Figure 5.28 illustrates a black box representation of the fuzzifier module in Figure 2.3. As discussed earlier,
the fuzzifier functionality is to transform crisp inputs to fuzzy output in order to use them in the inference
process. In the inference process, these fuzzified sets are used to trigger appropriate rules in the rule base.
We describe the inference process in the next section.

Interval Type-2
Fuzzy Output

x1 \
N (L: [0.3797,0.5954]
Crisp Input M:[0.3844,0.5434]

VL,H,VH: [0,0]

(x1,x2)=(40,50—p Fuzzifier

X2 M: [0,0.1749]
S: [0.9377,0.9568]
VS:[0,0.2212]

\I,F: [0,0]

Figure 5.28. The fuzzifier module: maps crisps inputs into interval type-2 fuzzy sets outputs.

5.5.1.5. Inference Engine

The functionality of the inference engine module as in Figure 2.3 is to map the set of IT1 MFs (resulting as
output from the fuzzifier) into the consequents of the fired rules. Consequently, the output is a set of IT2
MFs. Note that the number of output MFs is equal to the number of fired rules. Let us continue with our
running example. The complete list of rules is summarized in Table 5.4. Note that in this example, the
antecedents represent different situations that may happen at runtime and consequent of the rules
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determine the control action. In the evaluation section, however, we deal with a set of rules with interval
type-1 fuzzy output. In this example, as discussed in the previous section, according to the provided input,
(x1,x3) = (40,50), two non-null fuzzified sets for the antecedent x; and three non-null fuzzified sets for
the antecedent x, are derived, see Figure 5.28. As a result, 6 rules are fired (or activated), see highlighted
rows in Table 5.4.

Table 5.4. Fuzzy rules with singleton consequent.

Antecedents Consequent
Rule

() Workload R_esponse Nodes

(x1) time (x3) (y)
1 Very low | Instantaneous -1.6
2 Very low Fast -1.4
3 Very low Medium 0
4 Very low Slow 0.6
5 Very low Very slow 1.4
6 Low Instantaneous -1.3
7 Low Fast -1.1
8 Low Medium 0.4
9 Low Slow 1
10 Low Very slow 1.6
11 Medium | Instantaneous -1.6
12 Medium Fast -0.9
13 Medium Medium 0.6
14 Medium Slow 1.1
15 Medium Very slow 1.5
16 High Instantaneous -1.8
17 High Fast -1.4
18 High Medium 0.4
19 High Slow 1.1
20 High Very slow 1.4
21 | Very high | Instantaneous -1.9
22 | Very high Fast -1.2
23 | Very high Medium 0.5
24 | Very high Slow 1
25 | Very high Very slow 1.6

Figure 5.29 illustrates the inference process for the Rule #9. Here, y represents the rule output and F°
represents its firing value. Figure 5.30 shows a black box representation of the inference module in
Figure 2.3 with respect to the 6 activated rules. The functionality of the inference module is to transform
the fuzzified inputs to the fuzzy output. However, this output needs to be processed in order to produce
a crisp output to be used in the feedback control loop. We describe the output processing in the next
section.
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Figure 5.29. The inference engine: calculation of the firing degree for Rule #9 (inference operation: product).
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Figure 5.30. The Inference engine module: maps IT2 FSs inputs into IT2 FSs outputs.

156



5.5.1.6. Output Processor

The output-processing module aggregates the IT2 FSs of the fired rules to obtain the crisp output of the
T2 FLS. The output-processing module is the main difference between T1 FLSs and T2 FLSs. According to
Figure 2.3, the output-processing module is divided into the type-reducer and the defuzzifier sub-
modules. However, in T2 FLSs, there is no type-reducer (cf. Figure 5.16) since the output of the inference
is of T1 FSs and they only need to be defuzzified.

5.5.1.6.1. Type-reducer

The type-reducer aggregates IT2 FSs into an IT1 FS called the type-reduced set (note the transition
between type-2 to type-1). The number of input fuzzy sets matches the number of fired rules, while there
is only one output- the type-reduced fuzzy MF. This MF is calculated using the KM algorithm (N. N. Karnik
& Mendel, 2001), see Section 5.5.1.3.3. More specifically, the inputs to the algorithm are the fuzzy sets
F' and y* which are the output of the inference engine. Note that [ is the index of the active rules.

5.5.1.6.2. Defuzzifier

Since the processes (in this research they are component connectors) that are under the control of the
FLSs can only be controlled with crisp numbers, the output of the FLSs are required to provide crisp
numbers. Since the output of the type-reducer is still fuzzy sets (i.e., interval T1 FS), we need another
module to transform this fuzzy set to a crisp output. The defuzzifier transforms the type-reduced fuzzy set
into a crisp output. It is the simplest subsystem of the FLS in terms of complexity of computation; the crisp
output value is calculated as the average of the upper and lower bounds of the type-reduced set.

Type-reduced set

Defuzzified output

Interval Type-2
Fuzzy Output T

emm————————

r 1 1 :>
21012 Y ————>

@a#a:y=o.4,F8:[:o,o.1o41] \ Interval Type-1 \ 2 1012 Y
o) Fuzzy Output oY Crisp Output

9
Rule #9: y=1, F :[0.3560,0.5697]

Y, (40,50)=
Iy, (40,50),y, (40,50)]
=[0.9296,1.1809]

Y(40,50)=
(0.9296+1.1809)/2=
1.0553

10
Rule #10: y=1.6, F :[0,0.1317]

Type-reducer Defuzzifier

10
Rule #13: y=0.6, F :[0,0.0950]

10

Rule #14: y=1.1, F :0.3605,0.5199]
10

w #15:y=1.5,F :[0,0.1202]

Figure 5.31. The output processing: aggregate interval type-2 fuzzy sets and transforms them into a crisp output.
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55.1.7. Fuzzy logic control surfaces

Fuzzy logic systems are entirely defined by their fuzzy rules and their corresponding membership
functions. The normalized control surfaces regarding the running example is presented in Figure 5.32.
Note that this surface shows the output of the following equation:

[Y, Yu YT] = f(X) (526)

, for all inputs x throughout the domain of input fuzzy sets.
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Figure 5.32. Output control surface (a), confidence interval (i.e., y,, y ) (b) and their differences (i.e., y,. — yl) (c).
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55.1.8. Benefits of Using IT2 FLS over T1 FLS

As shown in Section 5.5.1.7, the output of IT2 FLS is a boundary and a crisp number rather than a hard-
threshold as in T1 FLS (Wu, 2012). Therefore, the control action as the output of the FLS can be more
flexible providing a boundary, see the dashed lines in Figure 5.31. For instance, if the system requires a
high performance, the decision can be made based on the upper boundary, i.e. [y,-(40,50) = 1.1809].
Alternatively, if the system let say requires saving cost, the decision can be made based on the lower
boundary, i.e. |y;(40,50) = 0.9296]. In addition, if the system needs to achieve a compromise in user
experience and cost, the decision can be made based on any value in the boundary. This flexibility and the
ability to handle conflicting rules are the key benefits of IT2 FLSs over T1 counterparts that motivated us
to choose them for this research.

5.5.2. Running example

We use a running example to highlight the research challenges. Let us consider a Web server (F Chauvel
et al., 2010) built from the following components: a listener component (L) reads HTTP requests at a port
and transmits them to a data server component (DS) that returns the corresponding HTTP responses; A
cache component (C) reduces the response time by caching resolved requests; A filter component (F)
detects harmful requests (e.g. SQL injections); and a dispatcher component (D) enables the combination
of several data servers. In Figure 5.33, four possible architectural configurations (also known as modes
(Hirsch, Kramer, Magee, & Uchitel, 2006)) of the Web server (i.e., Idle, Normal, Effort, and Best Effort) are
selected to illustrate this mode switching as a result of the tradeoffs between environmental conditions
(e.g., request load) and system quality (e.g. performance index). The I/dle mode as a default mode only
includes one listener and one data server to handle the low workload (i.e., w < L). As soon as the
workload increases to a certain limit (i.e., L < w < M), the system switches to the Normal mode. If the
workload increases even more (i.e. M < w < H), the system will switch to the Effort mode, where two
data servers are both cached and filtered. For heavy loads of request (i.e. w > H), the system will switch
to the Best Effort, where a group of three data servers is cached and filtered.

Normal

L|-—|F|—-|C|-—|DS|

rw>H—

1 A
M<w<H L<w<M
Y. L

r—L<w<M—

w<L—

L<w<M—
| ——w<L—
y ’V A

w>H w>Hp
1l

Idle

Figure 5.33. Architectural mode switching in Web server (adapted from (F Chauvel et al., 2010)).
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5.5.3. Research challenges

As shown in Figure 5.33, environmental conditions (i.e., w) or quality index of the system govern
adaptations of the system at runtime. The adaptation logic utilizes some policies (also known as
adaptation strategies (S.-W. Cheng & Garlan, 2012), actions (Sykes et al., 2008) and rules (Batista et al.,
2005)) to reason about architectural mode switching. These policies are specified in terms of event-
condition-action (ECA) rules (as in (Batista et al., 2005; Fleurey & Solberg, 2009; D Garlan et al., 2004;
Sykes et al., 2008)). However, these rules are subject to different uncertainties, which makes the
adaptation analysis error prone. For instance, a “high” workload (cf. Figure 5.33) could mean one range
of values to one person, though possibly a very different range of values to someone else, and this can
vary over time. More precisely:

e Challenge 1. Different stakeholders often recommend different adaptation policies to the same
condition resulting in rules having the same antecedents, but different consequents. As a result, rule
application leads to uncertain consequents.

e Challenge 2. Qualitative values mean different things to different people (e.g., L, M, H). If we ask
users about the parameters of the membership function (e.g., center, spread) representing the
imprecise values, we are likely to get different answers. This leads to uncertain antecedents and
consequents.

The key challenge with respect to the above approach is the ignorance of uncertainty in the adaptation
reasoning process. The uncertainty in the “adaptation rules” and “membership functions” challenges the
system ability in making right adaptation decisions. The latter challenge is described, in detail, in the next
section.

5.5.4. Overview of autonomous adaptation reasoning

In this thesis, the autonomous reasoning process, discussed in Section 5.2.2, is realized using IT2 FLS. The
background chapter (i.e., Chapter 2) contains a more detailed description of IT2 FLSs. Figure 5.34 shows a
self-adaptive software within which the reasoning modules are replaced with an IT2 FLS. The reference
model we borrowed is FORMS (Danny Weyns et al., 2010). Based on this model, the base-level software
system is under the control of the meta-level reasoner. In this thesis, we consider component connectors
that are adapted by a mode-switching mechanism (see Chapter 6). In the meta-level, we realized the IBM
reference model for autonomic systems called MAPE-K (JO Kephart & Chess, 2003). As depicted in
Figure 5.34, users specify the adaptation logic in the form of if-then rules and the environment comprises
the components that interact with the connector. The details of the autonomous reasoning are described
in Section 5.2.2.
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Figure 5.34. High-level view of autonomous fuzzy reasoning.

We now describe the high-level behavior of the autonomic controller that we have realized for connector
adaptation. The controller monitors the performance of the connector under control as well as the
number of requests at certain observation intervals. These inputs, after smoothing, are fed to the
reasoning module (i.e., the FLS). The reasoning module derives the appropriate connector mode and feeds
that to the execution module, which enacts the mode physically to the running system by throttling
operations executable on the runtime environment. The control loop is closed by starting the next control
loop after an appropriate time has been elapsed (i.e., control interval). In Sections 5.5.5 and 5.5.6, we
propose a method for constructing the fuzzy-based adaptation reasoning mechanism and in
Section 5.5.6.4, the reasoning logic behind it will be described.

In the remainder, we describe a method for designing the adaptation reasoning operating at the heart of
the self-adaptation mechanism.

5.5.5. Adaptation knowledge elicitation

In this research, fuzzy membership functions for adaptation rules (i.e., adaptation policies) must be
derived from data that were collected from a group of users of the connector under study. The principal
stages of the method that we describe here are initially proposed in (J Mendel & Wu, 2010; JM Mendel,
Karnik, & Liang, 2000; JM Mendel, 2001) as a generic methodology and adapted for fuzzy knowledge
elicitation in several different application domains, e.g., (Jamshidi et al., 2014; Solano Martinez, John,
Hissel, & Péra, 2012; Solano Martinez, 2012). In this thesis, we extend and adapt this methodology for
adaptation knowledge elicitation.

In Section 5.5.3, we explained that because words mean different things to different people, they are
uncertain. For the formulation of adaptation policies, we use linguistic words. As a result, fuzzy sets can
be adopted for a word that has the potential to capture its uncertainties. IT2 FSs are characterized by its
FOU and, therefore, have the potential to capture word uncertainties. In this section, we explain two
methods for designing IT2 FS models for linguistic words in adaptation policies: the first for people who
are knowledgeable about fuzzy logic and the second for non-experts in fuzzy logic.

161



A number of different methodologies for collecting data from a group of experts and mapping that data
into the parameters of T1 MFs have been reported in several works, e.g., (Klir & Yuan, 1995).
Unfortunately, none of these approaches is able to transfer the uncertainties about collecting word data
from a group of experts into a T1 MF, because T1 FSs do not have enough degrees of freedom to represent
this uncertainty.

In this chapter, all methods require that:

1. A continuous scale is considered for each variable. For the metrics that we choose for adaptation
reasoning most of the times a natural scale exists, e.g. as in workload, response time, end-to-end
latency, etc.

2. Avocabulary of qualitative (linguistics) words is produced that covers the entire scale.

A notable issue with the methodology we present here is whether or not data collected on one scale for
a specific application can be rescaled on a different scale for (i.e., transferred to) another application (J
Mendel & Wu, 2010). The probability elicitation literature (e.g., O’'Hagan et al. (2006)) indicates that data
collection is sensitive to scale and is application (context) dependent.

For adaptation reasoning, a designer begins by forming a vocabulary of application dependent words, one
that is thorough enough to ensure that a person will feel linguistically comfortable interacting with the
adaptation reasoner. This vocabulary must include subsets of words that each expert expects together to
cover the scale, let us say [0,10]. Redundant words and their coverage are not issues in this methodology,
although they are important issues when designing an adaptation reasoner. For example, if—then rules
are usually only created for a small subset of words that cover the whole scale in this manner, keeping
the number of rules as small as possible.

5.5.5.1. Eliciting Adaptation Knowledge from Knowledgeable Experts in Fuzzy

From a high-level perspective, the method we describe here has the following steps:

1. The data reflecting the uncertainties about a word are collected from a group of experts to form
the FOUs related to each individual linguistic.

2. AnIT2 FSfor a word is defined as an aggregation of FOUs that is related to the word;

3. The aggregated FOU is mathematically modeled.

Definition 31. Uncertainty about a qualitative word regarding architecture adaptation is of two kinds:
(1) intra-uncertainty, which is the uncertainty a user has about the qualitative word in an adaptation
policy; and (2) inter-uncertainty, which is the uncertainty that a group of users has about the qualitative
word used in an adaptation policy.

Itis shown that intra-uncertainty about a qualitative linguistic, W, can be modeled using an IT2 FS, w (pD),
wherei = 1, ..., ny, see () Mendel & Wu, 2010; JM Mendel, 2001).

An example of such an FOU is depicted in Figure 5.35. The width of the FOU that is roughly provided by a
person is associated with how uncertain the person is about a specific qualitative linguistic. A thin FOU
means a person has a small amount of uncertainty, while a thick FOU means the person has a large amount
of uncertainty regarding the linguistic.
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Figure 5.35. FOU of person 1 for the linguistic "Medium" regarding the workload.

In principle, the FOUs could be extracted from a group of experts. In practice, and specifically in the
domain of self-adaptive software, this may be very difficult to do because such an expert must be a fuzzy
expert and understand the concepts of FS, MF, and FOU. In the domain of software and specifically users
or administrators, most experts are not knowledgeable about fuzzy concepts. For such a situation, we
describe another methodology in the next section to complement this. Here, it is assumed that it is
possible to obtain such a FOU.

An IT2 FS captures “first-order uncertainties,” whereas a T2 FS that has non-uniform FOU captures first-
and second-order uncertainties, see the definitions in the background chapter (i.e., Chapter 2). Based on
our experience from collecting information from experts regarding adaptation policies, they like the
guestions to be as simple as possible in order to provide their opinions. In a number of occasions where
we have asked experts to assign a weighting function to their drawn FOU, it was almost impossible to
collect appropriate data. The uncertainty that exists about the FOU is categorized as a first-order
uncertainty, and the uncertainty about the weight that might be given to each element of the FOU,
constructing a three dimensional MF, is considered to be a second-order uncertainty (Jerry M. Mendel &
John, 2002). Note in this thesis, the focus is entirely on the first-order uncertainty of a FOU. Even though
it is not known how to collect data for second-order uncertainty (J Mendel & Wu, 2010), the reasoning
based on T2 FLSs is computationally expensive and not affordable for runtime analysis in self-adaptive
software.

The FOUs regarding the adaptation rules are collected from a group of experts. It is important to collect
such FOUs from a representative group; for example, a specific software application may only involve
users, technical administrators, architects, designers and so on. An example of a FOU that is extracted
from three people (i.e., p1, p, and p3) is depicted in Figure 5.36 for the linguistics term “low” response
time. The constraints that each expert must follow when sketching their FOU are that the upper bound
cannot exceed 1, the lower bound must not be less than 0, the lower and upper bounds cannot change
direction more than one time, and the FOU cannot extend outside of the [0, 10] (or some other normalized
boundary) domain for the primary variable. Each FOU models the intra-uncertainty about a word. The
collection of FOUs models the inter-uncertainties about a word.
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Figure 5.36. FOUs from three experts regarding the linguistic “Medium”.

Definition 32. Inter-uncertainty about an adaptation rule linguistic can be modeled by means of an
equally weighted aggregation of each person’s word FS, I/T/(pl-) (i =1,2,...,ny), where

W) = {(x 1w (xlp)). i = 1,2,...,nw}

(5.27)
ww (xIpy) = law (x|p), by (x|p)] € [0,1]

Suppose one begins by assuming that inter-uncertainty about a word can be modeled by means of a
weighted aggregation of each person’s word FOU, where the weight represents a degree of belief
associated with each person. This suggests that a degree of belief is known or can be provided for each
person, which may or may not be reasonable. Consider the following three possibilities:

1. All experts are equal and the same weight should be assigned to each FOU that is provided by each
person.

2. Experts are treated differently, since some experts may have more knowledge about the meaning of
a linguistic than others. For instance, an architect may be more knowledgeable about the performance
of a system, and a system administrator may know more about the external environment of the
system.

3. Experts are treated differently, except now it is possible that a subject’s credibility depends on the
value of primary variable x € X, that is, some subjects may be more knowledgeable about a word for
certain regions of the variable x than other subjects.

Note Scenarios 2 and 3 require additional information as opposed to Scenario 1, and that additional
information will itself be uncertain, leading to even further kinds of uncertainty; hence, in this thesis
Scenario 1 is focused on exclusively.

There are several ways to aggregate a group of expert’s equally weighted FOUs. Mathematical operators
such as “union”, “intersection”, and “addition” are operators to facilitate this aggregation. However, in
this thesis, “union” is used for several reasons. First, the union operator preserves the commonalities as
well as the differences across FOUs, while the intersection preserves only the commonalities. In this way,
the intersection operator abandons a lot of useful information. Aggregation by intersection leads to an
FOU that only shows total agreement across all experts regarding the adaptation policies. If a new expert’s
FOU does not intersect the existing aggregated FOU, then the resulting FOU would be empty. Second, the

addition operator destroys the underlying requirement that the FOU of the resulting FS must be in [0, 1].
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Therefore, the secondary MFs of W can be expressed as:

k() = | Juw Gl = | Jlaw Gilpo, b Gelpo]
i=1 i=1

LMF(W) = gz () = _min _ag (xlp;) (5.28)

UMF(W) =i (x) = max_bg(xlp;)
l—1,...nW
For example, the three FOUs depicted in Figure 5.36 for the linguistic “Medium” can be aggregated as in
Figure 5.37.

A U= e (X)

1 UMF("Medium")

Figure 5.37. Aggregation of the three FOUs regarding the linguistic “Medium”.

The aggregated FOU for the example in Figure 5.36 is depicted in Figure 5.38. Note that the aggregated
FOU is bounded from above by UMF ("Medium") and from below by LMF ("Medium"), as in Figure 5.38.
Regardless of how many experts are asked to participate in data collection, the union of their FOUs have
lower and upper bounds, see Definition 23. As more experts are added to the data, the shapes of these
boundaries may change.

A U= Ly (X)

1 UMF("Medium")

LMF("Medium") L x
»
0 10

Figure 5.38. Aggregated FOU regarding the linguistic “Medium”.

Figure 5.39 depicts a trapezoidal function approximation to the UMF and LMF of the FOU in Figure 5.38.
The trapezoidal function is characterized by the four parameters a, b, ¢, and d. The triangular function is
characterized by the three parameters e, f,and g. As the aggregated word fuzzy set W has an FOU
associated with it, namely FOU (W), see equation (5.28), we denote the approximated fuzzy set by W
and its associated FOU by FOU (W):
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W = {Cx, uw ()}

o (x) = [Ew(x), ﬁW(x)] (5.29)

Note that the closer ug (x) and uy (x) are to the uy(x)and fiy (x) over x, the closer FOU(W)
approximates FOU (W).
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Figure 5.39. Trapezoidal approximation of the UMF, and triangular approximation of the LMF of the linguistic “Medium”.

In summary, the methodology starts off by extracting the FOUs from each expert (i.e., W (p;)), then the
union of FOUs is calculated (i.e., W), and finally an approximation of the linguistic fuzzy set (i.e., W) is
derived. This approximation utilizes data extracted from experts.

The benefits of this methodology are as follows:

e The union of the person FOUs (the data) establishes the shape of the FOU directly.

e All of the data extracted from the experts are used so that no information is lost.

e Ifall uncertainty disappears (i.e., all experts provide the same MF (i.e., a T1 FS), then the IT2 FS reduces
to a T1 FS model.

However, this method has its own disadvantages. This method requires experts to be knowledgeable
about fuzzy theory. For example, if the method introduces uncertainties because the experts do not
understand what an FOU is, then the method’s uncertainties become intertwined with the experts’
uncertainties about the word, and this introduces another source of uncertainty. As a result, we introduce
a more suitable methodology for extracting adaptation policy knowledge from a group of experts that in
general might not understand fuzzy theory.

5552 Eliciting Adaptation Knowledge from Experts who are not Knowledgeable in Fuzzy

In this section, we describe a methodology for eliciting adaptation knowledge considering that the experts
may not know about the very detail of fuzzy logic and are not be able to suggest FOUs by themselves.
From a high-level perspective, the method we describe here has the following steps:

Interval end-point data about an adaptation policy linguistic is collected from a group of experts.
The mean and standard deviation are established for the collected data.

The mean and standard deviation statistics are mapped into a parametric T1 fuzzy set.

A blurring parameter is used to transform the T1 FS to the corresponding IT2 FS.

el
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The interesting point here is that this approach is similar to statistical modeling in which first the
underlying probability distribution is chosen and then the parameters of that model are fitted using data
and a meaningful design method, for example the method of maximum likelihood.

5.5.5.2.1. Methodology for collecting interval end-point data

The methodology is started by determining a normalized scale and creating a vocabulary of words that
covers the entire scale. Then the following critical two steps are performed: (1) randomize the linguistics®
and (2) survey a group of experts to provide end-point data for the linguistics on the normalized scale.

To better describe the methodology, we start by explaining a concrete example of data collection for an
adaptation reasoning problem. In this example, two variables need to be specified by qualitative
linguistics, i.e., workload and response time. Linguistic variable representing the value of workload was
divided into five levels: very low (VL), low (L), medium (M), high (H), and very high (VH). Similarly, linguistic
variable representing the value of response time were divided into five levels: instantaneous (1), fast (F),
medium (M), slow (S), very slow (VS). We also asked 10 experts to locate an interval for each linguistic
label for workload and response time in [0,100]. For the labels, we received 10 different intervals from
the 10 experts. We then calculated the mean and deviations of the two ends in Table 5.5.

Table 5.5. Data regarding Workload and Response time labels.

Linguistic Means Standard Deviations
Start (a) End (b) Start (o) End (0})

Very low 0 27 0 8.23

','g Low 22 41.5 7.15 7.09

:‘6‘ Medium 36.5 64 5.80 3.94

= High 61 82.5 4.59 6.77
Very high 78 100 6.32 0

o | Instantaneous 0 7.2 0 5.20

£ Fast 6.1 20 4.07 5.27

& | Medium 18.2 415 5.59 8.51

§ Slow 38.5 63.5 7.09 9.44
« Very slow 60 100 7.82 0

Because the data that was requested for each linguistic was a range, and each range is defined by the two
numbers, i.e., start and end points, the survey boiled down to sample statistics for the two numbers, i.e.,
their mean and standard deviation. The two end-point standard deviations represent the uncertainties
with respect to each linguistic. Note that for each linguistic, standard deviations are not the same for the
start and end.

The data regarding workload and response time in Table 5.5 are respectively visualized in Figure 5.40 and
Figure 5.41. For each linguistic, there is a heavy solid box between two points. The solid box is located at
the mean start and end for each linguistic. The hatched box to the left of the left-hand side of the solid
box and to the right of the right-hand of it each is equal to one standard deviation, listed in Table 5.5 for
the mean start and ends, respectively.

1 Note that we reordered the linguistics in order to reduce the threat of ordering effects. More precisely, experts
cannot correlate their word-interval ends from one word to the next when it is randomized.
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Figure 5.40. Workload linguistics with their intervals and uncertainties.
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Figure 5.41. Response time linguistics with their intervals and uncertainties.
Based on the visualized data in Figure 5.40, a number of observations can be made:

1. The hatched portions of the intervals for each label represent its uncertainty.

2. Some linguistics such as “Low” (see Figure 5.40) have relatively equal uncertainty for both end points,
while most of the linguistics have unequal uncertainty for their end-points.

3. There is no gap between the mean-values of the linguistics, implying that the selection of linguistics
for the two parameters were suitable. If for a parameter there was a gap between the mean-value
regarding one or more linguistics then either another word should be inserted between them or they
should be combined.

4. Experts unanimously agree that “very low” (see Figure 5.40) and “instantaneous” (see Figure 5.41)
start at zero, and there is almost no uncertainty about this. The same observation can be made for
the linguistics “Very high” and “Very slow”.

5. The 5 linguistics are appropriately covered by the interval [0,100].

6. Theintervals between the mean start and ends are not of equal size and there is more (or less) overlap
between some linguistics than between other ones.

7. Itis possible to cover the [1,100] interval with four labels (by omitting “Low” in Figure 5.40 and “Fast”
in Figure 5.41) and this is only possible because of linguistic uncertainties.

8. Linguistic uncertainty is useful because it lets the [0,100] interval be covered with a smaller number
of labels than without it.

9. Linguistics mean different things to different experts.
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Note that the interval end-point data that are collected from a group of experts are random data.
Consequently, for each linguistic interval the following four statistics can be computed: sample mean and
standard deviation of the left end, a and o,, and sample mean and standard deviation of the right end-
point, b and gy, see Table 5.5.

5.5.5.2.2. Methodology for data pruning

In this step, data that have been collected from a group of experts (see Section 5.5.5.2.1) are pre-
processed in a way that the data are pruned by omitting unnecessary and unwanted data and then some
statistics are computed for the remaining intervals. After data intervals [a;, b;] have been collected from
a group of n subjects (i = 1,...,n) for a linguistic, two major steps needs to be done: (1) pruning the n
data intervals, and (2) calculating statistics for the data intervals that remain after the pruning step.

Pre-processing the n interval end-point data [a;, b;] involves four stages: (1) bad data pruning, (2) outlier
pruning, (3) tolerance-limit pruning, and (4) reasonable-interval pruning. Because of the data pruning,
some of the n interval data are discarded and there remain m < n intervals.

Stage 1. Bad Data pruning. During data collection, some experts do not pay enough attention to the
instructions and so provide useless results. For pruning this type of useless data, the following constraints
are used:

0<a; <100
0<b; <100 (5.30)
a; < bi

If interval ends satisfy the constraints, then an interval is accepted; otherwise, it is rejected. After bad data
pruning, there remain n’ < n data intervals.

Stage 2. Outlier pruning. Such processing uses boxplots to identify and then eliminate outliers - outliers
are points that are unusually large or small. After outlier pruning, there remain m’ < n' data intervals
with the following data statistics: a’, o, (mean and standard deviation of the m' left end-points), b’, g},
(mean and standard deviation of the m' right end-points), and a;’, 0q,, (mean and standard deviation of
the lengths of the m’ intervals).

Stage 3. Tolerance Limit Pruning. If a data interval [a;, b;] and its length L; satisfy the following conditions
(Walpole, Myers, & Myers, 2011), it is accepted, otherwise it is rejected.

a; €la' —koy,a + koy]

b, € [b' —ko,,b" + ko] (5.31)
Li€la) —kogy,a," +kog, ]

, Where k is tolerance factor, which is determined as explained in (Walpole et al., 2011). For instance, if
k = 3.379 then we can say that with 95% confidence the given limits contain at least 95% of the expert
data intervals regarding adaptation knowledge.

After this stage, there remain m"’ < m’ < n data intervals with the following data statistics: a’, o, (mean
and standard deviation of the m'’ left end-points), b’, g;,, (mean and standard deviation of the m'’ right
end-points), and a;’, Oayr (mean and standard deviation of the lengths of the m' intervals).
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Stage 4. Reasonable-Interval Pruning. We only need to keep overlapping intervals. More formally, if there
issuchaa’ <m < b'thata; < m < b; for alli = 1,...,m" then the interval is accepted otherwise it is
discarded. As a result, there finally remain m data intervals (1 < m < n).

Now we have the pruned data and we need to turn them to useful information for transformation to fuzzy
sets. To each of the m remaining data intervals, a probability distribution is assigned. Then statistics are
calculated for each interval using the probability distribution and the interval end-points. These statistics
will be used later in the next section. According to (Dubois, Foulloy, Mauris, & Prade, 2004), uniform
probability distribution is the most appropriate distribution when we only have incomplete knowledge
about the underlying data.

If a random variable X is uniformly distributed in [a, b] then (Walpole et al., 2011):

mean(X) = (a+ b)/2

5.32
oX)=(b—-a)/Vv12 ( )

For each of the data interval [a;, b;], data statistics Sy, ..., S, are calculated as follows:
Si = (mean;(X), 0;(X)) (5.33)

These statistics are then used for probability-to-fuzzy transformation in the next section.

5.5.5.2.3. Methodology for Probability to Fuzzy Transformation

The methodology for transforming the data to type-2 fuzzy sets is originally introduced in (JM Mendel,
2008) and then the enhanced version of it is presented in (J. M. Mendel & Coupland, 2012). This method
is known as the interval approach (IA). In this section, we first briefly introduce this methodology and then
present a more simplified methodology for the transformation of interval data to IT2 FSs. Note that these
methodologies only make use of triangular T1 MF, left shoulder T1 MF, and right-shoulder T1 MF.

1. Transformation using IA Approach

Step 1. Establish and Compute FS Uncertainty Measures. Although many choices are available for
uncertainty measures of a T1 FS (Klir & Yuan, 1995), the mean and standard deviation of T1 FSs are used
for this purpose, see Table 5.6.

Table 5.6. Mean and standard deviation for the T1 MFs (JM Mendel, 2008).

Name Mean and Standard Deviation

meanyy = (a+ b)/2
our = (b — a)/Z\/g

Symmetric triangle

meanyr = (2a + b)/3

Left-shoulder trapezoid 1 1
P Omp = (E (a+b)?+ 2a2> — meanyr?)2

meanyr = (2a + b)/3

1 2 2,1
Our = (g (a’' +b")% +2a ) — mean' yg°)2
a=L-b
b'=L—-a
mean’ yp = L — meanyp

Right-shoulder trapezoid
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Step 2. Transformations of the data interval into the parameters of T1 FSs. The parameters of a T1 FS are
calculated by equating the mean and standard deviation of a T1 FS to the mean and standard deviation of
a data interval. More specifically, the following equations need to be solved:

mean'yr = mean;(X) (5.34)

. . a'yur = 0;(X)
, Wwhere mean'yr, o'y are calculated using Table 5.6, and mean;(X), ;(X) are computed using (5.32).

The resulting T1 FSs, denoted as Rie, are called embedded T1 FSs, see Background Chapter.

Step 3. Compute an IT2 FS Using the Union of Embedded T1 FSs. The corresponding IT2 FS R can be
computed as:

= i 5.35
R=UL R ( )

, Where Rie is the ith embedded T1 FS derived in the previous step.

2. Transformation using the Blurring Parameter
Let us assume the mean values of the interval ends of the linguistic labels are a and b with standard
deviations g, and gy, respectively. More specifically:

a = mean(a;)

b = mean(b;) (5.36)
oq = o(a;)
op = o(by)

In this methodology, we only make use of triangular T1 MF, left shoulder T1 MF, and right-shoulder T1
MF. Triangular T1 MFs are constructed by connecting: | = (a —a,,0),m = ((a + b)/2,1),r = (b +
0y, 0). Accordingly, trapezoidal MFs are constructed by connecting: (a — a,,0), (a, 1), (b, 1), (b + g}, 0).

As discussed in Section 5.5.5.2.1, there are uncertainties associated with the ends and as a result the
locations of the MFs. For instance, one may imagine a triangular T1 MF in: ' = (a — 0.4 * 0,,0),m =
((a+b)/2,1),r" = (b + 0.7 * g3,0). T1 MFs cannot capture these kind of uncertainties, while IT2 MFs
can handle them suitably. In IT2 MFs, the FOU can be obtained by specifying the UMF and LMF for each
linguistics. Let us consider the blurring parameter 0 < a < 1. Then, we are able to construct the FOU. For
both the triangular and trapezoidal MFs, the locations of UMF and LMF are indicated in Table 5.7.

Table 5.7. Locations of the main points of IT2 MFs.

Triangular Trapezoidal

lyyr = (@ = (1 + @) x g4, 0)
mymr = ((@+5b)/2,1)

Hyyr = (@— (1 + a) xa,,0)
ulyyr = (a — ao,, 1)

rymr = (b + (1 + @) * g3, 0)
liyr = (a— (1 —a) *0,,0)
myyr = ((@+b)/2,1)

rur = (b + (1 —a) *0,,0)

uryyr = (b + aagy, 1)
lryyrp = (b + (1 + @) * gy, 0)
Umr=(@a—(1—a)x0a,0)
ulyyr = (@ + aog, 1)
uryyr = (b — aoy, 1)
Irpyr = b+ (1 —a) *0,,0)
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If we choose a = 0, then an IT2 MF will be reduced to a T1 MF. A blurring parameter &« = 1 implements
FSs with a maximum amount of blur and the widest FOUs. One may also imagine different blurring
parameters, let say a; and ag for each ends, to derive an asymmetric blurring.

5.5.5.3. Evaluation of Adaptation Knowledge Extraction Methodology

In order to evaluate the adaptation knowledge extraction, a dataset was collected from 21 experts? for a
vocabulary of 5 linguistics. The linguistics were randomized in order to avoid the threats regarding effects.
For all linguistics, we asked the following question:

“What are the ends of an interval that you associate with each linguistic? (5.37)
Please provide the answer on a scale of 0 to 10.”

All of the data were collected according to 5.5.5.2.1, were pruned according to 5.5.5.2.2 and were
processed and transformed into IT2 FSs according to the two presented methodologies in 5.5.5.2.3. Note
that the operation details of the data collection including the template for data gathering are presented
in detail in Appendix A.

Table 5.8 summarizes the collected raw data from the 21 experts in the survey. Table 5.9 summarizes how
many data intervals remained in each of the four pruning stages. Table 5.9 also gives the final left and
right end-point statistics that were used to establish the each linguistics’ FOU. These statistics are based
on the m remaining data intervals after stage 4 of pruning.

Table 5.8. Raw data for 5 linguistics w.r.t. workload collected from 21 experts.

Linguistics w.r.t. Workload
Experts | Very low Low Medium High Very high
P1 0 2 1.5 4 35|65 6 9 | 85 | 10
P2 0 2.5 2 5 4 6 6 | 85| 8 10
P3 0 3 25| 4.5 4 | 65| 6 8 7 10
P4 0 3.5 3 4 4 6 6 9 | 85 | 10
P5 0 3 2 4 3 7 7 9 | 85 | 10
P6 0 2 1.5 4 35|65|65| 8 | 75| 10
P7 0 3 2.5 5 45|65 | 6 8 8 10
P8 0 3.5 3 4.5 4 6 5.5 7 7 10
P9 0 1 1 25 | 25| 6 |55[85| 8 10
P10 0 3.5 3 4 35| 7 |65 |75| 7 10
P11 0 11 1 2 -1 4 7 8 8 10
P12 0 |0.001| 1 5 5 6 6 8 | 100 | 100
P13 0 2 1 4 3 7 6 8 7 10
P14 0 1 1 /2001| 2 4 4 | 11 9 10

2 All the experts that we asked for this experiment were PhD students in software engineering whose theses were
on topics related to software architecture, software evolution and self-adaptive software. Note that the experts
were at different stages of their PhDs and located in different countries, including Australia, Canada, Austria, Italy
and United States. To enhance their knowledge about type-2 fuzzy logic, separate training tutorials (each took
around 1 hour and through Skype) were carried out before doing experiment. This tutorial consisted of an
introduction to fuzzy theory, type-1 and type-2 fuzzy set and membership function, the concept of FOU, LMF, UMF,
embedded fuzzy sets and fuzzy logic systems. Note that since they all have experience in web-based application
development, they have a good understanding of workload and response time concerns.
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P15 0 2 2 4 4 6 6 8 8 10
P16 0 4 3 5 5 7 6 9 8 10
P17 0 5 4 6 5 7 6 9 9 10
P18 0 6 4 7 3 8 6 9 7 10
P19 0 05 |05] 15 |15|85 |85 |95 |95 | 10
P20 0 2 1 3 7 6 9 9 10
P21 0 1 0.5 4 6 6 9 7 10

Table 5.9. Remaining data intervals and their mean and standard deviation.

e Pruning stages Left-end Right-end
Linguistic ; ; -
n m m' m| a g, b gy

Verylow (VL) [20| 20| 19 |18 | O 0 |247|1.19

Low (L) 21119 | 19 | 11 |1.59 | 0.66 | 4.23 | 0.61
Medium (M) | 20| 18 | 17 | 17 | 3.85| 0.75 | 6.47 | 0.45
High (H) 20 20 | 18 | 18 | 6.14 | 0.38 | 8.47 | 0.53

Very high (VH) (20|20 | 20 [20] 798|080 ] 10 | ©

Having applied the two transformation approaches introduced in Section 5.5.5.2.3 to the derived statistics
of the data collection, two sets of different FOUs for the workload linguistics were derived. Figure 5.42
represents the FOUs regarding the IA approach, while Figure 5.44 illustrates the FOUs as a result of a
transformation with blurring parameter. Figure 5.43 illustrates the FOUs regarding the IA approach, but
with their embedded T1 MFs. Note that the linguistics are ordered in the figures so that the diagrams start
with left-shoulder FOUs throughout interior FOUs ending with right-shoulder FOUs. Note the differences
between the interior FOUs, as in Figure 5.42 they are shaped with trapezoidal UMFs and triangular LMFs,
while in Figure 5.44 they are shaped with triangular UMFs and LMFs. Note that in this example the number
of linguistics for the workloads is quite low (i.e., 5 words) but the interval [0,10] has been covered by
them. This shows that the number of linguistics in this example is appropriate and we do not need to add
or remove existing words. However, if we need a more efficient reasoner, we can reduce the number of
linguistics to minimum level. For example, the FOUs in Figure 5.42 can be reduced to the following sub-
vocabularies:

(VL,VH),(VL,M,VH), (VL H,VH),(VL,L,M,VH), (VL, L, H,VH), VL, M, H,VH) (5.38)

Similarly, the FOUs in Figure 5.44 can be reduced to the following sub-vocabularies:

(VL,M,VH),(VL,L,M,VH),(VL, M, H,VH) (5.39)

More specifically, each of the sub-vocabularies can be substituted as the existing words to cover the
interval between [0,10]. In the reasoning part, we describe how this reduction will result in a more
efficient reasoning procedure.

Moreover, other potential scenarios may happen in different situations. For example, in one situation, the
designer may choose a smaller number of linguistics that cannot cover the whole interval. In this case, the
designer needs to add more linguistics to the existing vocabulary to accommodate this lack of words. In
other situations, the designer may choose more than enough linguistics. As a result, some of them might
have very similar FOUs. In this case, the designer needs to discard these redundant FOUs.
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Figure 5.42. IT2 MFs of the workload linguistics resulting from the transformation using IA approach.
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Figure 5.43. IT2 MFs of the workload linguistics after the transformation using IA approach with their embedded T1 MFs.
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Figure 5.44. IT2 MFs of the workload linguistics resulting from the transformation using blurring parameter (Blurring here is 0.5).

In order to compare the derived FOUs in an objective manner, we adopted some uncertainty measures,
which are introduced in (Wu & Mendel, 2007). Intuitively, these uncertainty measures convey the
following characteristics of the FOU of a linguistic:

e The centroid calculates the center of gravity for the FOU.

o The fuzziness (entropy) is used to quantify the amount of vagueness in the word represented by the
FOU.

e The cardinality measures the average of membership grades in the FOU.

e The variance of measures FOU’s compactness, i.e. a smaller (larger) variance means the FOU is more
(less) compact.

o The skewness is an indicator of the FOU’s symmetry. This measure is smaller than zero when the FOU
skews to the right, and is larger than zero when it skews to the left, and is equal to zero when it is
symmetrical.

For a more formal definitions and the formulas for calculating the values of these measure please refer to
(Wu & Mendel, 2007).

By an examination of the uncertainty measurement data in Table 5.10 concerning the FOUs created as a
result of the transformation methods, several observations can be made. The fuzziness of the FOUs results
from an IA approach that is higher than the ones that resulted from the blurring approach. This means
that the vagueness of the linguistics represented by the FOU that is derived based on IA approach is
higher. Similarly, the values of variance of the linguistics represented by the FOU that is derived by IA
approach is higher. This is obvious as the FOUs in Figure 5.44 are more compact than the ones in
Figure 5.42. However, the cardinality of the former FOUs are lower than the latter ones. For the other two
measures (i.e., centroid and skewness), no specific differences can be observed.
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Table 5.10. Uncertainty measures of the IT2 FSs of the workload linguistics w.r.t. the two transformation approaches.

Transformation Linguistic Uncertainty Measure
Method Centroid | Fuzziness | Cardinality | Variance | Skewness
VL 17594 | 0.3650 0.2865 4.0249 | 8.6027
L 2.9056 | 0.4095 0.3489 15769 | 0.4944
IA M 5.0643 | 0.4073 0.3452 1.8448 | -1.5161
H 7.3043 | 0.3982 0.3228 1.0712 | -0.0784
VH 9.0226 | 0.3586 0.3045 12233 | -1.6717
VL 1.5449 | 0.1360 0.8069 0.8596 | 0.1023
e L 2.8883 | 0.3667 0.4796 0.6363 | -0.0086
Z i"(')’.'"i 51333 | 03716 0.4794 0.6681 | -0.0239
H 7.3583 | 0.3701 0.4823 04367 | 0.0131
VH 8.7825 | 0.1175 0.8309 05261 | -0.0367
VL 1.5659 | 0.2074 0.7084 0.9640 | 0.3737
, L 2.8899 | 0.3672 0.4253 0.6643 | -0.0168
B"i"(')"g 51349 | 03714 0.4253 0.6946 | -0.0489
a=5 H 73567 | 0.3668 0.4346 04516 | 0.0243
VH 8.7666 | 0.1850 0.7390 05692 | -0.1315
VL 15561 | 0.3040 0.6304 1.4679 1.5235
_ L 2.8847 | 0.3669 0.3731 0.7524 | -0.0423
Z'i"fg 51305 | 0.3638 0.3724 07943 | -0.1488
H 73590 | 0.3671 0.3868 0.4966 | 0.0706
VH 87824 | 0.2741 0.6663 0.7896 | -0.5138

There are also some other characteristics belonging to each of the transformation approaches. One of the
most prominent differences is the existence of a design parameter in the blurring approach. The blurring
parameter is particularly useful for the designer of adaptive systems to embed more uncertainty into the
FOUs of linguistics. Therefore, this parameter can act as one of the design parameters that provide more
flexibility to the designer of a fuzzy logic controller in order to design it in a way that better accommodates
environmental uncertainties (Sepulveda, Castillo, Melin, Rodriguez-Diaz, & Montiel, 2007).

In the design of fuzzy logic systems, it is necessary that when all sources of uncertainty disappear, a T2
design must reduce to a T1 (N. Karnik & Mendel, 1998). The blurring parameter provides a straightforward
mechanism for this reduction. If we change «a to zero, then IT2 MF will be reduced to a T1 MF. On the
other hand, a blurring parameter @ = 1 implements FSs with maximum embedded uncertainty.

Note that forcing experts to understand the concept of a FOU certainly limits the knowledge elicitation
method to experts who either already know about fuzzy theory or are trained in fuzzy theory just before
the elicitation session. This can introduce methodological uncertainties into the elicitation method, and
as a result, linguistic uncertainties are a combination of methodological uncertainties and actual linguistic
uncertainties. These cannot be distinguished from each other because no measure for the methodological
uncertainties is available as opposed to the linguistic measures of uncertainties that we discussed earlier
in this section. Therefore, if a knowledge elicitation methodology does not need that an expert to know
anything about the concept of FOU or similar concepts in fuzzy theory, this is considered a favorable point
for that method. Note that the knowledge elicitation approach introduced in Section 5.5.5.2 does not
require such expertize.
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5.5.6. Fuzzy logic system design for adaptation reasoning

In this section, we design and develop three different FLSs to perform the adaptation reasoning of a
component-based system introduced in Section 5.5.2. The difference between the FLSs is the level of
uncertainty that we have embedded in their membership functions. The first FLS is a T1 FLSs that has an
uncertainty of 0%, the second and the third IT2 FLSs encompass an uncertainty of 50% and 70%
respectively. The design of the MFs is based on the elicitation approach presented in Section 5.5.5.2. In
this thesis, we propose an approach to model and minimize the effects of uncertainties in self-adaptive
software by using interval type-2 FLSs.

The objective of this research is to study the feasibility as well as the implications of the use of type-2
fuzzy logic in real world self-adaptive software in general and self-adaptive software connectors in
particular. Note that the optimization of the designed FLSs is not considered. However, different levels of
uncertainty in the MFs are considered. This choice allows us to evaluate IT2 and T1 fuzzy controllers under
comparable conditions. Note that the input and output MFs are defined as trapezoidal and triangular MFs
for the two input and one output fuzzy sets.

5.5.6.1. Rule-base design

In self-adaptive systems, quantitative parameters are often classified into two classes: 1) Environmental
variables (e.g., load), which are not under the control of the application. 2) Internal quality variables (e.g.,
performance), which indicate how well the application is functioning in the environment in which they
are embedded. In the running example, linguistic variables representing the value of input parameters
were divided into three levels: low (L), medium (M), high (H). The consequent (i.e., adaptation policy) was
divided into the architectural modes of the system (i.e., Idle, Normal, Effort, and Best Effort as in
Figure 5.33). To design the fuzzy rules of the controller, we collected the data by performing a data
collection survey among 10 domain experts (see Section 5.5.5 for more details about the methodology
and the domain experts background). We used questions as follows to extract knowledge from experts:

IF (workload is high AND performance is low), THEN (system must switch to ...). (5.40)

These experts were asked to choose a consequent using one of the possible architectural modes. Not
surprisingly, different experts chose different modes for the same questions. The questions and conflicting
responses are summarized in Table 5.11. Note that in order to reduce the threat of ordering effects, we
reordered the questions.
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Table 5.11. Questions for adaptation policies and responses.

Antecedents Consequent

Rule Work Best C fwg wag
() Load Performance | Idle | Normal | Effort Effort
1 Low Low 1 7 2 0 [2.12779, 2.57019] 2.34908
2 Low Medium 2 8 0 0 [1.838, 2.2477] 2.04386
3 Low High 9 1 0 0 [0.95005, 1.27015] 1.11832
4 Medium Low 0 2 7 1 [2.87412, 3.34652] 3.10914
5 Medium Medium 0 4 6 0 [2.58052, 3.07552] 2.8273
6 Medium High 0 5 5 0 [2.49905, 2.9841] 2.7408
7 High Low 0 0 2 8 [3.95168, 4.14648] 4.04402
8 High Medium 0 0 4 6 [3.69036, 3.97016] 3.82634
9 High High 0 1 5 4 [3.34757, 3.70242] 3.52216

We also asked the experts to locate each linguistic label for both antecedents and consequents in the
interval [0,5]. For each linguistic labels, we received 10 intervals from the 10 experts. We then calculated
the mean and deviations of the two ends in Table 5.12. Note here, for simplicity, we assume that the
linguistics for both antecedents have the same quantification.

Table 5.12. Data regarding antecedents and consequent labels.

Linguistic Means Standard Deviations
Start (a) End (b) Start (o) End (o)
g " Low 0 1.87 0 0.51
g g Medium 1.92 3.43 0.98 0.83
f: High 3.93 5 0.41 0
£ Idle 0 1.64 0 0.62
g Normal 1.32 2.95 0.39 0.91
g Effort 2.37 3.87 0.72 0.88
S E':f::t 3.64 5 0.22 0

5.5.6.2. Input membership functions design

The input fuzzy sets (regarding workload and performance) are composed by the 3 membership functions.
The membership functions are distributed in the normalized domain of the fuzzy set (i.e., in the interval
[0,5]) as illustrated in Figure 5.45 and Figure 5.46 respectively for the uncertainty level 50% and 70%
(i.e., blurring parameters 0.5, 0.7). Note that for transformation of the data presented in Table 5.12 to
these MFs, the methodology described in 5.5.5.2.3.2 have been used.
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Figure 5.46. IT2 MFs of the antecedents’ linguistic labels (a¢ = 0.7).

5.5.6.3. Output membership functions design

The output fuzzy set is composed by the 4 membership functions regarding the architectural modes (see
Figure 5.33). The membership functions are distributed in the normalized domain of the fuzzy set (i.e., in
the interval [0,5]) as illustrated in Figure 5.47. Note that for transformation of the data presented in
Table 5.12 to these MFs, the methodology described in Section 5.5.5.2.3 have been used.
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Figure 5.47. IT2 MFs of the consequent’s linguistic labels.
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5.5.6.4. Adaptation reasoning process using the designed FLS

The overall view of the autonomous controller for adaptation reasoning is shown in Figure 5.34. As
illustrated, the controller covers both design-time and runtime. During design-time, the aim is to design a
fuzzy controller, specify its rule-base (see Section 5.5.6.1), and derive appropriate MFs (see Section 5.5.6.2
and 5.5.6.3). At runtime, while the controller starts operating for connector self-adaptation, it keeps
monitoring quality and environmental data that may affect non-functional requirement satisfaction. The
controller continuously adjusts the system configuration with respect to runtime data that may affect
changes in the connector behavior. The key mechanism for decision making at runtime is the fuzzy
inference process. In the following, we discuss each phase in turn and describe the relevant activities.

Design-time. The approach starts at design-time when the architecture of the fuzzy controller is designed
through a feedback loop. The key point here is to perform pre-computations of costly calculations to allow
a runtime efficient adaptation reasoning based on fuzzy inference. The main reason is that fuzzy controller
need depends on a costly calculation of type-reduction algorithm (N. N. Karnik & Mendel, 2001) in order
to produce appropriate control actions. Unfortunately, IT2 FLSs, in the traditional design, can hardly satisfy
the execution time constraints normally imposed by runtime analyses because of costly centroid
calculations, which are proportional to the number of rules in the rule-base. In particular, the excessive
use of centroid calculations at runtime leads to unsatisfactory execution time. We will discuss the details
concerning the computational complexity in the evaluation section.

The rules in this work are in the form of multi-input single-output:

RY:IF x; is F{ and ...and x,, is E},THEN y is G (5.41)

Because the preferences of users may not be similar, many adaptation rules in the mind of users may be
conflicting. In this step, rules with the same if part are combined into a single rule. For each response that
we received from the users, we have:

RU:IF x, is FL and ...and x,, is FL, THEN y is y(tW (5.42)

, Where t{l is the index for the available responses. In order to combine these conflicting rules, we use the
average of all the responses for each rule and use this as the centroid of the rule consequent. Note that
as indicated in (5.41), the rule consequents are IT2 FSs. However, when the type reduction is used, these

IT2 FSs are replaced by their centroids in the computation, so we represent them as intervals [y™,3"'] or

crisp values when y™ = 3. This leads to rules that have the following form:

RY: IF (workload (x;) is F‘il, AND performance index (x;) is I:"l-2 ), THEN (target

mode (y) is C,lwg). (5.43)

, where Cfyg is defined as:

N; l N
Zu:l Wu X CFu

(5.44)
N
Zulzl W'll,t

l —
Cavg =

, here Cp; is the centroid of IT2 FSs E, (u=1,2,3,4),and w is the weight associated with uth consequent
of the Ith rule (cf. Table 5.11). The centroids of the four IT2 FSs are as follows:
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Cs, = [0.8232,1.1305], Cp, = [2.0917,2.527]

5.45
Cr, = [2.9064,3.4412], Cp, = [4.213,4.3228] (5.45)

Therefore, each C,lwg (see Table 5.11) can be computed with the Equation (5.44). For instance, cgvg,
which is associated to rule number 4 (cf. Table 5.11) is calculated as:
ct :0><C1§1+2><C1§2-|-7>(C1§3-|-1><C154
a9 0+2+7+1

= [2.87412,3.34652] (5.46)

To summarize, we transform the rule base with IT2 MFs as consequents to a rule base with crisp
consequents (cf. Table 5.11) to enable runtime efficient adaptation reasoning.

Runtime. When the approach moves to runtime, its activities are inspired by the MAPE-K loop shown in
Figure 5.34. The quality data collected through monitoring must be smoothed and normalized (simply
transform to an appropriate scale) that can be used to feed the fuzzy controller. This normalization in
general depends on the scale that rule antecedents are specified. An example of such transformation can
be found in our recent publication (Jamshidi et al., 2014).

Let us imagine the normalized values regarding the workload and performance index are x; = 2.5 x, =
3.5 respectively, see the solid lines in Figure 5.45. For x; = 2.5, two IT2 FSs regarding the linguistics F; =
Low and F, = Medium with the degrees [0,0.2647] and [0.8594,0.9213] are fired. Similarly, for x, =
3.5, two IT2 FSs regarding the linguistics F, = Medium and F; = High with the firing degrees
[0.2949,0.5875] and [0,0.4512] are fired. Consequently, four rules are fired: R?: (Fy, F,), R3: (Fy, F3),
R®:(F,, F,),R®: (F,, F;), see Table 5.11. The firing intervals are then computed. For instance, the firing
interval (F®) associated to the rule R is:

o= pps (1) ®pps (x3) = 0.8594 x 0.2949 = 0.2534
5 B (5.47)
f = Hgs(x]) @l (x3) = 0.9213 X 0.5875 = 0.5413

By following similar procedure, the other firing intervals are: F? = [0,0.1555], F3 = [0,0.1194], F® =
[0,0.4157]. By using a center-of-set type reducer (note that the type-reducer that we use here is called
center-of-sets as given in Definition 33), the output can be obtained:

Y;(2.5,3.5) = [y,(2.5,3.5),y,(2.5,3.5)] = [1.9934,3.0755] (5.48)

Definition 33. The center-of-set type reduction is computed as:
N 1 l
=S XY ]
= Ty,
. ft ’ (5.49)

Yeos =
flepl
ylECEI

, where f! € Flis the firing degree of rule [ and y' € Cy is the centroid of the IT2 FS G (cf. Definition
30). Note y;, y,- are computed by the KM algorithm (N. N. Karnik & Mendel, 2001).
The defuzzified output can then be calculated:
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1.9934 + 3.0755
Y(2.5,3.5) = 5 = 2.5345 (5.50)

Similarly, we can compute Y (x4,x,) for all the possible normalized values of the input parameters
(x1,x, € [0,5]). The resulting hyper-surfaces Y72 = f(x,x,), YTt = f(x;,x,) corresponding to the
output of the designed IT2 and T1 FLS for adaptation reasoning are shown in Figure 5.48 and Figure 5.50
respectively. Note that Y7271 (x;, x,) € [0,5] for any (x4, ;). Due to the space limitations, we have not
discussed the T1 reasoning process, but the calculations are similar except that in the calculations we use
the T1 centroid cclwg instead of the IT2 centroid Cclwg, see the last two columns in Table 5.11.

5.5.6.5. Fuzzy logic control surfaces

The designed fuzzy logic system for adaptation reasoning is completely defined by its membership
functions (see Sections 5.5.6.2 and 5.5.6.3) and fuzzy rules (see Section 5.5.6.1). Having performed the
reasoning process for all input values (i.e., throughout the domain of input fuzzy sets), the control surfaces
defined by Equation (5.26) are illustrated in Figure 5.48 (for uncertainty level 50%), Figure 5.49 (for
uncertainty level 70%) and Figure 5.50 (for uncertainty level 0%, i.e., control surface for T1-FLS). These
figures reveal that the higher the uncertainty level is, the larger the confidence interval would be.
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Figure 5.48. Output control surface of the IT2 FLS for adaptation reasoning (a = 0.5) (a), confidence interval (i.e., y,, y,) (b) and
their differences (i.e., Yy — yl) (c).
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5.5.7. Benefits of Using IT2 FLS over T1 FLS

The process of adaptation reasoning is a decision-making problem: choosing an appropriate mode for the
running system given the environmental and system situation. As shown in Section 5.5.6.5, the output of
the designed IT2 FLS is a boundary instead of a hard-threshold as in T1 FLSs (JM Mendel et al., 2000; Wu,
2012), compare Figure 5.48 and Figure 5.50. Therefore, as two vertical dashed lines in Figure 5.47 indicate,
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the decision for a mode switch can be more flexible providing a boundary. For instance, if the system
requires operating with a high performance, the decision can be made based on the upper decision
boundary, i.e. ¥,(2.5,3.5) = 3.0755. As a result, M3 = Ef fort would be chosen. On the other hand, if
the system requires saving energy, the decision can be made based on the lower boundary, i.e.
v;(2.5,3.5) = 1.9934. Accordingly, M; = Idle would be chosen. In addition, if the system needs to
achieve a compromise in performance and energy utilization, the decision can be made based on any
value between the lower and upper boundaries. Note the lower and upper decision boundary as depicted
in Figure 5.48 are for the blurring value of @ = 0.5. A different confidence interval can be derived by
changing a. In addition, IT2 FLSs produce smoother behaviors, see the difference in Figure 5.48 and
Figure 5.50. This provides a less disruptive approach (Linda & Manic, 2011). These characteristics and the
ability to handle conflicting rules are the key benefits of IT2 FLSs over T1 FLSs that motivated us to choose
it for adaptation reasoning of component connectors in this thesis.

Until this point of this chapter, we have described our approach, i.e., RobusT2, for designing a type-2 fuzzy
logic controller, which is able to reason about connector adaptation at runtime. We can position the
RobusT2 framework in existing adaptation reasoning approaches, see Table 5.1. In the following sections,
we first evaluate some characteristics of the framework as we claimed in this thesis. We also discuss some
threats to the validity of this work. Note that this is only a primary evaluation of the framework. A
comprehensive evaluation of the framework, in a real-world context, is given in Chapter 7.

5.5.8. Experimental evaluations and validation

In this section, we present a number of experimental studies on an adaptive Web server to answer the
following research questions:

- Q1 (Effectiveness). Is it effective for avoiding rule-explosion?
- Q2 (Robustness). Is it robust against measurement noises?

5.5.8.1. Adaptation rule reduction (Q1)

Rule explosion is a major disadvantage of rule-based reasoning approaches in self-adaptive software
(Fleurey & Solberg, 2009; D Garlan et al., 2004). More specifically, rule-based reasoning suffers from
scalability issues with respect to the management of very large rule sets. In this section, we show the
effectiveness of adopting IT2 FLS in eliminating rule explosion.

We applied a rule reduction method, called SVD-QR (Liang & Mendel, 2000), to the FLS designed for
autonomous adaptation reasoning. As you may recall from Section 5.5.6.1, the initial number of rules
were 9. We applied the rule reduction to both T1 and IT2 FLS. For each of the two T1 and IT2 FLSs, we
derived 20 different designs with slightly different parameters before rule reduction. We vary myyr 1yr
in triangular and ulyyr Lyr, Urymr Lyr in trapezoidal MFs to derive the 20 different designs. Each design
of the FLSs was then rule-reduced using the SVD-QR method. Afterwards, we evaluated the performance
of the rule reduction by measuring the difference between the outputs of each rule-reduced FLSs with
corresponding original designs. We ran the two versions 10,000 times and compared their outputs using
root means square metric (RMSE):
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RMSE = \]Zg:l(Y(xl’xZ)(i) RLOL (5.51)
d

, where Y (x4, x,) is the output of the original design and Y,.(x4, x) is the output of the rule-reduced FLS.

In other words, RMSE is a measure of distance between hyper-surfaces of the original and the rule-

reduced FLS (cf. Figure 5.48). We summarize the measured RMSEs for the FLSs in Figure 5.51. The ranges

of rules after reduction over the 20 realizations are [3,4],[3,5] for T1 and IT2 respectively. We also

calculated the range of reduced rules for different FLS designs as summarized in Table 5.13.

Table 5.13. The performance of rule reduction in different scenarios.

Scenario Setting # Rules
(# antecedents, # rules) | after reduction
1 2,9 [3,5]
2 3,27 [7,11]
3 4,81 [23,31]
4 5,243 [72,85]
5 6,729 [221,256]
0.35
Bl
0.3 : - .
1 I
: 1
0.25 - i i .
1
[
g 0.2 "
= ‘\\
0.15 — A
0.1 T r -
1 1
i -4
0.05 - a1 -
Type-1 FLS Type-2 FLS

Figure 5.51. The RMSEs for the two FLS types over 20 designs.
Based on Table 5.13 and Figure 5.51, it is observed that:

e The rule reduction reduced the rules quite considerably.

e The rule reduction for adaptation reasoning was successful for both types of FLS without significant
error.

e IT2 FLSs are more robust due to the lesser mean error and lesser variation in the estimation error.

e T1 FLSs in some realizations drop more rules in comparison with the IT2 FLSs. However, as it is
reported in a number of seminal works (JM Mendel & John, 2002; JM Mendel, 2000), IT2 FLS original
designs, i.e. before rule reduction, can be designed with fewer rules.
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55.8.2. Robustness testing of the reasoner (Q2)

In this chapter, we presented a framework, called RobusT2, to handle the uncertainty related to the
adaptation process of self-adaptive component connectors and we claim that the systems enhanced by
such framework are resilient against the uncertainty leaking to the reasoning engine. In this section, we
provide some experimental evidence to support this claim.

In this experiment, the robustness of a group of IT2 FLSs was examined against dynamic noise injected to
the input measurement data with amplitudes from 1% to 10%. The injected noise is independent additive
white Gaussian samples with zero mean and finite variance. This kind of noise is considered to cover the
potential disturbances in self-adaptive software (Esfahani et al., 2011). We injected noises to the both
input measurements, i.e. x1,x,. We ran RMSE measurements for each level of noise 100 times and for
each RMSE measurement, we used 10,000 data items as input. Figure 5.52 shows RMSEs for the 10 levels
of uncertainty for the original FLS with a blurring value of @ = 0.5. Figure 5.53 and Figure 5.54 show the
RMSEs for the same FLS design but with blurring values & = 0.7, 0.95 respectively. We also measured the
RMSEs for the designed T1 FLS, see Figure 5.55.

0.7

T
1
1
1
1
1
1
1
1

——emme
i

-
H+

1
1
1
1
1
1
1
L

F______
IR

oL + L 4

1% 2% 3% 4% 5% 6% 7% 8% 9%  10%
Noise Amplitude
Figure 5.52. The RMSEs for the FLS under noise.

186



+
1

0.9

0.7

e I
e R
————d

e K

e

|
R

0.3 i
1
0.2 T i P
T 1 H 1 1
i i i i i i i ! i !
0.1- | i i i i i 1 ! i i
{1 1 1 | booL
o~ + & i L 4 4 + Lt
1% 2% 3% 4% 5% 6% 7% 8% 9%  10%
Noise Amplitude
Figure 5.53. The RMSEs for the FLS with blurring 0.7.
+,
1F T .
- 1 F
] ]
L1 - [—
S O
1 H ! H 1 ! 1 1 ! 1
H ! 1 ! 1 ! ] 1 ! 1
1 H ] H ] H 1 1 H 1
H ! 1 ! 1 ! 1 1 ! 1
H 1 1 1 1 1
0.6~ | ! i ! 1 ! 1 ! H [
& Lo
2
0.4~ o
]
1
]
0.2+ . .
] 1 1 1
A
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 L
ok L 4 i 4 4 4 4 4 i

1% 2% 3% 4% 5% 6% 7% 8% 9%  10%
Noise Amplitude
Figure 5.54. The RMSEs for the FLS with blurring 0.95.

Several observations can be drawn from the analysis of the results. The performance deteriorations when
increasing the noise level from left to right in Figure 5.52 were negligible. In other words, the distribution
of RMSEs exhibits the robustness of the IT2 FLSs when dealing with dynamic input noises. The increase in
the value of blurring from 0.5 to 0.7 led to a better performance against noise (cf. Figure 5.52 and
Figure 5.53). Interestingly, further increasing of the blurring from 0.7 to 0.95 results in performance
degradation, worsening the performance of the original design (cf. Figure 5.52 and Figure 5.54). This is
attributed to the overly wide FOUs (Linda & Manic, 2011). Therefore, selecting a proper value for the
blurring parameter when designing a controller is critical. However, determining such a value is
application-specific and there is no general-purpose benchmark. As another interesting observation, we
also noticed a much better performance of the IT2 FLS for handling input noises compared to the T1 FLS,
see the steep increase in errors in Figure 5.55.
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Figure 5.55. The RMSEs for the T1 FLS.

5.5.9. Limitations and future work

In the remainder of this section, we discuss the limitations of the RobusT2 framework and some fruitful
avenues as future work. Note that we discuss the future work regarding this thesis (i.e., in the context of
RCU framework) in the conclusion chapter (i.e., Chapter 8).

Dynamic update of adaptation rules. Runtime knowledge evolution and sharing is a topic that attracted
little attention so far and is considered as an open challenge in self-adaptive software (Abbas et al., 2011).
In this research, we have not discussed the dynamic updates to the adaptation mechanism. The inference
engine chooses among a set of rules each time an adaptation cycle is performed. Therefore, it would be
feasible to add new rules to the rule base at runtime. By adaptation cycle, we refer to the time from
receiving input measurements until calculation of the output and sending it to the execution. This allows
dynamic incorporation and removal of adaptation rules and indicates another avenue of future work. A
promising approach is fuzzy rule learning (L. Wang & Mendel, 1992). Over time, the adaptation outcomes
can be captured in a repository. Then by applying runtime efficient fuzzy rule learning, for example the
WM method (L. Wang & Mendel, 1992), new rules can be learned and potentially improve the
effectiveness of the adaptation mechanism. For instance, this facility can be used to avoid mode switches
that have not historically resulted in a better system quality. The rule learning approaches can also be
applied at design-time to assist users in rule specifications.

Integration with other uncertainty control approaches. As discussed in the background, there are different
sources of uncertainty in the context of self-adaptive software. However, the approach proposed in this
chapter can only handle the uncertainties regarding incomplete user knowledge. The integration of this
approach with the existing approaches for controlling the uncertainty regarding other sources can be
considered as future work. An end-to-end solution for controlling the uncertainties makes self-adaptive
systems more resilient against noise and make them more dependable.

188



5.6. Conclusion

In this chapter, we provided an answer to RQ2 that requires the development of a framework for
reasoning about adaptation of component connectors. In this chapter, we introduced type-2 fuzzy logic
for specifying non-functional requirements in self-adaptive software. We explained how type-2 fuzzy logic
helps to model the uncertainty and impreciseness in requirements. We introduced a framework, called
RobusT2, for autonomous adaptation reasoning of component connectors, using fuzzy logic systems. We
explained each subsystem by using concrete examples. We also explained the details of the
methodologies, which we have proposed in this thesis, for adaptation knowledge elicitation and
transformation of this knowledge into fuzzy membership functions and fuzzy rules. A self-adaptation of a
component connector in a component-based system was presented and validated using the RobusT2
framework. Finally, we discussed the results and limitations of this work, some insights and short-term
future work.

Experimental results suggest that IT2 FLS can be used in this particular application. Specifically, the results
affirms that T2 FLS controllers are better than T1 counterparts in controlling uncertainties involved in self-
adaptive software, specifically measurement noise as input data. Future research for this proposed
framework would be focused on tuning and optimization of the parameters of RobusT2. The results
obtained are an additional motivation to use type-2 fuzzy logic control in other applications such as
elasticity reasoning in cloud-based software applications. We presented some primary results of this
application that is extracted from one of our papers (Jamshidi et al., 2014) as an example in this chapter.

Note that the templates for data collection as a part of our fuzzy knowledge elicitation and the operation
details for data processing to derive appropriate artifacts in FLS design (i.e., the membership function and
fuzzy rules) are given in Appendix A and Chapter 7 respectively.
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Chapter 6

6. Adaptation Execution Mechanism for Component Connectors

“The art of progress is to preserve order amid change, and to preserve change amid order.” — Alfred
North Whitehead (1861-1947).
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6.1. Introduction

In the previous chapter, we introduced a method to select from many connector configurations the one
that is most appropriate to obtain some specific performance result based on fuzzy adaptation reasoning.
In this section, we introduce a mechanism to enact the transitions from the current connector
configuration to the target configuration derived from a variability-based reasoning technique that we
borrowed from the software product line community. Considering the high heterogeneity of models and
languages involved in software connectors, this chapter introduces an approach to derive reconfiguration
actions using reasoning based on graph theory and feature models. We describe a mechanism for
transforming the feature models corresponding to the connector modes to an executable reconfiguration
plan using the principles of graph theory to derive the required reconfiguration actions. While the
contributions of Chapter 4 and Chapter 5 belong to Analysis and Planning phases (in the context of MAPE-
K control loop), the scope of this chapter, as illustrated in Figure 6.1, is to Execute the adaptation.

Autonomic Manager

T
Knowledge @

L

Base-Level Software

Users

Figure 6.1. Scope of chapter 6.

The rest of the chapter is organized as follows. Section 6.2 reviews existing solutions that control how
adaptations are performed in software systems. Section 6.3 defines a theory for representing component
connectors based on various constructs in graph theory. Section 6.4 proposes a mechanism based on
dynamic software product lines and the theory presented in Section 6.3 to enact the target mode to the
current connector configuration at runtime.

6.2. Adaptation Mechanisms in Self-Adaptive Software

An adaptation mechanism in self-adaptive software is a component that controls how the adaptations are
actually enacted in the system. For instance, in the case of the task queue connector, the adaptation
mechanism is responsible for physically changing the channels in the connector. Note that the reasoner
is responsible for making a decision and the adaptation mechanism executes the decision. In this section,
we review existing solutions for enabling such adaptation execution.

In general, the adaptation mechanism modifies the changeable parts of the self-adaptive software system.
Each changeable part can be replaced with several options. However, the mapping between the
adaptation decision and actual reconfiguration is not one-to-one. The translation between high-level
adaptation decisions to lower-level executable adaptation actions is the key concern of adaptation
mechanism (or adaptation actuator). In this chapter, we use the terms “adaptation mechanism” and
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“adaptation actuator” interchangeably but basically they convey the same concept of executing (or
enacting) the change on the piece of software.

There are different adaptation mechanisms, which are categorized as reflection-based mechanisms,
aspect-oriented mechanisms, mode-based and model-based mechanisms.

6.2.1. Reflection-based mechanism

Computational reflection is introduced as a way to reflect the overall architecture of a software-intensive
system (Cazzola, Savigni, Sosio, & Tisato, 1998). When this capability was put in forward, the self-adaptive
software community started to utilize this capability in order to make use of architectural configuration
information at runtime for adaptation reasoning. The critical advantage of this capability is to allow the
guerying and dynamic reconfiguration of architectural elements in the underlying software. A study shows
that this capability conforms to the foundations of self-adaptive software (Andersson, de Lemos, Malek,
& Weyns, 2009) and another study reveals that this capability is gaining momentum in architecture-centric
software evolution and this trend is also increasing (Jamshidi et al., 2013).

Another advancement in this area was the introduction of component-based technology, which proposed
the notion of configurable software systems by adding, removing or replacing their constituent
components, connectors or a combination (architectural configuration) of them. A number of reflective
component models exist which support dynamic loading and unloading of components such as: FRACTAL
(Bruneton, Coupaye, Leclercq, Quéma, & Stefani, 2006), OpenCOM (Coulson, Blair, Clarke, & Parlavantzas,
2002), SOFA 2 (Bures, Hnetynka, & Plasil, 2006), OSGi (“OSGi Alliance,” 2014), EJB and so on (Crnkovic,
Sentilles, Vulgarakis, & Chaudron, 2011).

Computational reflection, component models and component-based architectures improve the
construction of adaptation mechanisms to achieve dynamic adaptive systems (Coulson et al., 2002). The
mechanisms utilize a component architecture to visualize the overall structure of the system comprising
components and connectors. These architectural elements are causally connected to actual running
components in the system, whereby changes in one result in changes in the other.

Despite the flexibility that is introduced by reflective technology, the adaptations at runtime are still
challenging. One challenge is that the reconfiguration of the adaptive software was formerly performed
by ad-hoc complex programs. This challenge is addressed by the introduction of a manipulation language
on top of component models. For instance, the FScript language for FRACTAL component model or the
Plastik language for OpenCOM component model. By adopting the languages, one can write flexible
adaptation mechanisms.

6.2.2. Aspect-oriented mechanism

Aspect-orientation (AO) was introduced to solve the problem of modularizing the crosscutting concerns
in software systems (Kiczales, 1996). Although several approaches in terms of language constructs have
been proposed to implement aspects, point-cuts and advices are common. Point-cuts are the placeholder
for advices, which are the realization of crosscutting concerns. AO can be considered as complementary
with respect to component platforms and computational reflection. Different compositional approaches
such as AO to adapt middleware platform are reviewed in (McKinley, Sadjadi, Kasten, & Cheng, 2004).
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The mechanisms for composition that enable aspects to be woven into the software systems have been
used as adaptation mechanisms for self-adaptive software (David & Ledoux, 2006; Pawlak et al., 2004).
The ultimate goal of AO is to weave and unweave adaptation plan in the evolution process (David &
Ledoux, 2006). The idea is realized by corresponding each adaptable parts of the software to the aspects.
Then these aspects can be woven at runtime when the need for adaptation is raised (Surajbali, Coulson,
Greenwood, & Grace, 2007).

AO is an appropriate approach to realize an adaptation mechanism in self-adaptive software.
Nevertheless, some shortcomings prevent the full adoption of this mechanism. The first problem is known
as the AO evolution paradox (Tourwé, Brichau, & Gybels, 2003). This problem occurs when the aspects
and the underlying system evolve separately. The second one is known as aspect interference (Katz & Katz,
2008) and happens when several advices are woven into the same point-cut or when an advice cancels
out other advice effects.

6.2.3. Mode-based mechanism

In early development of self-adaptive software, the mechanisms for change at the architectural level were
limited. These mechanisms use predefined architectural configurations (typically called system modes)
which are hardcoded using architectural descriptions. A mechanism for adaptations were boiled down to
switching between the systems modes by changing some parameters (Hirsch et al., 2006).

A mode abstracts a specific set of services that must interact in order to perform a specific functionality
of a system (Hirsch et al., 2006). In other words, each mode corresponds to a specific behavior of a system.
A mode determines the structural constraints that determine a system configuration at runtime.
Therefore, mode switching or change of mode can be considered as a mechanism for adapting software
systems. Hirsch et al. (Hirsch et al., 2006) introduce the notion of mode and mode transition as explicit
elements of architecture description. They aim for description and verification of complex adaptive
systems. Borde et al. (Borde, Haik, & Pautet, 2009) investigate the notion of operational mode in
component-based systems to specify system behaviors and how to switch from one mode to another one
at runtime. A number of studies examine the mode change propagation protocol to enable and formally
verify the mode switch at runtime (Bertrand, Déplanche, Faucou, & Roux, 2008; Pop, Plasil, Outly,
Malohlava, & Bures, 2012; Yin, Carlson, & Hansson, 2012). The studies implement the mode switch
protocols in specific architecture description languages. The main target domain of these approaches is
resource constrained embedded systems. This adaptation mechanism, however, cannot handle
unforeseen architectural configurations.

6.2.4. Model-based mechanism

The main idea in model-based approaches is to abstract the adaptation mechanism from ad-hoc
reconfiguration scripts and reflective platforms.

6.2.4.1. Architecture-based models at runtime

Early approaches proposed the use of architectural models to control the adaptation process (Oreizy et
al., 1998). Another architecture-based approach (D Garlan et al., 2004) hardcoded the adaptation
mechanism through architecture evolution by primitive change operator and composite adaptation
strategies.
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Recent work extends the lifetime of architectural models to runtime and uses them to derive the needed
adaptations. In this way, models at runtime (Blair et al., 2009) are used as artifacts that control
architecture-based adaptations. Moreover, they are used to verify the adaptation at runtime. Note that
other models such as behavioral or stochastic descriptions of the systems can also be used at runtime.

6.2.4.2. Variability models at runtime

Variability models in software product line (SPL) are used to model the various parts of a software product.
These variable parts are called variation points and may represent different architectural elements of a
system that may differ from one product to another product in the same family. As a result of this
capability to model the changeable parts, some approaches proposed to use SPL to model the self-
adaptive software’s underlying structure (C Cetina, Haugen, & Zhang, 2009; Fleurey & Solberg, 2009;
Perrouin & Chauvel, 2008).

In this case, an ideal association would be “a feature is a component". Therefore, adding, updating or
removing a feature would simply lead to an addition, replacement or removal of a component. The
approaches that follow this association are problematic. By definition, features are orthogonal to
themselves and to the solution space (Jean-Baptiste, Maria-Teresa, Jean-Marie, & Antoine, 2013). Such
approaches break this principle. Thereby, they are subject to feature interaction conflicts (Apel & Kastner,
2009).

The real benefit of variability models appear at runtime when dynamic SPL (DSPL) are used to derive new
products on the fly (Hallsteinsen, Hinchey, & Schmid, 2008). A DSPL is basically a SPL that is kept alive
during runtime, and then when a need for change arises, an adaptation is computed (on the basis of diff
between architectures) from the variability model that is present at runtime. The changes are then
translated into architectural model operations, which assists the real reconfiguration of the adaptive
system. However, this translation is not always straightforward and may lead to some limitations of the
derived configuration.

6.2.4.3. Model composition at runtime

A more recent approach combines the previous propositions in using architectural and variability models
at runtime, aspect oriented mechanisms and causal links (B Morin, Fleurey, & Bencomo, 2008; Parra,
Blanc, Cleve, & Duchien, 2011). In general, they use models at runtime to describe the architectural
configuration of the system and its varying parts. Dynamic aspects reify variability and model composition
transforms a configuration derived at runtime to another adapted configuration. Finally, causal links are
used to update the running system.

These approaches such as the ones presented in Section 6.2.4.2 enable model adaptations indirectly
based on adaptation plans deduced from structural differences. Thereby, those approaches suffer from
the lack of explicit tailoring of the adaptation, as they would be unable to handle the case described in
(Jean-Baptiste et al., 2013). They, on the other hand, consider features not as user visible aspects, but as
ordered transformations that can be reified at runtime to generate adaptations.

6.2.4.4. Goal-based requirement models at runtime

A majority of the work in self-adaptive software is devoted to the adoption of architectural models that
enable flexible adaptations (Jamshidi et al., 2013; D Weyns & Ahmad, 2013; Danny Weyns, Iftikhar, Malek,
& Andersson, 2012). On the other hand, much less work has been carried out in utilizing requirements
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models for self-adaptive software (B. Cheng et al., 2009). Specifically, goal-based modeling is well suited
to representing alternative behavior when environmental changes occur (Goldsby, Sawyer, Bencomo,
Cheng, & Hughes, 2008; Lapouchnian, Yu, Liaskos, & Mylopoulos, 2006; Yu, Lapouchnian, & Liaskos, 2008).
These approaches only enable adaptation with a limited set of alternative behaviors, which should be
fixed at design-time. However, there are some more flexible approaches such as RELAX (N Bencomo &
Ramirez, 2012).

At runtime, the requirements are assessed to evaluate the conformance of the runtime behavior to the
specified requirements. As a result, a violation of requirements may trigger an adaptation. However, the
adaptation decisions may not be made based on crisp values “yes” or “no”, but it may have to be made
stochastically based on partial (dis)satisfaction of requirements (N Bencomo & Belaggoun, 2013).

6.2.5. Summary of adaptation mechanism

Table 6.1 summarizes the adaptation mechanisms, which we reviewed earlier, for enabling self-
adaptation of software systems. In this table, a check mark (v) indicates where the approach proposes
solutions or deals with the criteria, and a blank () in the opposite case.

The approaches we have reviewed in this section offer support for both design and runtime adaptations.
Some of them use variability modeling and context information as well as models at runtime, reflective
platforms, or dynamic aspects that allow them to have both source code manipulations for the design
adaptations and dynamic reconfigurations for the runtime adaptations. Some of them also use variability
models for modularizing and defining adaptation plans as well as contextualizing annotations to define
concrete events at runtime. There are also some other approaches at the code level in programming
languages that mainly focus on modularity. In addition, few of the approaches focus on architectural
modes that have been derived at design-time and will be used as a means to enable runtime adaptations.

However, there are still two important issues left unaddressed. First of all, the approaches do not offer a
process from feature modeling and architectural modes to runtime adaptations. This means that design
and runtime adaptation processes do not have many elements in common. Moreover, artifacts used for
building applications are treated in a different manner to artifacts used to achieve dynamic adaptations.
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Table 6.1. Classification and comparison of adaptation mechanisms.

Reference

Scope

Reasoning
Mechanism

Domain

Model

Architecture

Code

Requirement (Spec)

Reflection-based

AO
Mode-based

Model-based

Mobile

Embedded System

Smart-*

Robotic

General-purpose

(Cazzola et al., 1998)

(Andersson et al., 2009)

(McKinley et al., 2004)

(David & Ledoux, 2006)

(Pawlak et al., 2004)

(Surajbali et al., 2007)

L L R KL<

< R K<

(Hirsch et al., 2006)

L KL KL IR

(Borde et al., 2009)

<

(Yin etal., 2012)

(Perrouin & Chauvel, 2008)

LS ESESESESESESESESES

(C Cetina et al., 2009)

(Jean-Baptiste et al., 2013)

ESESESES

(Apel & Kastner, 2009)

(B. Cheng et al., 2009)

(Goldsby et al., 2008)

(Lapouchnian et al., 2006)

(Yu et al., 2008)

(N Bencomo & Ramirez, 2012)

(N Bencomo & Belaggoun, 2013)

LS ESESESESESES

Our approach

LA ESESESESESESESESE SRS
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197




6.3. Dynamic Reconfiguration Mechanism for Component Connectors

While adaptation reasoning (Chapter 5) can be developed abstractly and independently of the language
and the platform with which connectors are realized, adaptation enactment has close ties to the
underlying connector model. Therefore, we needed to select a target connector model for
implementation of the change actuator. We selected Reo (Arbab, 2004), which is a coordination model
for realizing exogenous component connectors (Lau, Elizondo, & Wang, 2005), and hence, a perfect fit to
this work.

In the remainder of this chapter, we describe the reasoning mechanism for deriving adaptation actions
on top of Reo for effecting adaptation decisions. In this section, we describe the structural modeling
(Section 6.3.1) of the connector and change reasoning (Section 6.3.2) based on the principle of graph
theory to prepare the context to introduce the effectuation mechanism based on the principles of
dynamic software product lines in Section 6.4.

6.3.1. Connector configurations

A component connector, in the context of this research, corresponds to a coordination pattern (Arbab,
2004; N Oliveira & Barbosa, 2013; Nuno Oliveira & Barbosa, 2013) on architectural elements (e.g.
components) that perform 1/O operations through that connector. In other words, here, the term
connector is adopted to name entities that can regulate the interaction of (potentially) heterogeneous
components. Thus, connectors must deal with exogenous coordination, handling all those aspects that lie
outside the scope of individual components (Bruni et al., 2013). This means coordination pattern are
without the knowledge of those entities. A coordination pattern is formally given as a graph of channels
whose nodes represent the points for interactions between channels. The edges of this graph are
represented with channel types and channel identifiers. To provide a concrete illustration of this
approach, we utilize the Reo coordination model (Arbab, 2004). Therefore, a channel is considered here
as a Reo channel (Arbab, 2004).

A number of component connector models exist that we reviewed in Section 6.2.1, but we decided to use
Reo, a powerful coordination language introduced by the CWI research group Foundations of Software
Engineering (SEN3). The choice for this language is very appropriate, since, for instance, Reo covers
different coordination aspects, such as synchronous vs. asynchronous communication, buffering, filtering
and data manipulation, context-dependent behavior, and mobility (Arbab, 2004). The various constraints
from different functionalities put high demands on the synchronizing aspect, a powerful feature of Reo.
Moreover, Reo has a stochastic extension (Moon, 2011) with which we can simulate and develop systems
with stochastic behaviors and incorporating performance aspects. For Reo there are also some tools for
modeling system architecture, simulating system behavior, formal operational semantic languages and
facilities to derive system models which we exploit in our approach. Reo also has a very supporting and
active research community. In summary, we believe that this choice offers the following opportunities: (i)
Due to its feature-rich models, Reo offers powerful means for describing the coordination that turns a set
of components and connectors into a coherent working application. (ii) Stochastic Reo is a good choice
for representing reliability and performance aspects as our main objectives. (iii) Proven formal semantics
used in Reo which we can extend and build the formal aspects of our contribution. (iv) Available open
source tools that we can exploit for our own purposes. (v) An active and supportive research community
that motivated us to contribute.
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In the Reo model, channels are primitives, out of which more complex and composite component
connectors are constructed. A connector channel is directional (except one channel type) with a unique
identifier and specific semantics (i.e. coordination protocol). A channel in this model accepts an I/0O
operation (data flow) on its source end and dispenses it from its sink end. Figure 6.2 illustrate the basic
channel type in the Reo coordination model. Note that Reo supports an extensible set of channels (Arbab,
2004), each exhibits a unique behavior with a well-defined semantics. However, for the purpose of this
research, we only consider the construction of component connectors based on the primitive channels
represented in Figure 6.2.

O———0

Sync LossySync SyncDrain

O——10O OO
A B A . B
FIFO Filter

Figure 6.2. Primative connector channels.

Each channel has its own semantics as defined in Table 6.2. The Sync channel transfers data from source
end to sink end whenever there is an I/0 request at both ends synchronously. The SyncDrain channel
accepts data synchronously at both source and sink ends and losing it. The LossySync channel behaves
the same, but data may be lost whenever there is a request at the source end but there is no request at
the sink end. The Filter channelis similar to LossySync, but deterministically only when an item satisfies
the filter constraint, the channel delivers it to the sink end. In contrast to the previous channel types, a
FIFO channel buffers data inside a memory position and when a request arrives at the sink end, it delivers
it to that end. Similarly, FIFO(F) delivers the stored item to its sink end and cleans the buffer.

Table 6.2. Primative channel behavior.
Channel Type Behavior
Atomically gets an item from its source end A and delivers it

Sync to its sink end B.
, Atomically gets an item from both source and sink ends 4, B
SyncDrain .
and loses it.
Atomically gets an item from its source end A and non-
LossySync

deterministically, either delivers it to its sink end B or loses it.
Atomically gets an item from its source end A and if the item
Filter satisfies the filter constraint ¢ delivers it to its sink end B and
loses it otherwise.

Atomically gets an item from its source end A and stores it in
its buffer.

Atomically fetches the item from its buffer and delivers it to
the sink end B.

FIFO

FIFO(F)

A component connector is constructed by gluing the channel ends together. In such a composed structure,
data items flow through channels and past nodes connecting them. Usually, the interacting parties supply
the data that flows through the connectors they are connected to. Note that here the interacting parties
coordinated through connectors and connected to them are components of a component-based software
system. Each connector has an interface. Such an interface comprises of the boundary nodes of a
connector: components give and take data only to and from boundary nodes.
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Through connecting channel ends, different types of nodes appear as follows: (i) source node, if it
connects only source ends; (ii) sink node, if it connects only sink ends; (iii) mixed node, if it connects both
source and sink nodes.

Figure 6.3 depicts a sequencer connector, which is a composition of five channels with two different types.
It has one source node (4), three sink nodes (01, 02, B) and two mixed nodes (N1, N2) differentiated by
grey color. Generally, mixed nodes are figuratively internal nodes in connectors and the source and sink
types are boundary nodes making the interface of a connector. In this example, the nodes {4, 01,02, B}
are the boundary nodes comprising the interface of the sequencer connector depicted in Figure 6.3.

S84 Sequencer

Figure 6.3. The Sequencer connector.

Figure 6.3 represents a sample architectural configuration of a component connector that we intend to
formally characterize with the graph-based constructs in the following sections. The main intention of
doing this is to provide an appropriate level of abstraction to reason about structural changes in the
connectors.

6.3.1.1. Connector configuration

Let N,1,0,1d, T, respectively, denote a set of boundary nodes comprising source (I) and sink (O) nodes,
channel identifiers and channel types. We also consider the internal components as a part of a connector
architectural configuration (cf. Figure 6.4). Each internal component has a name, type, a set of source
ends and sink ends known as ports. Let P,Id,CT denote a set of ports, component identifiers and
component types respectively. The connector architectural configuration is represented by the following
definition as first introduced in (N Oliveira & Barbosa, 2013; Nuno Oliveira & Barbosa, 2013) as the notion
of coordination pattern and we extend it here as the notion of connector configuration for the purpose
of this research.

Definition 34. A connector configuration, C;;, is defined as a triple
Ciqg € (I,0,R)
RS (NXIdXTXN)U(NX(PxIdxCTxXP)XN) (6.1)
I#0,0+@,ISNOCSN

, where R is a graph on connector ends N whose edges are instances of primitive channels id € Id with
specific type t € T. I and O are the sets of source and sink ends in graph R. For example, the sequencer
can be represented as follows:

Cseq =< {A4},{01,02,B},{(4,51,Sync,N1),(N1,s2,Sync,01),

6.2
(N1,f1,FIFO,N2),(N2,s3,Sync,02),(N2,s4,Sync,B)} > (6.2)
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For representing unidirectional channels, we need to utilize a special notation. For example, Drain has
two source ends, but it has no sink ends. We use [-]€ N to represent absence of I/O operations. Therefore,
a Drain channel can be represented as follows:

Carain =< {I1,12},0,{(I1,d, Drain,[:1), (I2,d, Drain,[-])} > (6.3)

Since the sets I and O can be inferred based on R by identifying the nodes that appear either as the first
or fourth element, the definition of connector configuration can be relaxed by dropping the sets I and O
from the triple. However, here, we use the triple as defined in Definition 34 for specifying component
connectors.

S84 Sequencer1

O

01 03 = 02
s2 s3
| €1:CT1

Figure 6.4. A sequencer connector with internal component.

Figure 6.4 illustrates a variation of sequencer connector, which utilizes an internal component C1 with
type CT1. As a result, this connector can be formally defined as follows:

Cseql :< {A}) {01; 02; 03' B}; {(A; 51; SynC; Nl)r (Nl, SZ, SyTlC, 01),
(N1,P1,C1,CT1,P3,03),(N1,P1,C1,CT1,P2,N2),(N2,s3,Sync,02), (6.4)
(N2,s4,Sync,B)} >

As a matter of fact, internal components are architectural elements to abstract away and hide part of its
internal structure for reuse purposes. Transforming a connector to a component with the same semantics
is straightforward. For example, Figure 6.5 represents the sequencer in the form of a component. This,
component representation of a connector abstracts away the details of the connector and provides only
four ports 4, B, 01, 02 for other entities (i.e., connectors or component instances) to write to or read
from. The nodes belonging to I are transformed to source ends of the component such as A. Moreover,
the nodes belonging to O are transformed to sink ends such as 01,02, B.

Sink end

Source end
01 02

= Sequencerl:”:I

L] L]

A B

Figure 6.5. Software component corresponding to the sequencer connector.
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6.3.1.2. Architectural invariants for connectors

In order to avoid incorrect configurations, we enforce a number of architectural invariants for component
connectors as expressed in Table 6.3.

Table 6.3. A list of architectural invariants for connector configurations.

ID Entity Invariant description
Invl ] This port cannot be connected to other ports.
Inv2 | Channel | Only a single channel is allowed to connect two nodes.
Inv3 Id A name can only be associated to a node, port or channel type.
Inv4 Id,R A name can be used at most in two tuples in R.
Inv5 I,0,R | The nodes belonging to I, O can only be used once in tuples in R.
Inve LR The nodes in I can only be used as the first element in tuples in R.
Inv7 0 R The node.s in 0 c.an only be used as the fourth element (last

’ element) in tuples in R.

Inv8 1O,R The nodes that not belong to either I or O must be repeated more

than one time in tuples in R.

The intention behind such an enforcement of architectural invariants is to preserve well-defined structural
properties of connectors and to ensure that suitable architectural principles are maintained as invariants
during the evolution of a given connector.

6.3.1.3. Structural constructs of component connectors

In this section, we define a number of structural constructs by adopting the inherent principles of graph
theory. We basically define the constructs that we are going to introduce in this section based on the
structures that can be formally defined as graphs. This enables us to define composed constructs based
on the composition of primary constructs. It also enables us to reason about structural changes based on
well-defined mathematical operations applied on the constructs. The structure change reasoning enables
us to reason about mode-based adaptation as we propose in Section 6.4.

Definition 35. A sub-connector, SC;;, of connector C;; =< I, 0, R > with reference node N, is defined
as a tuple
SCiqg ©(I',O',R")
N' SN
RIS (N'XIdXTXN)YU(N'X(PxIdxCTxP)xN" (6.5)
R'CR
I'€N,O'SN

, where R’ is a partially connected sub-graph of a connector with graph R. Note that I' and 0’ can have
no intersection with I and O respectively. In the other direction of Definition 35, a super-connector of
Ciqg =<1,0,R > is a connector SupC;, of which C;, is a sub-connector.
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This definition of the sub-connector construct gives a rise to different types of sub-connector with respect
to the boundary interfaces of connectors. We can imagine four different sub-connectors as follows:

e I-Interface sub-connector: A sub-connector with I’ N 1 # @ but 0' N 0 = @. For example, SCseq1 =<
{A},{N1},{(4, 51,Sync, N1)} > as a sub-connector of Cg,, as specified in (6.2).

e IO-Interface sub-connector: A sub-connector with I’ N1 # @ and 0’ N O # @. For example, SCseqr =
< {4},{01},{(4,51,Sync,N1),(N1,52,5Sync,01)} > as a sub-connector of C, as specified in
(6.2).

®  O-Interface sub-connector: A sub-connector withI' N1 = @ but 0' N 0 # @. For example, SCseq3 =
< {N1},{01},{(N1,s2,Sync,01)} > as a sub-connector of Cs,, as specified in (6.2).

e Internal sub-connector: A sub-connector withI'NI = @and 0’ N 0 = @. For example, SCseqs = <
{N1},{N2},{(N1, f1,FIFO,N2)} > as a sub-connector of Cj,, as specified in (6.2).

There are also a number of special variants of sub-connector construct, which preserve different
properties of the original connector.

Definition 36. A basic construct is a special variant of sub-connector (Definition 35) that can be
replicated in order to grow the capacity of a connector without changing its behavior. This will cause
some structural change in the connector configuration by changing either of the sets in the
configuration triple (cf. Definition 34).
To be more specific, a basic construct (Definition 36) may be replicated without influencing I or O. For
example, consider a DynamicFIFO connector as illustrated in Figure 6.5. This connector is defined as
Cpynariro1before the change and as Cpynqriro2 after the change. As it is evident, there is no change in
either I and O and just the capability of this connector is increased without changing its behavior, which
is exposed by its ports.

CDynaFIFOl =< {A}, {B},{(A, fl, FIFO,B)}

Coynariroz =< {A},{B},{(4, f1,FIFO,N1),(N1,f2,FIFO, B)} (6.6)

A + B
[*}O @] »O
. |
AV Ve

Figure 6.6. A DynamicFIFO connector.

In a more formal way, applying a basic construct to a connector makes the initial connector an embedded
structure into the adapted connector.

Definition 37. An embedded sub-connector ESC;; & (I',0',R") of C;; = (I, 0, R) can be determined
by an embedding function as a one-to-one function from N’ to N such that every channel in R’
corresponds to a path in R.

In some cases, we need to define a sub-structure of a connector given that we must preserve all the nodes,
but we only need a subset of the channels connecting the nodes. This construct corresponds to a
maximum clique (“Maximum clique,” 2014) in graph theory.
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Definition 38. A factor FC;; = < I',0',R' > is a special kind of sub-connector of a connector C;y = <
I,0,R > with reference nodes N with the following properties:

N=N'
/ (6.7)
R' SR
In some circumstances, we need a construct to preserve the same channels between nodes that has been
defined in the initial connector. A sub-connector FFC;; is an induced (or full) sub-connector of C;; if it
has exactly the channels that appear in C;; over the same node set.

Definition 39. A full (induced) sub-connector of C;; =< 1,0,R > with reference nodes N is a
connector FFC;; = < I',0', R" > with the following properties:
N' SN 6.8
v(nl',id',t',n2") € R": (nl,id,t,n2) € R & (n1',id’,t',n2") € R’ (6.8)
In other words, FFC;; is an induced sub-connector of C;; if it has exactly the same channels that
appear in C;; over the same reference nodes N'.
We now need to define the means of traversing the constructs which we have defined for component
connectors.

Definition 40 (path in connector). A path in a connector is a sequence of channels, which connect a
sequence of nodes. A path in connectors is finite and always has a first node, called start node, and a
last node, called end node. Both of these are called terminal nodes and the other nodes are called
internal nodes of the path. A cycle is a path where the start node and end node are the same.
To be more formal, let us consider the concept in Definition 34 and more specifically Equation (6.1). Given
a connector configuration C;z & (I, 0, R), a path in this configuration is a triple:

PCid = (IP; OP; RP)
lIp] =10p| =1 (6.9)
Rp € R

, Where Ip is the start node and Op is the end node. The elements Rp form an ordered list of a subset of
channels in R in a way that only two nodes are repeated once in the channel tuples, one as the first
element and the other as the fourth element. The rest of the nodes are repeated once as first element
and once as the fourth element. If a path is a cycle, then Ip = Op.

Figure 6.7 represents a path in the sequencer connector in Figure 6.3. It can be represented as <
{A},{B}, ((A,s1,Sync,N1),(N1, f1,FIFO,N2), (N2, s4,Sync, B)) >.

s8¢ Sequencer

Osl f1 s4
A N1.:||N2 :B

Figure 6.7. A path in Sequencer connector.

Definition 41. The size of a connector C;; =< 1,0, R > is the number of channels in it, denoted by |R|
or [|Cigll-
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Definition 42. The length of a connector C;y =<1,0,R > is the size of the longest path P, in the
connector, denoted by £(C;y).
As an example the size and the length of the sequencer connector represented in Figure 6.3 is five and
three respectively.

Definition 43. For a node N, the number of channel sink endpoints that meet in the node is called the
indegree (denoted as deg™ (V)) of the node and the number of source endpoints that meet in the node
is its outdegree (deg* (N)).
For all nodes in i € I (cf. Definition 34), deg~(i) = 0 and deg* (i) > 0. For all nodes in 0 €0,
deg*(0) = 0 and deg~(N) > 0. For the rest of nodes inn € N, deg~(n) > 0 and deg™(n) > 0.

Definition 44. A connector C;q3 =< 1,0,R > is linear if
Il =101 =1

6.10
forneN,n¢l,0,deg*(n) =deg~(n) =1 (610

For a linear connector C;y =< 1,0,R >, £(Ciy) = ||Ciqll-
6.3.1.4. Connector composition

In this section, we define a number of operations on the constructs that we have defined already in the
previous sections to produce new connectors from the primary connector constructs. In graph theory,
there are some so-called "editing operations" (“Graph operations,” 2014) that create a new graph from
the original one by a simple, local change, such as addition or deletion of a vertex or an edge, merging and
splitting of vertices, edge contraction, etc. However, the main focus of this section is to define
compositional operations to derive a composed connector from primary ones.

Two connectors can be composed in different ways. The most intuitive way of composition is setting them
in parallel without creating any interconnection between them.

Definition 45. A parallel composition (juxtaposition) of two connectors Ciyy =< 1;,04,R; >
and Ci4, = < I,,0,, R, > is described as follows:
Cia1®pCiaz =<I1,0,R >

0=01U02
R=R1UR2

Another intuitive way of composition is setting them in sequential order by connecting the output ports
of one connector to the input ports of the other connector.

Definition 46. A sequential composition of two connectors Cjz; =< 1,04,R; > and Cjz, =<
I,,0,,R, >,if|0| = |1,], is described as follows:
Cia1®sCia2 =<1,0,R >

1=1

1 (6.12)
0=02
R=R,UR,

Parallel and sequential composition are two special cases of general definition of composition in
Definition 47.
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Definition 47. A composition of two connectors Ci4, = < 11,04, Ry > with reference nodes N; and
Ciq2 = < I, 04, R, > with reference nodes N, is described as follows:

Ciq19D.Cig2 =<I1,0,R >

L =(Ly,Ly), Ly = ({n},n3}, ... {nl,nb}), L, = (nt, ..., n")

R' =R, UR,,R =reny(R")

reny(< q,id, t,s >) =

<(qeLl—»nh,q)idt (s €L? - nls)> (6.13)

reny(< q,pq,id, ct,py, s >) =

<(qe Lll1 - nl,q),py,id, t,p,, (s € Llf - nl,s) >

I'=; VL) \ 13,0 =(0,VU0;)\ O

N =((NUN)\ L) UL,

, where L is an ordered list that determines the nodes, which are superimposed, as well as the substituting
nodes. L4 is the ordered list of superimposed nodes and L, is the ordered list of substituted nodes. I5 is a
set of input boundary nodes, which belong to L; and 05 is a set of output boundary nodes, which belong
to L,. reny is a function that is responsible for changing the labels of source and sink channel ends in R’
to produce R. The notation (¢ — s,q) corresponds to McCarthy’s conditional, returning s or q if
predicate ¢ evaluates to true or false, respectively.

Note that the parallel composition (Definition 45) and the sequential composition (Definition 46) are two
special cases of composition in Definition 47. In the former, L = (@,0), and in the latter, L; =
({o},i3}, ..., {0},it}) , where ol € 0,,it €1, . As illustrated in Figure 6.8, S3 =505, L =
(({N1,N3},{N2,N4}), (N5,N6)).

ST s

s5 2 s8
o1 oz C N4 D
N3
s2 s3
O s1 fl s4 56 s7
A N1 N2 B
03 04

c O N5 N6 C D
s6 s7
03 04

Figure 6.8. Composition of two connectors.

6.3.1.5. Connector sub-structures

In Section 6.3.1.3, we defined intuitive constructs based on component connectors, while in this section,
we intend to provide more complicated sub-structures and some properties that are defined based on
the verifiability of such structures.
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Definition 48. A connector cut is a partition of the nodes of a connector into two or more sub-
connectors. A cut-set of the cut is the set of channels whose channel ends reside in nodes, which belong
to different subset of the partition. Channels are marked to be crossing the cut if they are in its cut-set.
Formally speaking, a cut C_Cut = (Ny, ..., N,,) is a partition of reference nodes N of a connector C;; =
<I,0,R >. As a result, n sub-connectors SCjg1 =<1;,01,R1 >,...,5Cign = < I,,, Oy, Ry, > are
formed. Note that N = N; U ...U N,, and Cut_Set = R\ (R, U ...U R,,) is the channels that are cut to
form the sub-connectors. The size of a cut is [Cut_Set|.

Figure 6.9 illustrates two sub-connectors, which resulted from cutting S1 in Figure 6.8. Cut-set in this
example is Cutg,; = (N1, f1, FIFO, N2) and the size of the cut is one.

24 54 24 S5

O 01 O
O sl s2 o2 353
= N1 N2 mae® B
Figure 6.9. Sub-connectors resulting from cutting S1.

Definition 49. A connector C;; =< 1,0, R > is called connected if every pair of nodes in N is connected
through one or a set of channels in R without considering their directions.
For example, the connectors in Figure 6.3 and Figure 6.4 are connected, but the connector in Figure 6.10
is not.

%24 SimpleC
——0

A O B

_ OO

Figure 6.10. A disconnected connector.

Definition 50. In a connector C;; =< I, 0, R >, a connector partition is a set of nodes and channels
P =< N', R' > with the following properties:
N' SN

, (6.14)

R'SR
For example, for the connector S1 in Figure 6.8, P1 =< {4, B}, {(4, s1,Sync, N1), (N2, s4,Sync, B)} >.
Note that this partition can be disconnected as the P1 partition demonstrates. Also, note that none of the
nodes involved in the definitions of channel set R’ is part of N'. For connected partition, we need another
concept to be defined.

Definition 51. In a disconnected connector C;; =< 1,0,R >, a connected partition is a minimum
number of connected sub-connectors SC;z1 =< I;,01, Ry >, ..., 5Ciq1 =< I;, Oy, R, > in a way that
R=R{U..UR,
I=LU..Ul, (6.15)
0=0,V..U0,

For example, the connector in Figure 6.10 has two connected partitions.
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Definition 52. Let connector C;; =<1, 0,R > be a connector with reference nodes N. A structural
variant for C;4 is a connector C;y, =< I', 0', R' > with the following properties:
I'=1

6.16
0'=0 ( )
By considering Definition 52, when R c R’, the connector is expanded (such as Figure 6.11) and, when
R' c R, the connector is shrunk (such as Figure 6.12). A special case happens when R N R’ = @. This is
the case when the connector is replaced with a new set of channels, but with the same boundary nodes.

5356

Figure 6.11. A structural variant of Sequencer connector.

2457

O O
PNG

O

A B

Figure 6.12. A structural variant of Sequencer connector.

Definition 53. Let connector C;; =< I,0,R > be a connector with reference nodes N. An equivalent
variant for C;; is a connector C;y, =< I',0’,R’ > with reference nodes N’ that hold the following
properties:

I'=1

0'=0

R = . R (6.17)
=Id

N' =N

, where R' =;; R means the tuples in both sets are identical, but their id € Id might be different.

Definition 54. Let connector C;; =< I, 0, R > be a connector with reference nodes N. An structurally
equivalent variant for C;; is a connector C;z, =< 1I',0',R’ > with reference nodes N’ that hold the
following properties:

I'=1

0, =0 (6.18)
R =, R

N' =N

, where R' =, R means the tuples in both sets are identical, but their channel types t € T might be
different.
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6.3.2. Connector reconfigurations

The main focus of traditional architecture-centric software evolution (Ahmad, Jamshidi, & Pahl, 2014;
Jamshidi et al., 2013; A. J. Ramirez & Cheng, 2010) is the addition or removal of individual components,
rather than the reconfiguration of underlying interaction protocols. This section, however, discusses
architectural adaptations (we use reconfiguration interchangeably) of component connectors introduced
in Section 6.3.1. The focus of this section is to provide the foundation to define reconfigurations, which
affect significant parts of the connector by adopting the structures that are defined in Section 6.3.1.

We follow a more general perspective of reconfiguration of connectors here. We consider a
reconfiguration to be any transformation from a connector C;y = <1,0,R > to another connector
Ciar =<TI',0',R" > through a sequence of elementary change operations. Our aim is to build a
foundation for enabling runtime adaptation of component connectors through generic and reusable
adaptations. Later on, we define different categories of reconfiguration based on this general
interpretation of adaptation. As a specific case, we can restrict reconfigurations by ruling out the ones
that do not preserve some specific properties. For example, one can only consider structural restrictions
such as preserving boundary interfaces I or O. As another example, one may only be interested in
reconfigurations that preserve the initial behavior of the connector. This requires an underlying semantic
model of the component connector.

Definition 55. A connector homomorphism f from a connector C;; =< 1,0, R > to a connector C;z, =
<I'O',R" >, written f:C;y = Ci4’, is a mapping f: N — N’ from reference nodes N of C;; to N’ of
C;q, such that (n1,id, t,n2) € R implies (f(n1),id’,t', f (n2)) € R'. C;4 is said to be homomorphic to
Ciqs- If f: N > N' is a one-to-one function whose inverse is also a homomorphism, then f is a
isomorphism of the connectors.

Definition 56. Let connector C;y =< 1,0,R > be a connector with reference nodes N. A structure
preserving reconfiguration r is a connector homomorphism (Definition 55) when applied to Ci4,
denoted by C;; - 1, yields a structural variant (Definition 52) C;;, =< I',0',R' > of it.

Definition 57. Let connector C;; =< I, 0, R > be a connector with reference nodes N. A removal from
a connector remove is a reconfiguration that cuts a partition P, =< N;, R; > out of connector C;; and
removes the orphaned nodes. Application of remove to C;, is represented as C;4 - remove(P;) and
yields a new connector C;y, =< I',0’,R" > with reference node N'.

N' SN

I'cl

0'co

R'=R\R;

(6.19)

Let consider connector S6 in Figure 6.11 and the connector partition
Pge =< {N3},{(N1,f1,FIFO,N3),(N3,f2,FIFO,N2)} >.

The application of the removal operation S6. remove(Pgg) will result in connector S6’ as it is depicted in
Figure 6.13. Note that after the removal of the two channels, the node N3 becomes orphaned and as a
result it should be removed.
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Figure 6.13. A reconfigured version of sequencer connector after application of removal.

Definition 58. Let connectors Cj43; = < 11,04, Ry > and Cjq, = < I,,0,, R, > be two connectors with
reference nodes N; and N, respectively. An insertion of C;;, into Cjzq is an special case of
composition of the two connectors in a way that a node connecting two or more channels in Cjzq will
be disconnected and C;, is inserted into the room created by that separation by stitching nodesin J ©
N; X N, X N. This reconfiguration is not structure preserving because the boundary nodes may be
changed by this reconfiguration. Application of insert to C;44 is represented as Ci4q - insert(Cigz, /)
and yields a new connector C;;3 =< I3, 03, R3 > with reference node Nj.

IS,

0, € 05

R; =reny (R; URy)

INs| = [Ny| + [N2| = IJ] + 1

(6.20)

Let us consider the sequencer connector in Figure 6.3, a simple connector I1 asin Figure 6.14 and stitching
nodes | = {(N2,4,N3), (N2, B, N4)}. The application of insertion Sequencer. insert(I1,]) would result
in a new connector Sequencer’, which is a variation of sequencer connector called proactive waiting
sequencer as depicted in Figure 6.15. This insertion is not structure-preserving and adds a new node il to
the boundary nodes of the sequencer. Moreover, as in (6.20), 8 =6+ 3 —2 + 1 holds for this
reconfiguration.

Sed 11

A B

Figure 6.14. A simple connector.

f24 Sequencer’

01 , i1 ol 02
S
sl fl 7 I
A N1 N3 N4

Figure 6.15. The proactive waiting sequencer.
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Definition 59. Let connector C;; =< 1,0, R > be a connector with reference nodes N. A replacement
is a structure-preserving (Definition 56) reconfiguration replace that replaces a partition P; =<
Ni, R > (cf. Definition 50) of connector C;; with another connector partition P, =< N,, R, > by
stitching nodes in | € N; X N, X N3 . The application of replace to C;; is represented as Ci,; -
replace(Py, P,,]) and yields a new connector C;g, =< I',0',R" > with reference nodes N'.

N; €N

Ri SR

I'=10"=0 (6.21)

R" =reny,((RUR) \ Ry)

N' = (NUN;)\ N,

, Where each element in triple J respectively indicates which pair of nodes from P; and P, are to be
joined to form a new set of nodes as in N'.
Let us consider the proactive waiting sequencer in Figure 6.15,

P, =<{01,02},{(N1,s2,Sync,01), (N4,s3,Sync,02)} >,
P, =< {03,04},{(N5,ls1, LossySync, 03), (N6, Is2, LossySync, 04)} >,
J = {(N1,N5,N7), (N4, N6, N8)}

The application of the replacement operation Sequencer’.replace(P;, P,,]) will result in connector
Sequencer'" as depicted in Figure 6.16.

224 Sequencer”

03 Q i1 Q Q 04
ils1 sdl 52!
sl | f1 f2 | <4
——0 — PO —0
A O N7 N3 N8 B

Figure 6.16. The proactive waiting weak sequencer.

6.4. Adaptation Effectuation through Dynamic Software Product Lines

In this section, we first review existing work that addresses dynamic adaptation of software systems
through the concept of variability in the underlying software, which is considered as a relevant work in
the software product line community. We then use the concept of feature models to define connector
modes with the structural construct that we defined in Section 6.3.1. Finally, we propose our mode-based
adaptation mechanism based on a reasoning mechanism on feature models corresponding to the
connector mode configurations.

6.4.1. Runtime adaptation and dynamic software product line

According to the approaches reviewed in Section 6.2, a limited set of architectural configurations is
determined and associated with environmental situations. As a result, they restrict the variability space
of self-adaptive software in a dramatic way. However, the relationship between self-adaptive software

211



and its surrounding environment is not that straightforward. This relationship affects application
functionality, non-functional requirements and the inherent capability of the platform on which the
software system is running. Capturing this complex relationship with a limited set of architectural
configurations imposes a risk of overlooking important environmental situations and missing architectural
configurations (Perrouin & Chauvel, 2008).

Software Product Line (SPL) engineering is a way to deal with varying user requirements that lead to the
derivation of customized product variants. Once the product has been created, they tend to keep their
structure and behavior throughout their lifetime. However, Dynamic Software Product Lines (DSPL)
embrace software systems that are capable of modifying their own structure or behavior with respect to
environmental situations by using runtime adaptation (C Cetina, Giner, Fons, & Pelechano, 2010). This
capability of changing the structure and behavior is enabled by a traditional notion of variability in SPL.
However, as opposed to the traditional perspective, in which variants are decided for the variation points
at design-time, the variability in DSPLs is bound or unbound at runtime. Moreover, the binding decisions
on the variations may change several times in its lifetime (Hallsteinsen et al., 2008). Therefore, DSPL is
regarded as an efficient approach to build dynamic adaptive software (Hallsteinsen et al., 2008).

There are different works focusing on adaptation of software systems based on the different kinds of
software artifacts driven by the variability bindings. As a result, the relationship between variation points
and variants are also different. Trinidad et al. (Trinidad, Cortés, Pefia, & Benavides, 2007) associate feature
models to component architecture for building a DSPL. The mapping is one-to-one and adaptation can be
realized by dynamic connections between specific components. However, this one-to-one mapping
contradicts the clear separation between functional and architectural dimensions. Wolfinger et al.
(Wolfinger, Reiter, Dhungana, Grunbacher, & Prahofer, 2008) propose the same sort of mechanism, but
combining it with a plug-in technique. The adaptation is enabled by loading and unloading the plug-ins at
runtime. Lee et al. (Kotonya, 2010) present their work on service-based systems. Therefore, the
adaptation is mapped to service selection with the right quality level. Perrouin et al. (Perrouin & Chauvel,
2008) clearly separate the variability space into the three dimensions functional, platform and topological.
Feature model, component repository and collaboration diagram manage the three variability spaces
respectively. Hallsteinsen et al. (Floch et al., 2006; Hallsteinsen, Stav, Solberg, & Floch, 2006) define
variability directly in the reference architecture. The architecture constitutes component, which realize
component types as variation points. Lee and Kang (Lee & Kang, 2006) introduce the notion of a binding
unit, which are used to identify architectural components by grouping features. Montero et al. (Montero,
Pena, & Ruiz-Cortes, 2008) focus on managing variability in business processes. Cetina et al. (Carlos Cetina,
Giner, Fons, & Pelechano, 2009) focus on reconfiguration of architectural models based on reasoning on
feature models.

These works are based on the clear mapping between the features and the software artifacts whether it
is a component, service, plugin or process variant. Shen et al. (Shen, Peng, Liu, & Zhao, 2011) propose a
solution of managing complex relationships between variability model and variants. They introduce a role
model to clarify this complex mapping.
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Table 6.4. Variability binding in existing approaches.

Approach Variability Variant Relationship
(Trinidad et al., 2007) Feature model Component 1-to-1
(Wolfinger et al., 2008) Feature model Plug-in 1-to-1
(Kotonya, 2010) Feature model Service 1-to-N
(Perrouin & Chauvel, 2008) Feature model Component 1-to-N
(Hallsteinsen et al., 2006) Reference architecture | Component 1-to-N
(Floch et al., 2006) Reference architecture | Component 1-to-N
(Lee & Kang, 2006) Feature model Component 1-to-N
(Montero et al., 2008) Feature model Process variant 1-to-N
(C Cetina et al., 2010) Feature model Service configuration M-to-N
(Shen et al., 2011) Feature model Code M-to-N

6.4.2. Feature models for component connectors

In general, a feature is an increment in functionality of a system (Czarnecki, Helsen, & Eisenecker, 2004).
The features are typically related through a hierarchical tree structure, called feature model. This
structure has top-down optional/mandatory relationships, cross-node alternative/or relationships and
crosstree requires/excludes constraints. However, the features in feature models are inherently symbolic.
Therefore, in order to give them a precise semantics, we need to map features to other models
corresponding to the structure or behavior of a software system. In this section, we use the concepts of
connector configuration, as formally defined in Section 6.3.1, for mapping feature models to concise
representations of variability in connector configurations. Therefore, the feature models that we consider
throughout this research express connector variability, meaning that feature models are devoted to the
modeling of the variation points and their relationships in a given component connector.

Definition 60. A feature model FM = (F, ¢) is defined as a finite set of features F = {f3, f, ..., fu}

and ¢ as a propositional logic formula over F.
An example of a feature model of the sequencer connector is represented in Figure 6.17. Data_In and
Data_Out are features that correspond to the capability of the sequencer to have ports for accepting
data and releasing the data out of the connector. The feature Output determines the output ports, which
facilitate sequential delivery of data to the corresponding entities. The feature MiddleLayer determines
the protocol of interactions between the output ports. Data_In, Data_Out and Output are mandatory
features. The MiddleLayer feature can be optionally selected to enhance the output interaction with
one of its alternative sub-features. The Output feature can be optionally refined with more than one
output instances maximum of five.
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Sequencer Legend:
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Figure 6.17. Sequencer connector feature model.
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Figure 6.18. Refined sequencer connector feature model.

According to Definition 60, F = {Sequencer,Datay,, Datay,:, MiddleLayer,Simple Buffer,
Proactive Dependent, Proactive waiting, Output, Outputl, Output?2, Output3, Output4, Output5.

With respect to Definition 60, we now define the concept of configuration (that corresponds to a
connector operating mode).

Definition 61. A set of all selected features in a feature model FM = (F, ¢b) that satisfy the constraints
in ¢ is referred to as configuration:
CC = SF={fi,fo, - fm}
SFCF
Vf € SF: f.selected = true
SF+¢

(6.22)

For example, the current configuration of the sequencer connector S1 represented in Figure 6.19 is as
follows:

CCs, = {Data;y, Datagy, MiddleLayer,

6.23
Simple Buf fer, Output, Outputl, Output2} ( )
fads1
01 02
o a2 a Ul o«
A N1 N2 B

Figure 6.19. Initial configuration (mode) of sequencer connector.

214



The rules for selecting features from a feature mode that satisfy the constraints of the model can be listed
as follows:

If a feature is selected, its parent must also be selected.

If a feature is selected, all of its mandatory children in an “AND” group must be selected.

If a feature is selected, at least one of its children in an “OR” group must be selected.

If a feature is selected, exactly one of its children in an “Alternative” group must be selected.

P wnN e

Definition 62. Let us consider FM =< F,¢ > be a feature model, [FM] denotes the set of valid
configurations of the feature model FM.
VCC; € [FM]:CC; S FACC; + ¢ (6.24)

Since features in the feature model for component connectors represent a coarse-grained coordination
protocol, there is a need to determine which connector elements are represented by each feature. In the
context of this work, we assume that component connectors are defined as Definition 34. Figure 6.19
shows a sequencer connector using graphical notations, which are equivalent to its formal representation.
We map the features to connectors by the following operator.

Definition 63. The feature to connector map operator takes a feature f € F and returns a connector
partition p € P¢,, (cf. Definition 50) of connector ;g = (I, 0, R) as follows:
F2C:F - P

(6.25)
Vi, f2: F2C(f) NF2C(f) = @
In the context of the sequencer connector S1 in Figure 6.19,
F2C(Data_In) =< {A},{(4,s1,Sync,N1)} > (6.26)

F2C(Simple Buf fer) =< {N1,N2},{(N1, f1, FIFO,N2)} >

Assume a need to restrict the second output port such that it is accessed after it receives an
acknowledgement from the component that is connected to the first output. The pro-active waiting
feature lets the first component acknowledge its termination and the coordination protocol to memorize
it. By choosing this feature as part of feature set in the current configuration, it yields the proactive-
waiting sequencer connector mode S8 as illustrated in Figure 6.20. In the context of S8,

F2C(Proactive waiting) = < {N3,i1},{(N1, f1,FIFO,N3),

6.27
(N3,sd1,SyncDrain,il), (N3, f2,FIFO,N2)} > (6:27)

Note that we can apply, for example, more of such basic constructs (see Definition 36) to grow this

connector up for creating more connector modes.
8458

sl fl f2 54
A N1 N2 B

Figure 6.20. The “pro-active waiting” sequencer connector mode.

Consider again the sequencer connector, but with new capability. Imagine that the components
connected to the ports 01,02 may fail for a long period of time, which leads to a deadlock in the
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connector. The possible solution is to choose weak versions of output instead of strong counterparts. This
avoids the problem by not enforcing the components to respond when they are not working properly.
Figure 6.21 illustrates the new mode of the connector, which is called weak sequencer. Note that the
connector mode illustrated in Figure 6.21 is a structurally equivalent connector (cf. Definition 54) to the
connector shown in Figure 6.19.

$4s9

019 Qoz

i I3
f1

A O - .I NZS4 B

N1

Figure 6.21. The weak sequencer connector mode.

Now consider the situation in which the result of the second component is complementary with respect
to the first one. Therefore, whenever it fails, the system should proceed normally through port B and
disregard port O2. This requirement is met by selecting the weak version of the second output resulting
in a new mode called quasi-weak sequencer shown in Figure 6.22.

524510

A

Figure 6.22. The quasi-weak sequencer connector mode.

Now suppose that a new requirement forces a dependence between components in the sequence. To be
more specific, consider the second component connected to the port 02 is executed with the result of
the first component and whenever the second component is not ready to consume the result, it should
be memorized. The pro-active dependent feature meets the envisage requirement. By selecting this
feature, a new mode called pro-active dependent sequencer results as shown in Figure 6.23.
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Figure 6.23. The “pro-active dependent” sequencer connector mode.

6.4.3. Mode-based adaptation of component connectors through feature models

In this section, we use the feature-based representation (see Section 6.4.2) of component connectors to
facilitate the mode-based adaptations of component connectors. Note that mode-based adaptation is the
mechanism we adopted to enable the self-adaptation process for component connectors that is proposed
in this thesis.
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Figure 6.24 represents the process of product derivation, where artifacts are composed according to a
valid configuration, which is compliant with the feature model. The process of product derivation is
accomplished at design-time to produce a variant of a software solution among different valid variants by
resolving the variability points in the model. However, the process of variant derivation based on DSPLs is
slightly different.
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Figure 6.24. Product derivation process in SPL.

The process for dynamic adaptation based on DSPL comprises two steps. As depicted in Figure 6.25, at
design-time, an initial feasible configuration of the system is derived. At runtime when the situation of
the operating environment is changed and the current configuration cannot satisfy a desired non-
functional requirement, a new configuration needs to replace the current one. In this thesis, we follow
such adaptation process. This process comprises adaptation reasoning (see Chapter 5) to find a suitable
configuration that can be enacted (the subject of this chapter) through variability resolution at runtime.
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Figure 6.25. Dynamic adaptation of software system with variability model at runtime.

In some circumstances, for example when the initial requirements have been changed, the feature model
itself needs to be adapted. The change in the variability model can be quite common for software systems
whose target configurations are dynamically discovered at runtime. The change in the variability model
results in a new feature model that may be required to be resolved at runtime and as a result causes some
changes in the current configuration. In this thesis, this type of change is not considered as a part of the
adaptation process since we assume that the modes of the component connectors are entirely discovered
at design-time.
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Definition 64. The Feature Configuration Model (FCM) defines a feature model, FCM = (F.;;,, ®cm),
where all variabilities of the original feature model FM = (F, ¢) are resolved and the subsequent
product derivation results in only one variant corresponding to the configuration, CC (see Definition
61), of an specific mode of the connector:
Fop=CCCSF

¢cm|_¢

An adaptation execution for a connector can be simply seen as set of variant substitutions for given
variation points. Let us consider that the current configuration of the running connector corresponds to
mode CM, and the target configuration that is derived based on the adaptation reasoning corresponds to
CM,. Each of these connector modes have their corresponding resolved variability models denoted by
FCM; = (F,, ¢5), FCM; = (F;, ¢;), see Definition 64. Because of such a definition, the key problem of
adaptation execution (see Figure 6.1) boils down to the transition from current mode to the target mode
through their corresponding feature configuration models. The added and removed features can be
identified by calculating the following equations:

(6.28)

Faqa = F¢ — Fs

(6.29)
Feem =K —F

Then by adopting the feature to the connector map operator, the added and removed connector
partitions paaq € Pc, , Prem € Pc, (cf. Definition 50) of connector C; = (I, 0, R;) can be located and
respectively be added and removed from C;4. This results in a new connector mode C; = (I, 0, R;) with
the following relations:

Pada = F2C(Faaqa) =< Naga, Raga >
Prem = FZC(Frem) =< Nrem) Rrem >
R; = Ry + Rgaa — Rrem

(6.30)

At the execution level, we need to determine the order in which these changes have to be applied, and
maintain the consistency of the connector by checking the connectivity (to evaluate whether the condition
in Definition 49 is valid) of the connector throughout this transition. Checking this connectivity is
straightforward because it should always be possible to find a path (Definition 40) from the input nodes
I to output nodes O by traversing the elements in R in the current configuration of the temporal
connector.
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6.5. Limitations and Threats to Validity

The approach for adaptation execution that we proposed in this chapter is demonstrated through the Reo
language. However, this approach is general enough as long as we can map the language structural
constructs to the graph theory constructs as we demonstrated for Reo in Section 6.3 via various
definitions. The operationalization of adaptation process that is discussed in Section 6.4 is based on tree-
based feature models that can be mapped to the structural constructs via Definition 63.

However, there are different connector models and languages in the literature (see a review of existing
connector languages in (Bruni et al., 2013; Kell, 2007)) and these are based on different theories and
technical machineries (Bliudze & Sifakis, 2007). For instance, a connector may impose a handshaking
constraint between a sender component and a receiver component (Milner's Calculus of Communicating
Systems), or it may demand for an agreement on the action to be executed next by the connected
components (Hoare's Communicating Sequential Processes). As a result, a threat to external validity of
this approach is the choice of specific connector language (i.e., Reo) used for demonstration purposes and
communicating the results of this thesis. This threat, however, is mitigated as far as possible by formally
defining general-purpose structures using graph theory and widely adopted feature models.

6.6. Conclusions

In this chapter, we have presented the execution phase of the MAPE-K loop. We have adopted two solid
and well recognized theories to enable such adaptation effectuation for component connectors, i.e.,
graph theory and variability modeling. We adopted graph theory to formally define the structure of
connectors and reason about structural changes at an appropriate level of abstraction. We also showed
how to reason about mode changes based on feature models corresponding to the modes of connectors
and use the formal structural constructs to derive adaptation actions. We have also presented the
adaptation itself as the change of a connector from one current operating mode to a new target mode.
The variability model changes of our connectors are mapped into reconfiguration actions in order to adapt
the connectors at runtime. We have based the reconfiguration on Reo that, due to its reconfiguration
properties, enables products to switch channels and structural configurations.

This chapter concludes the technical contribution of this dissertation, which started in Chapter 4 with a
learning mechanism to calibrate analytical models corresponding to the component connectors
embracing the existence of uncertainties. We have explained the adaptation reasoning to derive the right
mode for the connector given the current situation at runtime in Chapter 5. Although this section
introduces a novel structural reasoning for component connectors, and the combination of feature-based
and structural reasoning based on graph theory is new, this chapter acts as a supplementary solution
component. The next part of this dissertation discusses the advantages and limitations of the proposed
solution framework, and provides comprehensive details on the experimental evaluation and tool support
developed for this research work.
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Chapter 7

7. Implementation and Evaluation

“The difference between theory and practice is that in theory, there is no difference between theory and

practice.” Anonymous
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7.1. Introduction

In this chapter, we show how the three key parts of the solution framework (i.e., RCU framework) are
integrated to enable self-adaptation of component connectors through a real-world case study. To
conduct this research, we followed the guidelines of the action research methodology (Chapter 1) that
provides a rigorous set of steps focused on planning (Chapter 2, Chapter 3) and conducting the research
(Chapter 4, Chapter 5, Chapter 6) along with the evaluation of the research results (this chapter). In the
self-adaptation process, we have devised mechanisms to calibrate the runtime models as presented in
Chapter 4. After a requirement violation is detected in an updated analytical model based on monitoring
data, a decision needs to be made for what operational mode is appropriate to fix the violation. Then the
decision needs to be enacted on the running connector and the operating mode of the connector is
changed accordingly. We present the mechanisms for such decision-making and change execution in
Chapter 5 and Chapter 6 respectively. The focus of this chapter, on the other hand, is on an experimental
evaluation of these above-mentioned solution components (cf. Figure 7.1).

Autonomic Manager H

N 4

Base-Level Software

Users
Figure 7.1. Scope of Chapter 7.

The main contributions of this chapter are to show the validity of the research claims we have made in
the Introduction (Chapter 1):

e How the solution components are integrated with each other to realize the feedback control loop.

e To evaluate the “computational complexity”, “stability”, and “robustness” of the adaptation
reasoning controller that enables the self-adaptation of component connectors.

e To show the “applicability” and “usability” of self-adaptive connectors in a real-world context.

The outcome of this chapter is a number of empirical and experimental results as well as proof of concepts
that results that not only demonstrate the validity of the research claims but also address RQ3 (cf. Chapter
1) that calls for evidences of real-world applicability of our solution framework, i.e., RCU.

The remainder of this chapter is organized as follows. This chapter begins with a high-level overview of
the proposed solution framework in Section 7.2. Details about the criteria for evaluating the solution
framework are presented in Section 7.3. The key section of this chapter (i.e., Section 7.4) includes details
of the case study through an empirical research. Results regarding the experimental evaluation of the
solution framework are also presented in Section 7.4. A discussion of limitations and threats to validity is
presented in Section 7.5. Finally, we conclude the chapter by reviewing the research claims and their
support in Section 7.6.
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7.2. An Overview of the Proposed Solution Framework

An overview of our approach to enabling reliable self-adaptation of component connectors is shown in
Figure 7.2. As illustrated, the approach covers both design-time and runtime. During design-time, the aim
is to design appropriate architectural modes of the connector and verify them against expected
requirements. At runtime, while the connector starts operating, the framework monitors quality data.
The non-functional requirements are continuously verified with respect to runtime data that may reflect
changes in the environment's behavior. In the case of detected violations, a mode change is decided and
enacted accordingly. In the following, we briefly discuss each phase in turn and describe the relevant
activities.
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Figure 7.2. The proposed framework.

(i) Design-Time. The approach begins at design-time when the operating modes of the connector are
determined. The key point of the design is to specify both the architecture of the connector in each mode
as well as the known properties of its enclosed elements. The architectural design is then transformed to
parametric versions of probabilistic models comprising Discrete-Time Markov Chains (DTMC) for reliability
purposes and Continuous-Time Markov Chains (CTMC) for performance purposes. Then, the probabilistic
counterpart of the architectural design is verified against expected non-functional requirements by using

parametric model checking. Different configurations resulting from different applications of
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reconfiguration patterns are model checked in the different environment conditions for which they are
conceived. The goal is to show whether or not the different configurations can satisfy non-functional
requirements. The designer may look at the analysis results and may modify the architecture design
accordingly. We chose parametric model checking because some channel properties are not known at
design-time so they need to be specified by variable parameter.

Model-to-Model Transformation and Parametric Verification. The objective here is to enable a runtime
efficient verification that evaluates non-functional requirements of the system while it is executed. One
possibility would be to use traditional model checking to achieve this goal. In this case, at design-time, we
would model check the architectural design in the different environment conditions in which they are
intended to work. At runtime, the model can also be analyzed by the model checker in the current
environment conditions. A failure of requirement satisfaction would then drive the application of a
reconfiguration pattern. This approach, unfortunately, is unlikely to work in practice, especially because
of the imposed time required by the verification step, which may lead to unacceptably late reactions at
runtime. To make runtime analysis feasible, we apply a parametric verification approach instead of the
classical one. In this case, parametric verification is performed at design-time and a formula is generated,
which is later evaluated quite efficiently at runtime when updated real data are available. The only
imposed overhead at runtime is the substitution of variables with real value. This is a fairly scalable
approach that has been shown that its runtime overhead is practical for even large-scale models. Note
that we borrowed this quantitative verification technique (Calinescu et al., 2012) from the PhD work of
Antonio Filieri reported in (A Filieri et al., 2013; Antonio Filieri, Ghezzi, & Tamburrelli, 2011; Antonio Filieri,
2013). An overview of such parametric verification is shown in Figure 7.3.

To evaluate requirements, the architectural design is transformed into parametric Markov models. The
transformations from Reo architecture models into Markov models are performed by Reo2MC tool chain
(Moon, 2011). Regarding Markov models, parametric DTMCs are used to verify reliability properties, while
parametric DTMCs with rewards are used to verify cost properties (e.g. channel utilizations). Note that
such properties (i.e., quantifiable non-functional requirements) are expressed as formulae written in the
PCTL and CSL temporal logic and their extension is based on the concept of rewards as we described in
Chapter 2.

The parametric Markov models and the property formulae are fed into PARAM model checker (“PARAM
Model Checker,” 2013). The resulting formulae are used for two purposes. Firstly, they are used for
design-time verification of different coordination configurations. In this case, we have to make
assumptions about quality data for the parameters. The values represent the environment conditions we
predict, and for which we want to prove that appropriate modes are discovered at design-time that can
satisfy the requirements. Secondly, when no mode is able to satisfy the requirements, the designer should
change the set of connector modes. Furthermore, these formulae are used for runtime analysis and
planning to perform continuous verification and reconfiguration.

(ii) Runtime. When the procedure moves to runtime, the quality data collected through monitoring must
be transformed into values that can be used in the parametric model checker. This transformation in
general depends on the abstraction that model parameters realize on measurable data in the
environment. The transformation from monitoring data to model parameters is described in Chapter 4.
The updated parameters are used to substitute the formulae in order to verify the current satisfaction. In
case the verification detects any violations, an adaptation is decided to replace the current configuration
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of the connector. The details of such adaptation reasoning are described in Chapter 5 of this thesis. Having
decided about the appropriate operating mode, the change to the configuration of the running connector
needs to be executed. The details of such change enactment are described in Chapter 6.
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Figure 7.3. Parametric requirement verification process.

7.3. Evaluation Criteria

Since a critical solution component of our RCU framework responsible for reasoning on adaptation is a
fuzzy controller, we needed to borrow some criteria that has been typically used in control engineering
for evaluating the properties of controllers. From the perspective of control engineering, a controller
should be able to provide the following properties (Hellerstein et al., 2004):

Stability. A control system is stable if there exists a converge point to which the system approaches.
As time tends to infinity, the distance to the equilibrium point tends to zero. In other words, when a
controlled system becomes unstable, the output of the system will not converge.

Absence of overshooting. An overshoot occurs when the system exceeds the setpoint prior to
convergence.

Low settling time. Settling time refers to the time required for the controlled system to reach the
setpoint.

Robustness. A robust control system converges to the setpoint despite errors or variations in the initial
model. This property defines how well the system will react to disturbances and inaccurate feedback
measurements, as well.

These properties can be interpreted from the perspective of software engineering. The adoption of
control theory has recently become popular in software engineering community. For example, we observe
that noticeable studies have been publishing in several venues, e.g., the ACM Transactions on
Autonomous and Adaptive Systems (TAAS), the International Conference on Autonomic Computing and
Communications (ICAC), the Symposium on Software Engineering for Adaptive and Self-Managing
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Systems (SEAMS), the IEEE International Conferences on Self-Adaptive and Self-Organizing Systems
(SASO), the Schloss Dagstuhl seminar on Software Engineering for Self-Adaptive Systems, and more
recently, the Gl Dagstuhl Seminar "Control Theory meets Software Engineering". It is very interesting that
the most recent ACM/IEEE International Conference on Software Engineering (ICSE) in 2014, there are
two papers that focus on the adoption of control theory for solving software engineering problems, i.e.,
(Antonio Filieri et al., 2014) and (D’Ippolito et al., 2014). As a result, such control theoretic evaluation
criteria can be interpreted from the perspective of software engineering. A controller in this new
perspective should be able to provide the following properties (Antonio Filieri et al., 2014):

e Stability. Stability refers to the property that the self-adaptive system maintains the objective despite
unpredictable deviations from expected behaviors; e.g., changing workloads or hardware failures. In
addition, the system should not react to transient external changes. For example, a controller for
adjusting system resources should not react to transient load changes. Instead, such a controller
should be able to distinguish between a condition of stabilized load changing that effects performance
and a short-lived load changes that will not have a lasting effect on the system.

e Robustness to inaccurate measurements. Controlling a running system usually relies on monitoring
and/or other measurement mechanisms. Each of these might be affected by noise, or might require
a certain time to converge to a convenient accuracy. A controller should provide a reasonable
behavior even in presence of such measurement errors. Besides reducing the sensitivity to
measurement errors, robustness allows for the use of less invasive monitoring instruments,
sometimes required for high accuracy but expensive in terms of performance overhead.

Note that here we do not consider the overshooting as it is not relevant in fuzzy controllers. The settling
time is also considered in the stability analysis of the designed controller.

In this chapter, we use the above-mentioned controller properties (i.e., stability and robustness) in
conjunction with the research claims of this thesis (i.e., runtime efficiency, scalability and applicability,
see Chapter 1) as evaluation criteria to assess the validity of the solution framework proposed in this
thesis. We use a real-world connector as a case study and we use an experimental evaluation approach
to demonstrate the validity of the solution framework in the next section.

7.4. Case Study, Implementation and Experimental Evaluation

In this section, we present a real-world component connector, we call it here ElasticQueue, which is used
in many cloud-enabled software applications. We use this component connector as a case study through
which we demonstrate the validity of the research claim 4 of this thesis (i.e., real-world applicability, refer
to Introduction chapter, cf. RQ3).

The approach presented in this thesis develops a set of techniques and methods to control the
uncertainties in the self-adaptation control loop of component connectors. However, it is not evident that
these techniques and methods are actually useful in real-world settings. In order to evaluate the
applicability of our approach in a real-world context, we present a case study and a number of
experimental evaluations to provide evidence of the applicability of our approach in real-world scenarios.

225



7.4.1. ElasticQueue as a concrete case of self-adaptive component connectors

In this section, we provide a number of usage scenarios of ElasticQueue in the context of cloud
architectures. A software application running in the cloud is typically expected to handle a large number
of requests from different geographic regions. If the application is designed to process each request
synchronously, it would then result in a high response time and a bad user experience. In order to resolve
this issue, a common design pattern is to pass requests through an intermediate messaging system to
another service (a consumer service) that handles them asynchronously. This strategy helps to ensure that
the business logic in the application is not blocked while the requests are being processed.

Cloud storage such as Queues makes it possible to architect decoupled applications. Queues are powerful
because they allow for client applications to submit messages at a high rate of speed, one that may exceed
the ability of the backend server to process. As the queue size begins to grow, more resources can be
added to increase scale and therefore process messages in a timely fashion. Therefore, queues have
become a core building block of cloud architectures. This design pattern is common in most cloud-based
applications and is not limited to the arriving workloads from outside the application, it may also be used
internally for smoothing requests in different parts of the application concerning different purposes. In
this section, we review different usage scenarios of such a pattern by giving concrete examples of
applications of this pattern in the architectural design of cloud applications. Note that we have identified
these usage scenarios by systematic investigation of existing literature and our own experience in the
development of cloud-based applications.

Usage scenario 1. Competing consumers (Homer, Sharp, Brader, Narumoto, & Swanson, 2014).

The number of requests could vary significantly over time for many expected or unexpected reasons. A
sudden burst in aggregated requests from multiple tenants may cause unpredictable workloads. At peak
hours, a system may need to process many hundreds of requests per second, while at other times this
number could be very small. Additionally, the type of the process performed to handle these requests
may be highly variable. Using a single instance of the processing component (cf. Figure 7.4) may cause an
overload in the messaging system by the arrival of messages to the application. To handle this fluctuating
workload, the system can run multiple instances of the processing component. The workload needs to be
load-balanced across consumers to prevent an instance from becoming a bottleneck. In this scenario, the
elastic queue stores the messages and consumers can pick up the messages from a single point for
processing.
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Figure 7.4. An instance of competing consumers in a typical cloud architecture.
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Usage Scenario 2. Prioritized requests (Fehling, Leymann, Retter, Schupeck, & Arbitter, 2014; Homer et
al., 2014).

Applications may delegate specific tasks to other services; for example, to perform background processing
or to integrate with other applications or services. In cloud applications, a message queue is typically used
to delegate tasks to background processing. In many cases, the order in which requests are received by a
service is not important. However, in some cases it may be necessary to prioritize specific requests (cf.
Figure 7.5). These requests should be processed earlier than others of a lower priority that may have been
sent previously by the application. The elastic queue, in this scenario, plays the role of temporal storage
for each priority line.
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Figure 7.5. The adoption of elastic queue in prioritized requests.
Usage scenario 3. Pipes and filters (Fehling et al., 2014; Homer et al., 2014; Medvidovic & Taylor, 2009).

An application may be required to perform a variety of tasks of varying complexity. The processing tasks
performed by each module, or the deployment requirements for each task, could change as business
requirements are amended. Some tasks might be compute-intensive and could benefit from running on
powerful hardware, while others might not require such expensive resources. Furthermore, additional
processing might be required in the future, or the order in which the tasks performed by the processing
could change. A sequence of message queues can be used to provide the infrastructure required to
implement a pipeline. An initial message queue receives unprocessed messages. As illustrated in
Figure 7.6, a component, acting as a filter, listens for a message on this queue, performs its work, and
then posts the transformed message to the next queue in the sequence. Another filter task can listen for
messages on this queue, process them, and post the results to another queue, and so on until the fully
transformed data appears in the final message in the queue. In this scenario, the elastic queue plays the
role of pipes in this architectural style.

227



Storage

Elastic Elastic ) ) Elastic Text Message
ul Queue Conve Queue Nois&Reduction  queye Sender
Component  coppector COoMPpREnt  connector CO™MRONeNt  connector Component
= e — —]
O
e e T R R e R

Cloud Platform

Figure 7.6. An example of pipes-and-filters architecture in the cloud by exploiting elastic queues.
Usage scenario 4. Load leveling (Wilder, 2012).

Many solutions in the cloud involve running tasks that invoke services. In this environment, if a service is
subjected to intermittent heavy loads, it can cause performance or reliability issues. A service could be a
component that is part of the same solution as the tasks that utilize it, or it could be a third-party service
providing access to frequently used resources such as a cache or a storage service. If the same service is
utilized by a number of tasks running concurrently, it can be difficult to predict the volume of requests to
which the service might be subjected at any given point in time (cf. Figure 7.7). It is possible that a service
experiences peaks in demand that cause overload and is unable to respond to requests in a timely manner.
Overloading a service with a large number of concurrent requests may also result in the service failing if
it is unable to handle the contention that these requests could cause. In this scenario, the elastic queue is
responsible for leveling the requests (cf. Figure 7.7).
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Figure 7.7. The adoption of elastic queue for load leveling.
Usage scenario 5. Request scheduling (Homer et al., 2014).

An application performs tasks that comprise a number of steps, some of which may invoke remote
services or access remote resources. The individual steps may be independent of each other, but they are
orchestrated by the application logic that implements the task (cf. Figure 7.8). Whenever possible, the
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application should ensure that the task runs to completion and resolves any failures that might occur
when accessing remote services or resources. These failures could occur for a variety of reasons. For
example, the network might be down, communications could be interrupted, a remote service may be
unresponsive or in an unstable state, or a remote resource might be temporarily inaccessible—for
example, due to resource constraints. If the application detects a more permanent fault from which it
cannot easily recover, it must be able to restore the system to a consistent state and ensure integrity of
the entire end-to-end operation. In this scenario, the elastic queue facilitates the scheduling of tasks by
temporarily storing them in a reliable and manageable storage.
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Figure 7.8. The adoption of elastic queue for request scheduling.
Usage scenario 6. Multi-cloud integration (Jamshidi & Pahl, 2014).

As illustrated in Figure 7.9, the integration dimension is very important when building cloud-native
applications that are distributed among different cloud environments of a hybrid cloud, or have to be
integrated with other applications (of one or several customers) hosted in different environments, on-
premises and in the cloud. The elastic queue, in this scenario, may reside on one (or both) cloud
platform(s) to enable the communications between different application layers.

Elastic .
Ul Put messages Queue Retrieve ProceSSIrlg
on the messages
Component elastic queue Connector for Components
for processing ) processing
d
Cloud Platform X Cloud Platform Y

Figure 7.9. An instance of integration in multi/hybrid cloud by heterogeneous components with elastic queue.
Usage scenario 7. Hybrid integration (Jamshidi & Pahl, 2014).

Figure 7.10 shows a processing functionality that experiences varying workload. This component is hosted
in an elastic cloud while the rest of an application resides in a static environment (such as an on-premise
data center). The elastic queue, in this scenario, plays an important role for integrating the different parts
of the hybrid deployment.
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Figure 7.10. An instance of integration in hybrid cloud by connecting static layers with elastic queues.

In this section, we reviewed different real-world adoptions of different variations of the ElasticQueue
connector. The main objective of presenting such a comprehensive set of usage scenarios was to
demonstrate that such software connectors have been adopted in real domains (cf. research claim 4 in
Chapter 1). This was the main motivation in choosing ElasticQueue as a case study to evaluate our solution
framework. The other motivation behind this choice was that the cloud environment contains several
sources of uncertainty, see (Jamshidi et al., 2014).

7.4.2. Architectural modes of ElasticQueue component connector

In the experiments that we performed as a part of this case study, we only considered 5 operating modes
for ElasticQueue. The key objective of the experiments is to evaluate the research claims (see Chapter 1)
of this thesis. Table 7.1 lists the modes and their corresponding components and Figure 7.11 represents
their corresponding architectural designs.

Table 7.1. Linguistic labels to describe ElasticQueue operating mode.

ElasticQueue Mode Interface Processing
Component | Components
Normal 1 1
Effort 1
Medium Effort 1 3
High Effort 1 4
Maximum Effort 1 5
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7.4.3. Tool Support: Design Components of the ElasticQueue

In this section, we present different parts of the tool that we implemented to demonstrate the validity of
the research claims that we mentioned in Section 7.1. The tool that we implemented is divided into several
parts covering the different phases of the feedback control loop to enable the self-adaptation of
ElasticQueue.

Figure 7.12 illustrates these parts and how they correspond to different phases of the feedback control
loop architecture. There are six main parts: (1) ElasticQueue,is the connector that we want to adapt based
on the environmental situation (i.e., request load) and system performance (response time); (2) Load
generator, synthetically generates workload to simulate the usage pattern of a cloud-based application; (
3) Monitoring measures the metrics, which are required to decide about adaptation of the connector; (4)
Smoothing/prediction covers the process of model calibration for requirement verification and predicting
the future workload based on historical data; (5) Scaling engine takes the smoothed monitoring data as
input and produces appropriate adaptation actions according to the policies in the knowledge base; and
finally (6) Change actuator enacts the change to the running connector on the fly.

In order to have a better understanding of the tools, in this section we describe in detail the set of tools
designed and implemented around ElasticQueue that we call RobusT2Scale (Jamshidi et al., 2014). It is
important to mention that RobusT2Scale, in essence, is a concrete realization of the RobusT2 framework
(that we have described in Chapter 5) for the specific type of component connector, i.e., ElasticQueue.
The main purpose of this realization is to demonstrate that the proposed framework (in Chapter 5) can
be adopted for adapting real-world connectors.

In the following, we describe the architectural design and overview of each module and in the next section
(i.e., Section 7.4.4), we describe the implementation and technological details of the tool chain as shown
in Figure 7.12. Note that for describing each module of this realization of the RobusT2 framework, we use
specific scenario to demonstrate the details of the architectural design of that module.
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Figure 7.12. Tool chain architecture.
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ElasticQueue is a cloud service containing a web role and a (number of) worker role(s) designed with a
layered architectural style. In this sample, it represents a service that needs dynamic scaling to handle the
load being placed on it. The web role exposes a web service that adds task items to a queue. The worker
role(s) picks items off the queue and processes them. The RobusT2Scale framework is responsible for
reconfiguring the ElasticQueue connector at runtime.

Load Generator is a client-side (on-premise) application (cf. Figure 7.17) that calls the service hosted by
the ElasticQueue web role. The Load Generator is a syntactic workload generator employed to simulate
various levels of load on the ElasticQueue connector (cf. Figure 7.13).
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Figure 7.13. ElasticQueue architecture — load injection scenario.

Monitoring is a web application that serves two purposes. As illustrated in Figure 7.14, it 1) serves up a
client to the user and then 2) exposes the metrics gathered by the Scaling Engine to this client via a service.
We have developed this module in a way that it can be hosted either on-premise or as a cloud hosted
application. The dashboard (cf. Figure 7.16) displays metric data, pending reconfiguration actions and the
configuration of the ElasticQueue in an easily understandable way.
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Figure 7.14. ElasticQueue architecture - monitoring scenario.

Smoothing/prediction enables requirement verification at runtime and predicts short-term future usage
of the connector based on historical data collection. This module gathers historical data metrics, such as
the number of queued-up work items and the number of requests per second, from the cloud storage.
Using these metrics, it determines whether the application needs to be adapted. Note that the enabler of
this part is the model calibration mechanism as a part of RobustMC framework proposed in this thesis.
The details of the RobustMC framework are given in Chapter 4.

Scaling Engine is the part of the design that is responsible for enforcing the scaling policies. We built this
module in a way that can be hostable both on-premise and in the cloud. For this experiment, it has been
built as a console application (cf. Figure 7.18) running on-premise. The module is responsible for reasoning
about adaptation based on fuzzy reasoning. Note that the adaptation reasoning in this module is based
on the RobusT2 framework developed as a part of this thesis. The details of the RobusT2 framework and
the fuzzy reasoning is given in Chapter 5. If a need to reconfigure the ElasticQueue is determined, it calls
the Cloud Service Management API to start off this action. While we host this logic client-side on-premise.
It would also be possible to locate this logic in a cloud platform (here Windows Azure worker role) - the
scaling engine stores all its data in a cloud storage (cf. Figure 7.15).
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Change actuator enacts the change to the running connector on the fly. The key benefit of this evaluation
is that we adopt a real-world public cloud platform to demonstrate the validity of our approach rather
than an artificial simulation environment. For enacting the change, after determining the required
reconfiguration commands, this module calls the Cloud Service Management API (in this case is Azure
Service Management REST API®) to start off the reconfiguration actions. The details of the adaptation
mechanism is described in Chapter 6.

Until this point, we have described the high-level design of the tool chain in order to enable self-
adaptation of the ElasticQueue connector. In the next section, we describe the implementation details
and the technologies that we adopted to realize self-adaptive connectors.

7.4.4. Implementation technologies of the ElasticQueue

In this section, we describe the implementation view of the framework that we have realized (by
extending and adapting an existing Azure monitoring and enactor modules in MSDN code library) to
enable reliable self-adaptation of ElasticQueue as our case study in this chapter. The implementation
consists of 3 .NET solutions, each with a certain area of responsibility as follows:

1. The solution named ElasticQueue contains the projects that represent the functionalities of the
ElasticQueue. This project contains an Azure service with one Azure web role and one worker role.
The Web Role exposes a web-service with a single method that places a message on a queue. The
worker role then takes one message off the queue and processes the message accordingly.

2. The ScalingEngine solution contains two projects:

a. A console application called ScalingEngineClient (see Figure 7.18) and a Windows
Presentation Foundation (WPF) application called LoadClient (see Figure 7.17). The
ScalingEngineClient is responsible for most of the work in this experiment- it houses the
RobusT2 framework. It is responsible for continuously monitoring the queue length, the

3 http://msdn.microsoft.com/en-us/library/azure/ee460799.aspx
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requests per second performance counter as well as the current instance count. It takes
these metrics and saves them to 2 tables in Azure table storage. It also feeds them to the
RobusT2 framework to determine, based on the fuzzy reasoning, to which mode the
ElasticQueue needs to be reconfigured. If any adaptations are needed, it uses the Service
Management API to initiate the change on the cloud platform. The Service Management
APl provides programmatic access to much of the functionality available through
the Management Portal. The Service Management APl is a REST API. All API operations
are performed over security certificates.

b. The LoadClient is a syntactic load generator that is responsible for simulating load
patterns. It allows the user to determine the amount of load to simulate and then starts
calling the ElasticQueue end-point with the desired amount of times per second. It also
lets the user to track the current queue length through its Ul as illustrated in Figure 7.17.

3. The Monitoring solution includes an ASP.NET web-application as well as a Windows Azure web
role, making it possible to host it both on-premise and in Azure. The solution also contains a
Silverlight application that is then hosted within the web role. The Monitoring service makes it
possible to watch the current state of the ElasticQueue in close to real-time. The monitoring client
uses a simple to understand Ul (see Figure 7.16), allowing an end user to monitor the current
gueue length, instance count as well as any adaptation actions, currently happening as well as
previously executed.

As discussed above the primary logic for adapting the ElasticQueue connector is contained in the
ScalingEngine. A number of useful visualization components are also contained in the Monitoring
application. This section will discuss the detailed implementation of both of these components of the
experiment.

The ScalingEngine, as mentioned before, is responsible for tracking the current load on the application
and then reconfiguring the ElasticQueue accordingly. To enable this it utilizes a couple of configurable
objects. First, it uses a list of MetricProvider objects. The sole responsibility of a MetricProvider is to collect
metric data from the Azure-based application. As soon as new data is obtained, it is evaluated to
determine if there is a need to reconfigure the ElasticQueue. This is done by the use of another list of
custom objects called ScalinglLogicProviders, which can be thought of as the encapsulation of a scaling
rule. The metric data collected by the MetricProvider is passed to each of the defined
ScalinglLogicProviders, one at a time. These then take that data collected by the MetricProvider and use
some logic to determine if there is a need to initiate an adaptation action. If this is the case, the requested
adaptation is passed to the last list of objects. They are called TimelLogicProviders and have two
responsibilities. First, they are responsible for verifying that any scaling change initiated by the
ScalinglLogicProviders will keep the instance count within the configured values for the current time. If
they accept the requested scaling change, the scaling engine makes a call to the Azure Service
Management API to initiate the change. The second responsibility for the TimeLogicProviders is to initiate
any scaling change needed to stay within the configured max and min values for the current time. For
example shutting down worker instances of the ElasticQueue once the weekend has arrived (see
Figure 7.19). Calls made to the Azure Service Management API are highly privileged operations. These
calls will affect both the performance of an application as well as the costs. As such, this service needs to
be secured appropriately.
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The other implementation issue was to avoid oscillations due to constantly adding or removing resources.
For avoiding such situations, in each control interval, the ScalingEngine checks whether there is a pending
scaling action that has not been enacted to the ElasticQueue yet. If it finds that there is a pending action,
it basically ignores (see Figure 7.20) the decisions made in this control interval and proceeds to the next
round.

The Monitoring part is a web application. This module has two responsibilities: 1) it is responsible for
serving up the monitoring data to the client, as well as 2) hosting a web service. The monitoring module
to get the necessary information from Azure Storage uses the web service. Other clients if needed also
could use the web service. The monitoring takes the data retrieved from the web service and displays it
in a visual dashboard using lists and graphs. The monitoring module is built using the Model-View-
ViewModel pattern (Microsoft, 2014).

7.4.4.1. Architectural reconfiguration challenges in the cloud

In order to reconfigure ElasticQueue in the cloud, there are some known technical challenges that we
have also faced during the experimental evaluation of this work:

e Taking action to scale on cloud platforms is exposed through the use of the Management APIs.
Through a call to this API, it is possible to change the instance count in the service configuration and
in doing so to change the number of running instances.

e When adding and removing instances, it is important to remember that the Management API is an
asynchronous API. This means that once a change has been requested, an application will need to poll
the service to determine if and when that change has taken effect.

e Applications need to ensure that rules are aware of the time delay in adding more capacity and that
they do not result in significant excess capacity being added as a result of subsequent evaluations of
rules while new instances are being started.

e The load placed on most applications is quite stochastic; however, at a higher level most applications
will display some broad trends in load.
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Figure 7.18. Scaling engine Ul (a reconfiguration is initiated).
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Figure 7.19. Scaling engine Ul (sensitivity to environmental data).
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Evaluating metric ’gueue length’: Is the current value of B greater than threshold 28: False
Evaluating metric ‘quewe fill rate’: Is the current value B greater than threshold 2: False
[Evaluating metric ‘queue lenght’ and the time elapsed below the threshold: Is the current value of: 68 sec longer than
hreshold time 68: True
QueuchalingLogicPPouider ScalingAction: Action : Decrease Instance Count by 1 on Role Worker named loyaltymanagementpr
cessing
PerformanceCounterMetricProvider getting metric data
PerformanceCounterMetricProvider got B metrics
(Calling PerformanceCounterScalingLogicProvider.Evaluate for MetricProvider PerformanceCounterMetricProvider
PerformanceCounter8calinglogicProvider ScalingfAction: None
There iz already a Pending action. So Action Decrease on Role loyaltymanagementprocessing has been ignored.
PerformanceCounterMetricProvider getting metric data
PerformanceCounterMetricProvider got B metrics
gal%ing PePgormancgCugnteEScaléngLogichouiderﬁEualuatﬁ for MetricProvider PerformanceCounterMetricProvider
erformanceCounterScalinglogicProvider Scalingfiction: Mone
QueveMetricProvider getting metric data
QueveMetricProvider got 2 metrics
[Calling QueuweScalingLlogicProvider.Evaluate for MetricProvider QueuveMetricProvider
Evaluating metric ’‘gueue length’: Is the current value of B greater than threshold 28: False
Evaluating metric ‘quewe fill rate’: Is the current value B greater than threshold 2: False
[Euvaluating metric ’queue lenght’ and the time elapsed below the threshold: Is the current value of: B sec longer than th
reshold time 68: False
QueveScalingLlogicProvider Scalingfiction: Hone
rmanceCounterMetricProvider getting metric data
rmanceCounterMetricProvider got B metrics
(Calling PerformanceCounterScalingLogicProvider.Evaluate for MetricProvider PerformanceCounterMetricProvider
PerformanceCounter8calinglogicProvider Scalingfction: None
GueuneMetricProvider getting metric data
QueveMetricProvider got 2 metrics
(Calling QueueScalinglogicProvider.Evaluate for MetricProvider QueueMetricProvider
[Fuvaluating metric ’queue length’: Is the current value of B greater than threshold 28: False
Evaluating metric ‘quewe fill rate’: Is the current value B greater than threshold 2: False
Evaluating metric 'queue lenght’ and the time elapsed below the threshold: Is the current value of: 28 sec longer than
(hreshold time 68: False
QueuweScalingLogicProvider ScalingfAction: MNone
rmanceCounterMetricProvider getting metric data
rmanceCounterMetricProvider got B metrics
[Calling PerformanceCounterScalingLogicProvider.Evaluate for MetricProvider PerformanceCounterMetricProvider
PerformanceCounter8calinglogicProvider ScalingfAction: None
PerformanceCounterMetricProvider getting metric data
PerformanceCounterMetricProvider got B metrics
(Calling PerformanceCounterScalinglogicProvider.Evaluate for MetricProvider PerformanceCounterMetricProvider
PerformanceCounter8calinglogicProvider Scalingfiction: None
QueveMetricProvider getting metric data
QueueMetricProvider got 2 metrics
(Calling QueueScalinglogicProvider.Evaluate for MetricProvider QueueMetricProvider
Evaluating metric ’‘gueue length’: Is the current value of B greater than threshold 28: False
Evaluating metric ’queue £fill rate’: Is the current value B greater than threshold 2: False
Evaluating metric 'queue lenght’ and the time elapsed below the threshold: Is the current value of: 48 sec longer than
(hreshold time 68: False
QueuwelScalingLogicProvider ScalingfAction: MNone
PerformanceCounterMetricProvider getting metric data
PerformanceCounterMetricProvider got B metrics
iCalling PerformanceCounterScalingLogicProvider.Evaluate for MetricProvider PerformanceCounterMetricProvider
PerformanceCounterScalinglogicProvider ScalingfAction: None
Action Increase on Role loyaltymanagementprocessing completed and the Status is Completed
QueveMetricProvider getting metric data
QueuveMetricProvider got 2 metrics
(Calling QueueScalinglogicProvider.Evaluate for MetricProvider QueueMetricProvider
Evaluating metric ’‘gueue length’: Is the current value of B greater than threshold 28: False
Evaluating metric ’‘queue fill rate’: Is the current value B greater than threshold 2: False
Evaluating metric ‘queue lenght’ and the time elapsed below the threshold: Is the current value of: 68 sec longer than
hreshold time 68: True
QueuchalingLogicPPouider ScalingAction: Action : Decrease Instance Count by 1 on Role Worker named loyaltymanagementpr
cessing
Mo action is Pending. Kicking off action Decrease for Role loyaltymanagementprocessing
Operation ID: 45849fbBe@8Pacbab2bZbbec?2cc428d
HTTP Status Code: Accepted
BtatusDescription: Accepted
PerformanceCounterMetricProvider getting metric data
PerformanceCounterMetricProvider got B metrics
iCalling PerformanceCounterScalinglogicProvider.Evaluate for MetricProvider PerformanceCounterMetricProvider
PerformanceCounter8calinglogicProvider Scalingfiction: None
QueveMetricProvider getting metric data
GueuveMetricProvider got 2 metrics
(Calling QueueScalinglogicProvider.Evaluate for MetricProvider QueueMetricProvider
[Evaluating metric ’‘gueue length’: Is the current value of B greater than threshold 28: False
Evaluating metric ’‘queue fill rate’: Is the current value B greater than threshold 2: False
Evaluating metric 'gqueue lenght’ and the time elapsed below the threshold: Is the current value of: B sec longer than th
reshold time 68: False
QuewelScalingLogicProvider ScalingfAction: MNone
PerformanceCounterMetricProvider getting metric data
PerformanceCounterMetricProvider got B metrics
iCalling PerformanceCounterScalinglogicProvider.Evaluate for MetricProvider PerformanceCounterMetricProvider

Figure 7.20. Scaling engine Ul (a reconfiguration is ignored due to a pending action).

One of the key objectives of this evaluation is to show the validity of research claim 4, i.e., the real-world
applicability of the solution framework of this thesis. Therefore, we decided to evaluate the solution
framework in a real and practical environment rather than through a simulation. The key objective of this
thesis is to develop mechanisms to enable self-adaptation of component connectors. These mechanisms
should be robust against measurement noise, evaluated in a real practical environment that can provide
assurance that this evaluation is trustworthy. It is also remarkable that elastic systems on cloud platforms
contain different sources of uncertainties and this provides an appropriate real-world environment in
which we can evaluate our solution framework.
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7.4.5. Controller design for ElasticQueue: an empirical perspective

In Chapter 5, we present a methodology for designing fuzzy logic controllers appropriate for adapting
connectors. In this section, however, we take an empirical perspective, and we describe the data
collection procedure for adaptation policy elicitation. We also elaborate on how to design the controllers
based on the collected data. The data collection is described in Section 7.4.5.1 and the controller design
comprising fuzzy membership function derivation and adaptation rule elicitation is presented in
Section 7.4.5.2.

7.4.5.1. Adaptation policy elicitation through survey

An interval type-2 fuzzy logic controller is used to perform the adaptation management of the
ElasticQueue. The controller is used to determine an operating mode for the ElasticQueue at runtime. The
design of the fuzzy logic system (adaptation rules and membership functions) is done using the knowledge
elicitation technique discussed in Chapter 5. This technique, based on surveys, allows extracting
adaptation policies from experts in the form of IF-THEN rules.

In order to design the configuration adaptation controller, a data collection was conducted in a survey
among 10 experts in cloud computing. The survey was mainly performed among the participants of the
Third National Conference on Cloud Computing and Commerce (NC4), April 2014 in Dublin, Ireland. The
participants of this survey are affiliated with: University College Cork (UCC), Athlone Institute of
Technology (AIT), University of Limerick (UL), and Dublin City University (DCU). The survey was designed
at the Irish Centre for Cloud Computing and Commerce (IC4), Ireland. The experts that we asked for this
experiment were PhD students and university professors in software engineering and cloud computing.
These experts had basic knowledge about fuzzy logic and type-2 fuzzy logic, however, for knowledge
elicitation such knowledge is not necessary as we explained in Section 5.5.5.2. Note that since they all had
experience in web-based application development, they had a good understanding of workload and
response time. For a more detailed description of the survey, we refer to Appendix A.

7.4.5.2. Survey processing

A fuzzy logic controller is completely defined by its fuzzy membership functions and rules. We present the
details of how to transform the collected data to type-2 fuzzy membership function in Section 7.4.5.2.1.
The rule elicitation is described in Section 7.4.5.2.2 and the output surface of the fuzzy controller is
presented in Section 7.4.5.2.3.

The processed results of the survey are used to define the fuzzy sets (two inputs, five MFs per input) and
the 25 rules (one MF per rule). Table 7.2 presents the processed results for Questions 1 and 2 of the survey
(mean values and standard deviation of the answers, see the survey template in Appendix A). This
information is used to define the parameters required to create the membership functions for the inputs
of the fuzzy system. Table 7.3 presents the processed results for Question 3 of the survey (summarizes
the rules defined by the experts). This information is used to define the 25 fuzzy rules.
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Table 7.2. Processed survey results: Workload and Response time.

Linguistic Means Standard Deviations
Start (a) End (b) Start (a,) End (0})
Very low 0 27 0 8.23
-‘3 Low 22 41.5 7.15 7.09
x Medium 36.5 64 5.80 3.94
2 High 61 82.5 4.59 6.77
Very high 78 100 6.32 0
° Instantaneous 0 7.2 0 5.20
£ Fast 6.1 20 4.07 5.27
g Medium 18.2 415 5.59 8.51
§ Slow 38.5 63.5 7.09 9.44
o« Very slow 60 100 7.82 0
Table 7.3. Processed survey results: Adaptation rules.
Antecedents Consequent
R(l;l)e Workload Response Normal | Effort N;:;'::n El:;i:_‘t Maximum wag
time (-2) (-1) (0) (+1) Effort (+2)
1 Very low | Instantaneous 7 2 1 0 0 -1.6
2 Very low Fast 5 4 1 0 0 -1.4
3 Very low Medium 0 2 6 2 0 0
4 Very low Slow 0 0 4 6 0 0.6
5 Very low Very slow 0 0 0 6 4 1.4
6 Low Instantaneous 5 3 2 0 0 -1.3
7 Low Fast 2 7 1 0 0 -1.1
8 Low Medium 0 1 5 3 1 0.4
9 Low Slow 0 0 1 8 1 1
10 Low Very slow 0 0 0 4 6 1.6
11 Medium | Instantaneous 6 4 0 0 0 -1.6
12 Medium Fast 2 5 3 0 0 -0.9
13 Medium Medium 0 0 5 4 1 0.6
14 Medium Slow 0 0 1 7 2 1.1
15 Medium Very slow 0 0 1 3 6 1.5
16 High Instantaneous 8 2 0 0 0 -1.8
17 High Fast 4 6 0 0 0 -1.4
18 High Medium 0 1 5 3 1 0.4
19 High Slow 0 0 1 7 2 1.1
20 High Very slow 0 0 0 6 4 1.4
21 | Veryhigh | Instantaneous 9 1 0 0 0 -1.9
22 | Very high Fast 3 6 1 0 0 -1.2
23 | Very high Medium 0 1 4 4 1 0.5
24 | Very high Slow 0 0 1 8 1 1
25 | Veryhigh Very slow 0 0 0 4 6 1.6
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7.45.2.1. Fuzzy sets design (membership functions)

The MFs has been selected to be triangular for the labels “Low” (“Fast”), “Medium” and “High” (“Slow”)
and trapezoidal for the labels “Very low” (“Instantaneous”) and “Very high” (“Very slow”).

Table 7.4. Locations of the main points of IT2 MFs.

Triangular

Trapezoidal

lymrp = (@ — (1 + a) * 0,4,0)
myyr = ((@+b)/2,1)
rymr = (b + (1 + @) * g, 0)
limr = (@— (1 —a) * 04,0)
myyr = ((@+b)/2,1)
e = (b + (1 —a) *05,0)

Uyyr = (a— (1 + a) *a,,0)
ulyyr = (a — aogy, 1)
uryyr = (b + aoy, 1)
lryyr = b+ (1 + a) xag3,,0)
Uyr =(a—(1—a)*a,0)
ulyr = (@ + aoy, 1)

Uurimr = (b — a0y, 1)
lTLMF = (b + (1 - 0() * Ub, 0)

As illustrated in Figure 5.24 and Figure 5.25, we used trapezoidal MFs to represent “Very low”
(“Instantaneous”) and “Very high” (“Very slow”), and triangular MFs to represent “Low” (“Fast”),
“Medium” and “High” (“Slow”). Let a and b with standard deviations g, and g, respectively, be the
mean values of the interval end-points of the linguistic labels (cf. Table 7.2). For “Low”, “Medium” and
“High” labels, the triangular T1 MF is then constructed by connecting: [ = (a — ad,,0),m = ((a +
b)/2,1),r = (b + g5, 0). Accordingly, for “Very low” and “Very high” labels, the associated trapezoidal
MFs can be constructed by connecting: (a — g,,0),(a, 1), (b,1),(b + 03,,0), see dashed lines in
Figure 5.24 and Figure 5.25. As it is indicated by the standard deviations in Table 7.2, there are
uncertainties associated with the ends and the locations of the MFs. For instance, one may imagine a
triangular TLMFinl' = (a — 0.3 % 0,,0),m = ((a + b)/2,1),r" = (b + 0.4 * g}, 0).
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Figure 7.21. IT2 MFs of the workload labels.
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The survey asked the experts to associate labels to each rule as summarized in Table 7.3. Each of these
labels is now associated with a value. As different experts defined different rules, an 'average' rule is
retained. Each rule is then associated with the average of the values defined by the experts. The details
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Figure 7.22. IT2 MFs of the response time labels.

7.45.2.2. Fuzzy rules design

of the creation of the MFs for the rule base is explained in Chapter 5.

The fuzzy logic system is completely defined by its membership functions and fuzzy rules. An uncertainty
value of @ = 0.5 is considered. Figure 7.23 shows the fuzzy logic surface representing the fuzzy logic

7.45.2.3. Fuzzy logic control surface

controller designed from the survey.

Architectural Mode
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o
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B e » ime
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Figure 7.23. Output of the IT2 FLS for elasticity reasoning.
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7.4.6. Experimental evaluations

This section presents the validation of the controller developed in Section 7.4.5 for the ElasticQueue
adaptation reasoning. As we discussed earlier in the implementation section, the experimental conditions
are quite different from those in simulation and particularly regarding the control of the elastic queue in
the cloud. In this context, the ElasticQueue is controlled by cloud platforms. The ElasticQueue and its
adaptation infrastructure is implemented using .NET technologies and Microsoft Azure PaaS services, see
Section 7.4.4. The ElasticQueue makes sure that the tasks submitted to the system are processed reliably
within the specified SLA. The controller (i.e., the heart of decision making) is implemented in Matlab and
then integrated with the .NET technologies using MATLAB Builder NE for Microsoft .NET Framework.
MATLAB Builder™ NE allows creating .NET and COM components from MATLAB® programs that include
MATLAB code. This then enables integrating these components into larger .NET, COM, and Web
applications and deploying them to computers that do not have MATLAB installed using the MATLAB
Compiler Runtime (MCR) that is provided with the MATLAB Compiler™ (“MATLAB Builder NE,” 2014).

7.4.6.1. Experimental setting

The architecture of our experimental setup is depicted in Figure 7.24. The client side is JMeter, which
generates workload based on our predefined patterns. In our case, the server side is the System Under
Test (SUT), which is the ElasticQueue connector, controlled by RobusT2Scale. Here we defined test cases
in which the number of users and their usage vary according to time-dependent patterns. A workload
generated in this manner hits the SUT and triggers its controller. The controller ensures that the connector
remains elastic. Here we followed the guidelines of cloud testing, e.g. (Gambi, Hummer, Truong, &
Dustdar, 2013).

Typically, the variances in the generated workload should be large enough to warrant a scaling action. In
this work, we injected different patterns of workloads, most of which are drawn from real-world
workloads (e.g. (“Anonymized access logs,” 2001), similar patterns are also used in (Anshul Gandhi,
Harchol-Balter, Raghunathan, & Kozuch, 2012)), to explore the platform’s elasticity behavior for a range
of demand patterns. In our measurements, we use a set of six different workloads — see Figure 7.28. Across
time, some workloads show recurring cycles of growth and decrease, such as an hourly news cycle. Others
have a single burst, such as during a special event. Further, we scale the duration of the traces to 1 hour.
We evaluate RobusT2Scale against the full set of workloads (see Table 7.9). We ran the SUT on Microsoft
Azure VMs. VMs were located in the same availability zone in Ireland; see the deployment details in
Table 7.5.

Table 7.5. Deployment details of our experimental setting.

Experimental Clients Elastic Application Elasticity
Deployment Controller
Units JMeter Ul BL (Scalable) DS RobusT2Scale
Desktop, Intel 1Small (A1) | 2-6 Small (A1) | 1 Small (A1) | 1Small (A1)
Specification Core i7 CPU, Azure VM Azure VMs Azure VM Azure VM
2.8GHz, 12 GB
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Figure 7.24. Experimental setting for ElasticQueue.

7.4.6.2. Results

In this section, we present a number of experimental studies on RobusT2Scale to answer the following

research questions:

e Q1 (Scalability). What is the runtime overhead of our approach?

e Q2 (Accuracy). What is the accuracy of the employed estimation techniques and does the error of
estimation vary across different workloads?

o Q3 (Effectiveness). Is it effective for guaranteeing SLAs and minimizing cost?

e Q4 (Robustness). Is it robust against uncertainties and noises?

e Q5 (Stability). Does the controller guarantee stability property?

Runtime Performance (Q1)

A lengthy adaptation reasoning process hinders usefulness and as a result the adoption of self-adaptive
software. In order to assess the runtime overhead of the proposed fuzzy adaptation reasoning process,
we have conducted a set of experiments using simulation with different settings. In a practical setting, the
size of the rule base and the number of antecedents in each rule in any particular target system is expected
to be in the range of [10,100] and [1,3] according to (S.-W. Cheng & Garlan, 2012; Fleurey & Solberg,
2009). However, for evaluating the scalability of our approach, we vary the number of adaptation rules,
number of rule antecedents and number of linguistics in our experimental evaluations by orders of
magnitude in the range [9,1000], [2,6], [3,10] respectively. We performed the experimental evaluations
on a machine with Intel Core i7 CPU, 2.80 GHz, 12 GB memory, 64-bit Windows 7 Professional and MATLAB
R2013a.
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Scalability with respect to linguistics-rules

To examine the scalability of our approach with respect to the number of linguistics (i.e., MFs) and rules,
we provided the following experimental setup. Each input domain consisted of M MFs, where M =
{3,4, ...,10}. We kept the left-most and right-most MFs in Figure 5.24 (and Figure 5.25) and add another
MF identical with the middle MF in Figure 5.24 (and Figure 5.25) and place the center of it in a random
number uniformly generated in [0,5]. The interval consequent of each rule was generated as two
uniformly distributed random numbers in [0,5]. Each input was discretized into 100 points and therefore
computing a control surface needs 100 X 100 = 10,000 iterations of the reasoning process. For
example, in scenario 3, the MFs (M = 5) are shown in Figure 5.24 (and Figure 5.25) and the corresponding
control surface is shown in Figure 7.23. To compare the performance of the IT2 controller with the T1
counterpart, we also recorded the computation time for baseline T1 FLSs, whose MFs were centrally
embedded in the corresponding IT2 FSs, as an example, see the dashed line in Figure 5.24 (and
Figure 5.25).

To make the results statistically meaningful, we performed 10,000 trial runs in nine different scenarios
classified by pair of linguistics-rules and measured the duration of time, beginning once inputs are ready
to feed the system and ending when the execution receives the best architecture mode to enact. The
results are shown in Figure 7.25 separated based on the scenarios, while Table 7.6 summarizes the means
of the data in each scenario. The data in Table 7.6 confirms “10x increase in the number of adaptation
rules approximately results in 10x increase in runtime” in both experiments (i.e., with and without
MATLAB optimization). The data indicates that the reasoner performs well even in large rule bases with
significantly higher rules than nominal usage (i.e., 1000 rules). It took approximately 1-190ms to decide
for a suitable architectural change, which is acceptable (S.-W. Cheng & Garlan, 2012).
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Figure 7.25. Runtime performance w.r.t. # of linguistics/rules.
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Table 7.6. Summary of runtime performance evaluations.

Scenario Setting Performance (s)
(# linguistics, # rules) IT2 Optimized IT2 Tl
1 3,9 0.0011 0.0002 0.0010
2 4,16 0.0019 0.0003 0.0011
3 5,25 0.0030 0.0004 0.0012
4 6,36 0.0044 0.0006 0.0013
5 7,49 0.0061 0.0007 0.0014
6 8,64 0.0080 0.0008 0.0016
7 9,81 0.0101 0.0010 0.0017
8 10, 100 0.0126 0.0013 0.0019
9 10, 1000 0.1901 0.0100 0.0111

Scalability with respect to the number of antecedents/rules

For evaluating the scalability with respect to the number of antecedents/rules, we fixed the number of
MFs for each input domain but increased the number of input domains A = {2,3,..,6}. We also
considered the highest amount of rules for each generated FLSs by generating possible combinations of
MFs of each input. Similarly, we performed 10,000 trial runs in each of the five different scenarios. The
results are shown in Figure 7.26. The means of the runtime performance in each scenario are summarized
in Table 5.13. The data in Table 7.7 confirms “3x increase in the number of rules approximately brings
about 4x increase in runtime”. This demonstrates that the reasoner performs well in large rule bases that
have twice the number of antecedents per rule than nominal usage (i.e., 6 antecedents). The memory
footprint for the largest rule base is about 1/3 MB, which is suitable for resource constrained systems

such as embedded systems (see Table 5.13).
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Figure 7.26. Runtime performance w.r.t. # of antecedents/rules.
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Table 7.7. Summary of runtime performance evaluations.

. Performance (s) Memory
. Setting . .
Scenario without Matlab footprint
(# antecedents, # rules) e
optimization (Bytes)
1 2,9 0.0011 1440
2 3,27 0.0044 6480
3 4,81 0.0169 25920
4 5,243 0.0631 97200
5 6, 729 0.2264 349920

Computational Complexity (Q1)

In Section 7.4.5, we designed a fuzzy-based adaptation controller using knowledge elicitation through a
survey. In the reasoning process, two steps (i.e., computing firing degrees and type-reduction) are
computationally expensive. The computational cost of the firing degrees depends on the size of the rule
base and the worst case is of the order of magnitude O (#rules). The computational cost of the type-
reduction is proportional to the centroid and, therefore, depends on the number of discretization of the
input variables. Table 7.8 presents the results of the centroid of the “medium” IT2 MF in Figure 7.8
calculated using the KM algorithm with different values of discretization, N. The number of iterations to
find the value of the centroid with respect to a naive calculation before the invention of the KM algorithm
and its enhanced version. As it is evident in this table, the computational cost of the type-reduction step
(i.e., EKM) is of the order of magnitude O(~Log(N)).

Table 7.8. Computational complexity of centroid calculation.

N KM Enhanced KM 2Niterations
iterations | (EKM) iterations
4 4 1 16
16 6 1 65536
100 6 2 1.2677e + 30
256 7 2 1.1579e + 77
1024 8 3 > 8.9885¢e + 307

Since the fuzzy reasoning is used for software adaptation in a closed loop, an efficient way of reasoning in
frequently changing environments was desirable. In Chapter 5, we described a solution that performs a
(design-time) computationally expensive derivation of rule-consequent centroids that can be used at
runtime, when rule-firing intervals become known. The approach fits the situation in which time
consumption during controller design is not critical, but runtime reasoning is subject to tight time
constraints. Since in our approach, at design-time, calculate the centroid of each rule consequents, we
conclude that the computational costs of the activities at design-time is O (~(Ky¢ + #rules X Log(N))),
where K, is constant. However, the cost of calculating the centroid at runtime has to be paid only once.
This makes the overall computational complexity of the fuzzy reasoning process at runtime O (~(K,; +
#rules + Log(N))), where K, is constant ( note the use of plus instead of multiply here).
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Workload Estimation Accuracy (Q2)

In order to evaluate the accuracy of the adopted estimation technique, we simulated different workloads
and measured the error of estimation by root relative squared error (RRSE). Figure 7.27 shows sample
data and different estimations from changing the parameters of the model. It is evident that the
estimations with different parameters result in different levels of prediction accuracy. For this sample, the
estimation with § = 0.27,y = 0.94 is more accurate than the other two estimations.
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Figure 7.27. Predicted vs. actual workload.

We also evaluated the accuracy of the prediction techniques for different workload patterns. As it is
depicted in Figure 7.28, for different patterns (i.e., big spike, etc.), the estimator shows different
estimation errors. For three patterns, i.e., ‘slowly varying’, ‘dual phase’, ‘steep tri phase’, the relative error
and variations are quite low. The ‘large variation’ shows the large mean of error and ‘big spike’ and ‘quickly
varying’ demonstrate the largest variations.
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Figure 7.28. Estimation errors w.r.t. workload patterns.

Effectiveness of RobusT2Scale (Q3)

With the rise of multi-tenant software such as cloud-native applications, it is more common to measure
higher percentiles of response time rather than just the average response time. The motivation behind
looking at higher percentiles is to confirm that most of the system users can access the functionalities of
that system with low response times and only a small fraction, if any, of them face slow access. As aresult,
we decided to use the 95th percentile of response times, rtgs (Definition 65) to evaluate the
effectiveness of RobusT2Scale. This choice is motivated by recent studies (Computing, Gandhi, Dube, &
Karve, 2014; A Gandhi, 2013) which point out that 95th percentile response times is an appropriate metric
for measuring effectiveness.

Definition 65. For a given workload, we define rtgs as the 95th percentile of response times (in

milliseconds) for requests that complete during the course of the workload.

As a benchmark for measuring the effectiveness of RobusT2Scale, we consider (1) the 95" percentile of
response time (rtqs), which represent our SLA and (2) the weighted average number of node instances
acquired over time (vm), which determines the cost of ownership. These criteria cover the three main
aspects of elasticity comprising scalability, cost and time efficiency. The goal is to meet the response time
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SLA, here we assume rtgs = 600ms, while keeping vm as low as possible. The drop in vm represents the
potential capacity to be released back to the cloud to save on costs.

To evaluate the effectiveness of RobusT2Scale, we compared our approach with two provisioning policies:
over-provisioning (here we correspond this with a connector in Maximum Effort mode throughout its
lifetime, see Table 7.1) and under-provisioning (here we correspond this with Normal mode throughout
its lifetime, see Table 7.1). A summary of the results is shown in Table 7.9. In comparison with over-
provisioning policy, RobusT2Scale has acquired less nodes, saving as much as a factor of two in cost. In
comparison with under-provisioning policy, RobusT2Scale is significantly better in terms of rtyg, giving a
cloud-based application a better chance to guarantee the SLAs.

Table 7.9. Comparison of the effectiveness of RobusT2Scale.

. . Steep

st Jomens| S S| et o |
phase

ElasticQueue with Ttgse, | 973ms | 537ms 509ms 451ms | 423ms | 498ms
RobusT2Scale vm 3.2 3.8 5.1 5.3 3.7 3.9
Over- Ttgsy, | 354ms | 411ms 395ms 446ms | 371ms | 491ms
provisioning vm 6 6 6 6 6 6
Under- Ttgsy, | 1465ms | 1832ms | 1789ms | 1594ms | 1898ms | 2194ms
provisioning vm 2 2 2 2 2 2

As seen in Table 7.9, the SUT with RobusT2Scale has not violated the response time SLA in any patterns
of workloads except for the “big spike”. The SUT with overprovisioning has satisfied the SLA for all the
patterns, however, by imposing a cost of up to a double amount (for ‘big spike’, but for the other patterns
the difference is less) of what has been imposed by RobusT2Scale. The SLA is never met for the SUT with
the under-provisioning.

Robustness of RobusT2Scale (Q4)

In Chapter 5, we showed that the utilized estimation approach, i.e. double exponential smoothing,
contains unavoidable errors. In this thesis, we have claimed that RobusT2Scale is resilient against input
noises, one of which is the estimation error. In this section, we provide some experimental evidence to
support this claim.

Earlier we observed that the worst estimation error happens for ‘large variation’ and ‘quickly varying’
patterns and is less than 10% of the actual workload. As a result, we injected a white noise to the input
measurement data (i.e., x;) with an amplitude of 10%. We ran RMSE measurements for each levels of
blurring, and for each measurement, we used 10,000 data items as input. Figure 7.29 shows RMSE values
for the four different blurring values. We observed two interesting points. First, the error of control output
produced by the elasticity controller is less than 0.1 for the blurring levels. Second, the error of control
output is decreased when we designed the controller with a higher blurring. A higher blurring leads to a
bigger FOU, which is a representative for the supporting levels of uncertainty. Therefore, designers should
make a choice in terms of the level of uncertainty that the controller can support. Note in some
circumstances an overly wide FOU results in performance degradations (JM Mendel, 2001). These
observations provide enough evidence that RobusT2Scale is robust against input noise. This achievement
is one of the important benefits of using IT2 FLS rather than T1 FLS for elasticity reasoning in cloud-based
software, where uncertainty in terms of noise and events are prevalent (Gambi et al., 2013).
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Figure 7.29. RMSEs of the controller with different blurrings.

Stability Analysis of the Controller (Q5)

While FLSs are typically used in open loop decision making, in our approach, we exploit them here in a
closed loop adaptation process. There are some properties of closed loop control systems that should be
evaluated when comparing controllers for computing systems (Hellerstein et al., 2004). We analyzed the
robustness of the controller in previous section, while in this section we examine its stability. When a
controlled system becomes unstable, the output of the system will not converge, which often either incurs
a higher cost or results in a bad user experience. More concretely, by stability, here we mean that for any
bounded input over any amount of time, the output will also be bounded. This is called bounded-input-
bounded-output (BIBO) (Hellerstein et al., 2004). A system is defined to be BIBO stable if there exists a
constant k such that for all bounded input conditions, the output absolute value never exceeds k. In other
words, as long as a stable signal is input, a stable output is guaranteed.

In control theory, it is common to use a theoretical analysis to prove that the controlled system is stable.
However, such analysis is beyond the scope of this work and we only use informal analysis based on the
control surfaces, as shown in Figure 7.23. The inputs, i.e., workload and system performance, are bounded
in (x4, x,) € [0,100], and as shown in Figure 7.23, the controller output is also bounded Y72 (x;,x,) €
[—2, +2]. Since for any bounded input over any amount of time, the output is also bounded, the designed
controller satisfies the BIBO stability property. Moreover, because of the smooth control surface, small
changes in the inputs correspond to small output changes.

Effects of Conflicting Policies (Q4, Q5)

The main objective of this work is to find an approach to capture the uncertainty on expressing conflicting
adaptation policies. In this section, we discuss the effects of contrasting advices by domain experts on the
adaptation decisions and control surface to clarify such claim.

In the data collection for constructing the rule base, see Table 7.3, different domain experts had different
advices for each combination of input parameters. In Chapter 5, we provided a methodology to combine
these contrasting advices into a coherent adaptation rule. Essentially this formula provides a compromise
between the contrasting opinions and provides a mechanism to find an appropriate tradeoff by weighting
the centroids of advices based on the number of domain experts that voted for that specific advice. For
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instance, for the first and last rule, we can see a relatively high dispersion in the opinions, but for the third
rule, a relatively high agreement between experts can be observed.

Some other parts of the controller also affects the control output. For instance, the level of the uncertainty
that is embedded in the MFs through blurring parameter a will be directly translated to the output
interval of the controller, i.e., [y,(x1, X2).y.(x1, x2)]. Figure 7.30 shows the difference between the upper
layer and lower layer of the control surface for all possible inputs, i.e. y,. — y;. As it is evident, for some
combinations of the inputs the boundary is larger than the other points. This is due to the uncertainty that
is embedded in the MFs. A larger J,, results in a bigger output interval for that point.
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Figure 7.30. Distance between decision boundaries (IT2FLS).

7.5. Limitations and Threats to Validity

In this chapter, the RobusT2 framework was evaluated though a cloud-based case study. This evaluation
is based on a typical real-world cloud-based connector without any previous knowledge of workload
requests (only real-time information of the loads is used). The principal contribution is the use of interval
type-2 fuzzy logic controllers and human expertise in operating mode of the connector:

o As far as we know, it is the first application of type-2 fuzzy logic in cloud computing and the first
experimental validation of an adaptation management system on a configuration adaptation of a
cloud-based application using 1) type-2 fuzzy logic and 2) using experience of multiple experts.

e Itisanapplication for a cloud application, but it could be used in any elastic or adaptive application
(the parameters of the adaptation reasoning depend only on the characteristics of the
environment within which the connector is operating and the quality factors of the connector
itself)

e In this self-adaptive connector, the priority source is the response time because it is the most
performing source in SLAs.

In the remainder of this section, we discuss limitations and threats to validity of this work.
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7.5.1. Limitations

Runtime performance. A performance evaluation shows low runtime and memory overhead of the
decision-making part of the self-adaptive loop. In order to compare our results with some benchmark, we
extracted a number of adaptation reasoning performances reported in the literature in Table 7.10. By
comparing it with the results in Section 7.4.6.2, our approach performs better by roughly an order of
magnitude. However, we cannot claim that our approach outperforms these approaches in all
circumstances because of the differences between the experimental settings. In terms of scalability,
according to Table 7.10, Rainbow (S.-W. Cheng & Garlan, 2012) also confirms “10x increase in the number
of adaptation rules approximately yields 10x increase in runtime”.

Table 7.10. A benchmark on performance for reasoning.

Adaptation Reasoning Performance (s)
StarMX
Rules Rainbow/Stitch (Asadc?llahi, MADAM (Geihs
(S.-W. Cheng & | Salehie, &
Garlan, 2012) Tahvildari, etal, 2009)
2009)
10 0.017 - -
100 0.167 - 0.087
1000 1.454 2.8183 -
10000 13.730 - -

Control of noise. We evaluated the robustness of adaptation reasoning against sensory noises. We showed
that the robustness of control could improve or deteriorate depending on the blurring values as the only
design parameter for transitioning from T1 to IT2 FLS. Therefore, we can find the optimal blurring value
that makes the IT2 FLS design more resilient against dynamic noises. We also observed a better noise
control by the IT2 FLS compared with its T1 counterpart. The study of robustness against colored noises,
e.g. pink noise, can be an interesting future work.

Limited stability analysis. For analyzing the stability of the controlled system, we only provided informal
comments based on the observation of the control surfaces. A theoretical analysis to establish the BIBO
stability of the controller is left as a future work.

Limitations of design-time mode discovery. RobusT2 assumes that prior to deployment, system architects
are able to identify appropriate architectural modes that could resolve the issues that may arise at
runtime. This means that RobusT2 scope of adaptation is limited to situations that can be addressed with
a set of preconceived system modes. RobusT2 may not be able to resolve an issue that could be resolved
through runtime adaptation, simply because the domain experts have not included the appropriate
modes.

7.5.2. Threats to validity

Threat to internal validity. Regarding the internal threats, there is only one issue. RobusT2 is dependent
on the rules that are specified by a number of domain experts through an elicitation methodology. This
means that RobusT2 decision making is implicitly dependent on the selection of these domain experts and
their advices on adaptation policies. RobusT2 may not be able to adapt the system appropriately if the
expert advices are overall incorrect and sub-optimal.
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Threat to external validity. An external threat is related to the methodology for data collection and fuzzy
rule elicitation, as the accuracy of adaptation decisions is heavily depends on the ability to specifying fuzzy
membership functions and fuzzy rules. In Chapter 5, we presented a methodology for data collection and
concrete examples to show feasibility of adaptation policy elicitation through survey. In fact, in
Section 7.4.5, we showed how the data collected via a group of users impacts the design of fuzzy controller
and how it reasons about adaptation. This is mitigated as far as possible by designing a precise data
collection protocol and well-defined template for data collection, see Appendix A.

Another external threat is the choice of analytical models (i.e., DTMC and CTMC) used for requirement
verification at runtime. As we described in Chapter 4, we focused on quantifiable non-functional
requirements, which are specified through constraints (via temporal logic PCTL and CSL, see Chapter 2)
on the analytical models. As we briefly discussed in Section 7.2, the verification of such requirements
triggers adaptations. The temporal logic that we employed (recall Chapter 2) is already able to formally
specify a fair number of non-functional requirements. However, the analytical models used for verifying
requirements may not be applicable to all quality properties of interests for component connectors.

7.6. Conclusions

In this chapter, we presented the principal findings and the results of the research evaluation. In summary,
we evaluate the RobusT2 framework’s support for adaptation management of component connectors.
We utilized the ElasticQueue as a concrete and real-world case of component connectors that require
self-adaptation in the cloud. We evaluated the efficiency, scalability, robustness and applicability of the
proposed solution. More specifically, in the RobusT2 framework we evaluated the self-adaptation process
to address the challenges in RQ1, RQ2 and RQ3 with the specific claims we made in Chapter 1:

e Research claim 1 (runtime efficiency). The activities that need to be integrated in the self-
adaptation loop are required to be time efficient. Therefore, as a part of ensuring the practicality
of the approach, we provided evidence of runtime efficiency of the adaptation process.

e Research claim 2 (scalability). It is not sufficient for the approach to be time efficient with small
models, it also needs to impose an acceptable overhead on large-scale systems, which correspond
to complex models. We ensured the scalability of the approach by investigating the computational
complexity of the approach.

e Research claim 3 (robust against dynamic uncertainty). It is desirable that the approach is resilient
against different amplitudes of noises, which resemble the reality of uncertain environments that
component connectors are operating in. We injected different levels of noise to the input
parameters of the approach and evaluated the robustness of the approach under dynamic
uncertainty.

e Research claim 4 (applicability). The approach presented in this thesis developed a set of
techniques and methods to control the uncertainties in the self-adaptation loop of component
connectors. We applied the solution proposed in this thesis to a real-world case study and
evaluated different aspects of the solution in real-world experimental settings.
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Some additional ideas to improve the adaptation management of the component connectors have been
identified but have not been evaluated or presented in this thesis:

e To apply the adaptation management framework developed in this thesis on multi-cloud
scenarios.

o The ElasticQueue test bench operation is very constrained in terms of mode variations. We have
not considered on the fly adaptation of the modes themselves in this work. More specifically, the
adaptation strategies can be changed throughout time.

When the adaptation management survey for the ElasticQueue was presented to the experts, not all the
information about the ElasticQueue nor the adaptation management platform was presented and not all
the implementation constraints were clearly identified (before experimental validation). It could be
interesting to conduct a new survey presenting more information about the implementation of the
RobusT2 framework and the results.
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Chapter 8

8. Conclusions

“It is more fun to arrive at a conclusion than to justify it." Malcolm Forbes (1919-1990)
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8.1. Chapter Overview

In this chapter, we present the main conclusions of our research by highlighting the significance of this
thesis, its limitations and we discuss short-term and long-term future research directions. This chapter is
divided into four parts. First, in Section 8.2, we provide a summary of the research through revisiting the
research questions and the hypothesis of this thesis. In Section 8.3, we discuss the core contributions of
this research. In Section 8.4, we point out limitations and short-term directions for future research. Finally,
we suggest the long-term future work opened up by the research, drawing the thesis to a close.

8.2. Research Summary: A Reminiscence

This section starts by returning to the research questions defined at the beginning of the thesis in Chapter
1. The answers to the questions, which have emerged throughout the research and presented in the core
contribution chapters are presented and discussed. The section then revisits the research hypothesis by
examining the results of the case study and experimental evaluations presented in Chapter 7 to see
whether they support the original hypothesis.

8.2.1. Research Questions Revisited
In this thesis, we enable the reliable and dependable self-adaptation of component connectors in
unreliable environments with imperfect monitoring facilities by providing: (a) techniques for robust model
calibration, (b) a mechanism for robust adaptation reasoning, and (c) tool support that allows an end-to-
end application of the developed techniques.

In this section, we revisit the research questions presented in Chapter 1 and we discuss the answers to
each that have appeared throughout the thesis.

The first research question is:

Research Question 1 (RQ1). How to estimate the parameters (i.e., calibrate) of the analytical models at
runtime that we employ for non-functional requirement verification of component connectors in the
presence of noisy monitoring data?

Chapter 4 proposes mechanisms for model calibration in the presence of uncertainty. In Chapter 4, we
presented the analytical models through which we model the component connector behavior. We also
proposed mechanisms to calibrate the unknown parameters of the models at runtime. The key
contribution here is that the mechanisms are capable of carefully determining the parameters even in the
presence of uncertainty. The proposed method is comprehensively evaluated with a thorough discussion
of the results.

Therefore, the ability of the model calibration mechanisms to handle and robustly control the
uncertainties in the monitoring data provides an explicit answer for this research question, i.e., RQ1. Since
the model calibration can estimate unknown parameters of the analytical models at runtime, we can
ensure that the non-functional requirement verification that ultimately triggers the adaptation actions
provides a reliable mechanism for enabling self-adaptation of connectors.
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The second research question is:

Research Question 2 (RQ2). How to reason about adaptation and derive appropriate configurations for
component connectors at runtime in the presence of noisy measurements and imprecise objectives?

Chapter 5 describes in detail the design, implementation and experimental validation of the adaptation
reasoning that we have devised for component connectors. In this chapter, we proposed the RobusT2
framework to realize the adaptation reasoning using a type-2 fuzzy logic system. This chapter presented
the application of type-2 fuzzy logic control developed in this research for adaptation reasoning. The
developed RobusT2 framework has the following features: 1) It combines the input end-to-end response
performance and number of requests to the connector that it controls in the decision of operating mode
changes of the connector; 2) it combines the opinions from different experts, so that an acceptable
decision boundary can be obtained; 3) it provides an interval decision, so that a flexible decision can be
made based on a design tradeoff between the internal situation of the connectors and their
environmental conditions. This chapter also presented experimental evaluations of the framework.

Once the decision for mode change has been made, a change needs to be enacted to the running
connector. Chapter 6 presents a mechanism to enact the transitions from the current connector
configuration to the target configuration. Considering the high heterogeneity of models involved in
connectors, this chapter introduced an approach to derive a reconfiguration plan using reasoning based
on graph theory and feature models. We described a mechanism for transforming these feature models
corresponding to the connector modes to an executable reconfiguration plan. Note that this chapter is
not a core contribution chapter, but rather acts as an operationalization part of the framework.

Therefore, the proposed methodology for designing fuzzy logic controllers and the integration of the
designed type-2 fuzzy logic controllers in the feedback control loop to decide about mode change at
runtime provides an explicit answer to this research question, i.e., RQ2. Since the type-2 fuzzy logic
controllers are capable of combining different opinions of multiple users to produce reliable output in the
presence of noisy inputs, we can ensure that the integration of the controllers as the decision makers for
the self-adaptive connectors enable reliable adaptation.

The third and final research question is:

Research Question 3 (RQ3). How well can our approach for model calibration and adaptation reasoning
in the feedback control loop ensure the reliability of the self-adaptation of component connectors in a
real-world unreliable environment?

Chapter 7 reports an end-to-end evaluation of individual research components and provides an overall
validation of the proposed framework. In this chapter, we showed how the three key parts of the RCU
framework are integrated to enable self-adaptation of component connectors through a real-world case
study. To conduct this research, we followed the guidelines of the action research methodology (Chapter
1) that provides a rigorous set of steps focused on planning (Chapter 2, Chapter 3) and conducting the
research (Chapter 4, Chapter 5, Chapter 6) along with the evaluation of the research results (Chapter 7).
Therefore, in this chapter, we focused on an experimental evaluation of the adaptation management of
component connectors in the RCU framework. In general, we demonstrated the validity of the research
claims (i.e., runtime efficiency, scalability, robustness and applicability) of this thesis through experimental
evaluations. The experimental results in this chapter provided a positive answer to RQ3.
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8.2.2. Research Hypothesis Revisited
In this section, we revisit the research hypothesis presented in Chapter 1, which is repeated here:

The application of parameter estimation for calibrating models for non-functional requirement
verification, in the presence of imprecise monitoring data and fuzzy logic in adaptation reasoning, and
the integration of the two in self-adaptation process enables component connectors to become robust
against uncertainty in the surrounding environment.

The first part of the hypothesis concerns reliable model calibration for the sake of non-functional
requirement verification considering that the monitoring data are inherently uncertain. This thesis has
demonstrated how adopting stochastic techniques (i.e., Bayesian and Markov Chain Monte Carlo)
provides a more accurate parameter estimation, with thorough experimental evaluations presented in
Chapter 4. As discussed in Chapter 4, some classes of monitoring data contain unstable measurement
noise. Therefore, it is of course impossible to claim that all uncertainties in monitoring data can be
handled. However, this thesis demonstrates that if we assume that the monitoring data contains missing
data and stable measurement noise, the technique that we proposed in Chapter 4 can provide a reliable
estimation of unknown parameters of the analytical models.

The second part of the hypothesis concerns the use of fuzzy logic to reason about mode changes of
component connectors considering that different users specify the adaptation policies and they may not
have a unified opinion about the policies. Chapter 5 of this thesis demonstrates a methodology to elicit
user opinions at design-time and transforms them into type-2 fuzzy membership functions. A fuzzy logic
controller is designed to enable decision-making about such adaptations at runtime. Thus, this clause of
the hypothesis is supported by the solution framework presented in this thesis.

The final part of the hypothesis concerns the integration of the two mechanisms and the application of
the developed solution to real-world connectors. Chapter 7 of this thesis demonstrates the applicability
of the developed solution framework for enabling self-adaptation of real-world software connectors in an
inherently unreliable environment with many different sources of uncertainties. The experimental
evaluations that we have reported in Chapter 7 reveal that the developed solution enables a dependable
and robust adaptation of the connectors in unreliable environments. Thus, this clause of the hypothesis
is also supported by the research presented in this thesis.

Chapter 1 describes the research methodology that we have followed to conduct the research presented
in this thesis. The heterogeneous nature of the software engineering discipline impedes the widespread
adoption of a single research methodology (K Welsh, 2010). Because of the analytical and synthetic nature
of this research, we followed the principles of the design-science paradigm. The evaluation of the artifacts
(i.e., solution framework and its comprising analytical techniques and mechanisms) are mostly performed
through controlled experiments. Controlled experiments provide a better understanding of the problem,
and feedback to improve the mechanisms has been obtained so far throughout research. Experiments
also explain the contributions of the mechanism when compared to existing practices. In Chapters 4 and
5, we make use of experimental evaluations to more objectively validate the claimed benefits of this thesis
within the more detailed case study as presented in Chapter 7. The outcomes of the case study with the
experimental results lead to an overall conclusion that the hypothesis is substantially supported.
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8.3. Research Contributions

The principal contribution of this thesis is an approach for enabling the self-adaptation of component
connectors considering uncertainties including measurement noises and users’ conflicting opinions about
adaptation policies. This main contribution incorporates several parts:

A set of stochastic techniques to facilitate model calibration as a part of runtime verification task in
the feedback control loop of self-adaptive component connectors. The proposed stochastic approach
is able to update the unknown parameters of the models at runtime even in the presence of
incomplete and noisy observations.

A general methodology based on fuzzy logic for deciding the adaptations that adjust the configuration
of component connectors to the appropriate operating mode. The methodology enables a systematic
development of a fuzzy logic controller that can determine the right operating mode for connectors.
This methodology provides a means of defining adaptation policies in a way such that different
opinions of the users about the policies can be incorporated. The derived fuzzy controllers can decide
about the operating mode based on a tradeoff of the user-specified policies.

The evaluation of the adaptation reasoning by applying the solution to enable self-adaptation of some
real-world connectors.

As we have reviewed in Chapter 3, some research has recently started to address the challenges posed by
uncertainty in self-adaptive software. In the state-of-the-art chapter in this thesis, we systematically
pointed out areas that have been covered by existing work and areas that are left open. The approach
presented in this thesis is the first systematic method for incorporating uncertainty regarding multiple
user opinions about adaptation policies.

In addition to this primary contribution, this work makes a couple of secondary contributions that are also
significant:

Systematic identification of different sources of uncertainty present in the feedback control loop of
elastic systems and characterization of them using a well-known taxonomy. We discussed challenges
to manage the impact of uncertainty on elastic software systems. We focused on elastic systems
because connectors play a central role in elastic systems and our main concern was to demonstrate
that there is a need for controlling uncertainty in a real domain where connectors have been adopted
as an essential entity.

Findings on the experimental evaluations of the approach based on the development of several
prototype tools on practical platforms. These prototypes have demonstrated how the approach
presented in this thesis can be applied to practical environments that leverage component
connectors.

In addition to these general results on validity, they have allowed us to explore how various aspects
of our approach can be automated, such as the architectural mode change in component connectors.
At the same time, this implementation has revealed areas where significant research challenges still
remain, such as incorporating uncertainty related to the change enactment in connectors. More
specifically, the implementation on practical environments revealed that for the same change the
time that it takes to enact the change (i.e., change execution latency) on the connectors takes
different times depending on some situational parameters affecting the platform such as the usage
pattern, network connection, platform availability and many other reasons.
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8.4. Limitations

Although some significant results of our approach have been demonstrated, it is important to pinpoint
the limitations of this thesis. In this section, we point out a number of notable limitations, which remain
forimmediate future work. Such short-term future research would enhance the support of the hypothesis
of this thesis.

The empirical work justifying the real-world applicability of this approach consists of only 1 case study
in elastic cloud-based application and a couple of experimental evaluations.

We have argued that the case study presented in this thesis (see the evaluation chapter) provides strong
evidence of the applicability of our approach in a practical domain. We have given particularly careful
attention to experimentally evaluate the “scalability”, “accuracy”, “effectiveness”, “robustness” and
“stability” of the solution to strengthen this claim. However, experimental evaluations have their
limitations, and in attempting to generalize from the results of the experimental evaluations, we can go
only up to certain point. Future empirical evaluations of the approach to other types of connectors that
we have not considered in this research or other types of architecturally significant software would be of
great help in evaluating the scope of our results.

More specifically, regarding the experimental evaluations that we have performed and reported in
Chapter 7, we have the following limitations:

1. Limited workload patterns. We considered six different workload patterns. However, in
production environments, workload may change in many unpredictable ways.

2. Evaluations with different connector type. Our experimental evaluation is limited to ElasticQueue.
For this type of connector, although popular in the cloud domain, there are many different
varieties of connectors in practice in different domains.

3. Evaluations with different platforms. Although the solution we introduced in this thesis is
independent of a specific platform, we only evaluated the RCU framework on Microsoft Azure.

The approach requires design-time discovery of appropriate operating modes, but it may not be
effective in cases where modes that can resolve issues regarding specific situations are not defined.

The solution that we proposed in this thesis assumes that prior to deployment, system architects are able
to identify appropriate architectural modes that could resolve the issues that may arise at runtime. This
means that the connectors’ scope of adaptation is limited to situations that can be addressed with a set
of preconceived operating modes. The solution may not be able to resolve an issue that could be resolved
through runtime adaptation, simply because the domain experts have not included the appropriate
mode(s).

The approach effectiveness is dependent on the users’ specification of the adaptation policies.

The solution is also dependent on the rules that are specified by a number of domain experts through an
elicitation methodology. This means that the decisions that are made by our solution framework are
implicitly dependent on the selection of these domain experts and their advices on adaptation policies.
Our solution framework may not be able to adapt the connectors appropriately if the expert advices are
incorrect and sub-optimal.
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The approach requires tool support in order to be adopted for practical use, but such tool support may
not be available on some platforms.

The approach for enabling the self-adaptation of component connectors we have presented in this thesis
is inherently dependent on two particular facilities in order to be practical: I. Monitoring, Il. Enactment.
To evaluate the approach and to show that the approach is actually implementable, we developed
prototype tools that support key elements of our solution. While demonstrating the validity of the
approach in principle is one goal of this thesis work, actually applying the approach to different types of
connectors on different platforms requires monitoring facilities that retrieve runtime data and an
enactment module to execute changes. This is not a limitation of our approach in principle, but it is beyond
the scope of this thesis. Further tool development would be necessary to make the approach adoptable
by practitioners on different platforms.

8.5. Future Work

Throughout the development of the work for this thesis, we have intermittently noted some areas in
which further investigation would be necessary for clarifying wider open issues or advancing the state of
knowledge regarding certain aspects. In this section, we enumerate some major future areas of work
where we believe a number of significant research challenges remain and as a result, several perspectives
for long-term work can be anticipated:

Integration with other uncertainty control approaches. There are different sources of uncertainty in the
context of self-adaptive software. However, the approach proposed in this thesis can only handle
uncertainties regarding measurement noise and conflicting user opinions regarding adaptation policies.
We believe that the integration of this approach with the existing approaches for controlling uncertainty
regarding other sources has potential to be the basis of further investigations. We believe that an end-to-
end solution for controlling the uncertainties makes self-adaptive systems more resilient against noise
and makes them more dependable.

Dynamic update of adaptation rules. Runtime knowledge evolution and sharing is a topic that has
attracted less attention so far and is considered as an open challenge in self-adaptive software (Abbas et
al.,, 2011). In this thesis, we have not discussed dynamic updates to the adaptation mechanism. The
inference engine chooses from a set of rules each time an adaptation cycle is performed. Therefore, it
would be feasible to add new rules to the rule base at runtime. By adaptation cycle, we mean the time
from receiving input measurements until the calculation of the output and sending it for execution. This
allows dynamic incorporation and removal of adaptation rules and indicates another avenue of future
work. A promising approach is fuzzy rule learning (L. Wang & Mendel, 1992). Over time, the adaptation
outcomes can be captured in a repository. Then, by applying runtime efficient fuzzy rule learning, for
example the WM method (L. Wang & Mendel, 1992), new rules can be learned and potentially improve
the effectiveness of the adaptation mechanism. For instance, this facility can be used to avoid mode
switches that have not historically resulted in better system quality. The rule learning approaches can also
be applied at design-time to assist users in rule specifications.

Change of user opinion over time. Uncertainty not only comes from the multiplicity of stakeholders, but
also from changes in their preferences over time. Users may change their opinions about adaptation
policies over time due to several reasons. For example, they may change their opinions based on the
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effectiveness of the controller that has been designed based on their initial opinions. This change
introduce another type of uncertainty which is related to the user’s lack of knowledge. The development
of mechanisms to incorporate such uncertainty is considered a future direction of this research.

Dynamic switch between adaptation strategies. In this work, we consider that only one set of adaptation
rules will be determined by the users. However, one generalization of the work is to determine different
sets of adaptation policies at design-time and switch between them at runtime. As illustrated in the upper
right part of Figure 8.1, the strategies derive the adaptation policies that themselves determine the
adaptation actions based on the reasoning process. The decision for when to switch between strategies
and switch to what strategy needs its own reasoning mechanism.
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Figure 8.1. Dynamic switch between adaptation strategies.

Extending the requirements engineering framework to explicitly accommodate uncertainty. In this
thesis, we have provided a solution for dynamically changing architectural modes of software connectors
based on environmental and internal situations of the connectors, considering the traditional
interpretation of Zave and Jackson’s (Zave & Jackson, 1997) requirements engineering framework to
enable dynamic adaptation as described in details in (Calinescu et al., 2012). However, one potential
direction of this work can be an extension of this traditional framework to explicitly account for
uncertainty. In order to make it clearer, we are going to briefly discuss the principles of an extended
architectural requirements engineering framework. Zave and Jackson (Zave & Jackson, 1997) have
conceptualized requirements engineering in the sense of this framework as:

(S,D) + R (8.1)

where D is a set of domain assumptions, S is the specification that satisfies the set of requirements R.
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A requirement in this framework is a prescriptive statement about the desired phenomena in the
environment and it obviously should not refer to phenomena in the specification. In the traditional
interpretation of this framework (Chopra, 2012), the satisfaction of the statement (8.1) has binary nature
— i.e., it is satisfied or falsified. We call a requirement satisfiable, if at runtime we can verify if the
requirement is satisfied for particular instances. On the other hand, we call a requirement falsifiable, if at
runtime we can verify that the requirement is violated. There are some special requirements that are
neither satisfiable nor falsifiable. These requirements are called vague. There are also some requirements
that are either non-satisfiable or non-falsifiable.

In order to have a legitimate requirement, one should be able to provide evidence that shows that
requirements are both satisfiable and falsifiable upon specific environmental states. Chopra (Chopra,
2012) argues that imprecise requirements are vague. However, we now provide evidence that imprecise
or adaptive (Luciano Baresi et al., 2010) requirements that are relaxed (Whittle et al., 2009) or become
reflective (Nelly Bencomo, Whittle, Sawyer, Finkelstein, & Letier, 2010) are not vague. As illustrated in
Figure 8.2, a—cuts (JM Mendel & John, 2002) can be used to precisely determine the intervals that satisfy
or violate the requirement, e.g., “=°18R = {x|uz (x) > 0.18} determines the three zones as indicated in
Figure 8.2 — note that a = 0 is the default choice. Therefore, Chopra’s claim about the vagueness of
imprecise requirements is not accurate as, opposed to his argument, the violation zones can be identified

precisely without any vagueness associated with them.
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Figure 8.2. Satisfied and violated intervals in an imprecise requirement.

Although T1 FSs provide flexibility in requirements specification, such FSs have limited capabilities for
handling uncertainty with this type of fuzzy sets (JM Mendel, 2007). Here, by handling uncertainty, we
specifically mean the capability for specifying and minimizing the effects of such uncertainty. Of course,
there are different sources of uncertainty for self-adaptive architectures (Esfahani & Malek, 2013) and
they require different approaches to handle them. As indicated in Figure 8.3, IT2 FSs are able to model
the uncertainty in the membership function by blurring the fixed membership functions.

268



1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Membership grade

0.2

0.1r

0 c r c c
0 0.5 1 15 2 25 3 35 4

trapmf, P=[0.5 2 3 3.5]
Figure 8.3. Blurring of T1-FS to build an IT2-FS.

We argue that Zave and Jackson’s framework must be extended to explicitly handle uncertainty. We
believe that uncertainties should be considered as first-class citizens. As indicated in equation (8.2) below,
S, is the system specification by considering the internal uncertainty associated with it. Dy shows the
domain assumptions with environmental uncertainty and R is the set of imprecise requirements with
uncertain meanings in its specification. In contrast to traditional requirements in the Zave and Jackson
framework, the requirements in this setting are adaptive and flexible by nature. While traditional
prescriptive requirements are either satisfied or violated, imprecise requirements would be verified at a
satisfaction degree (Luciano Baresi et al., 2010; Whittle et al., 2009) in the presence of uncertainty. The
specification and management of these requirements provides a way to trade these requirements off
against each other at runtime. The notation = (note the difference with I in Equation (8.1)) indicates that
satisfaction verification can be performed at runtime as opposed to the traditional view, which is solely
an offline activity. For instance, we use IT2 FS and the reasoning based on this type of theory:

(S, Dg) =R (8.2)

Such a framework, if developed in the future, can accommodate different sources of uncertainty in self-
adaptive software that stem from unreliable entities (i.e., environment, human, mathematical techniques,
or separation of concerns) and consequently leads to a more dependable solution that potentially has a
better chance for widespread adoption. We consider the development of such an extended requirements
engineering framework as a potential and fruitful future direction of this thesis.

Extending to other application domains. The final front for extending this work is application of RCU to
other application domains. We have already done this for the problem of dynamically adjusting queues in
cloud computing. However, multiple other application domains can be extended to benefit from the
contributions of this thesis. One notable example is the problem of network applications in ubiquitous
environments (Inverardi et al., 2010). In the domain of networked ubiquitous computing, heterogeneous
devices need to detect services discoverable in the ubiquitous networked environments and adapt their
own communication protocols to interoperate with them, since networked applications are realized on
different middleware (Inverardi, Spalazzese, & Tivoli, 2011). Because the ubiquitous environments
contains many sources of uncertainty, the approaches dynamically adjust protocols such as the proposal
in (Di Marco, Inverardi, & Spalazzese, 2013) that requires explicit consideration of the impact of
uncertainty on the device interoperability decisions. As a result, the RCU framework can naturally be an
appropriate fit to this problem.
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Appendix A. The Survey Template

Section I. Contact details

Name

Affiliation

Email

Section Il. Expert knowledge

Section Il aim to extract expert knowledge to design the adaptation management system for the
ElasticQueue shown in Figure 8.4.

Load -
Environment > Fuzzy Logic Mode
— — Controller
Response time
Elastic
Queue (3,4)
Connector
| S | L el

Cloud Platform

Figure 8.4. ElasticQueue adaptation management with a fuzzy controller.
The objectives of the adaptation management for this ElasticQueue are:

1. Tasks are put into the queue for processing

2. The processing components pick up the tasks from the queue to process them

3. In high loads, the fuzzy controller regulates the number of processing components to meet the
response time SLA

4. In low load, the fuzzy controller regulates the number of processing components to decrease the
incurred costs



A fuzzy controller is used to determine the operating mode of the ElasticQueue to reach the objectives.
Figure 8.4 presents the fuzzy logic controller, and Table 1 explains its inputs and outputs.

Table 8.1. FLS input—output description.

Input/output

Description

Load

Number of requests received at the ElasticQueue end point

Response time

The difference in time that a task is received at the ElasticQueue end point and the
time that it has been processed by the processing component

Mode

The operating mode of the ElasticQueue

Section Il.1 Linguistic label localization

The purpose of this part of the survey is to locate linguistic labels to determine intervals. This information
will be used to construct the fuzzy sets and associated membership functions. The following example
demonstrates how to complete this section.

Example 1:

Table 2 summarizes the assigned values to four linguistic labels representing the load to the ElasticQueue
with maximum normalized value of 100 (concurrent requests/sec). Obviously these values could be
different in the opinion of different people.

Table 8.2. Linguistic labels to describe workload.

Workload Start (a) End (b)
Very low 0 20
Low 15 40
Medium 35 65
High 60 90
Very high 85 100

It can be inferred from Table 8.2 that the person completing this table thinks that:

e Alow workload is between 15 and 40 (requests/sec)
e Aload of 40 (requests/sec) could be considered low as well as medium




Question 1. Load to the ElasticQueue

Please use your own experience, thoughts and preferences to complete Table 8.3 using values of the Load
as defined in Table 8.1.

Table 8.3. Linguistic labels to describe Load.

Workload Start (a) End (b)
Very low 0

Low

Medium
High
Very high 100

Question 2. Response time of the ElasticQueue

Please use your own experience, thoughts and preferences to complete Table 8.4 using values of the
Response time as defined in Table 8.1.

Table 8.4. Linguistic labels to describe Response time.

Response time Start (a) End (b)
Instantaneous 0

Fast
Medium

Slow
Very slow 100

Section 11.2 Rules definition

The FLS presented in the upper part of Figure 8.4 and described in Table 8.1 takes the inputs and processes
them to produce outputs using the fuzzy rules and the linguistic labels in Table 7.1. These rules are
summarized in Table 8.6.

The following examples demonstrate how to complete this section. However, they are only examples.
Please feel free to modify your answers.

Example 2: If Load is “High” and Response time is “Slow” then the mode of the ElasticQueue is
?

e The ElasticQueue has less processing components than is needed and the queue is relatively
overloaded.

e Itis necessary to rapidly increase the computing powers (i.e., the processing components) of the
ElasticQueue

If Load is “High” and Response time is “Slow” then the mode of the ElasticQueue is “High-Effort”.

Example 3: If Load is “Medium” and Response time is “Fast” then the mode of the ElasticQueue is
?



e The ElasticQueue meet the SLA
e Itis necessary to hold the output power in the ElasticQueue

If Load is “Medium” and Response time is “Fast” then the mode of the ElasticQueue is “Effort”.

Question 3. Fuzzy rules definition

Please use your own experience, thoughts and preferences to complete Table 8.6 using the linguistic
labels in Table 7.1.

Table 8.5. Linguistic labels to describe ElasticQueue operating mode.

ElasticQueue Interface Processing
Mode Component Components
Normal 1 1
Effort 1 2

Medium Effort 1 3
High Effort 1 4
Maximum Effort 1 5

The following examples demonstrate how to complete this section. However, they are only examples.
Please feel free to modify your answers.

Example 2: If Load is “High” and Response time is “Slow” then the mode of the ElasticQueue is
?

e The ElasticQueue has less processing components than is needed and the queue is relatively
overloaded.

e Itis necessary to rapidly increase the computing powers (i.e., the processing components) of the
ElasticQueue

If Load is “High” and Response time is “Slow” then the mode of the ElasticQueue is “High-Effort”.

Example 3: If Load is “Medium” and Response time is “Fast” then the mode of the ElasticQueue is
?

e The ElasticQueue meet the SLA
e Itis necessary to hold the output power in the ElasticQueue

If Load is “Medium” and Response time is “Fast” then the mode of the ElasticQueue is “Effort”.



Question 3. Fuzzy rules definition

Please use your own experience, thoughts and preferences to complete Table 8.6 using the linguistic
labels in Table 7.1.

Table 8.6. Fuzzy adaptation rules.

Rule Antecedents Const.equent : :
() | Workload Re:i,;:):se Normal | Effort M;;:I::tm EI:;(g:t M:)f(fl:::m
1 Very low Instantaneous
2 Very low Fast
3 Very low Medium
a4 Very low Slow
5 Very low Very slow
6 Low Instantaneous
7 Low Fast
8 Low Medium
9 Low Slow
10 Low Very slow
11 Medium Instantaneous
12 Medium Fast
13 Medium Medium
14 Medium Slow
15 Medium Very slow
16 High Instantaneous
17 High Fast
18 High Medium
19 High Slow
20 High Very slow
21 Very high | Instantaneous
22 Very high Fast
23 Very high Medium
24 Very high Slow
25 Very high Very slow




