
A Framework for Robust Control of

Uncertainty in Self-Adaptive Software

Connectors

Pooyan Jamshidi, M.Sc., B.Sc.

A dissertation submitted in partial fulfilment

of the requirement for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing

School of Computing

Supervisor: Dr. Claus Pahl

September 2014

ii

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study

leading to the award of Doctor of Philosophy is entirely my own work, that I have exercised

reasonable care to ensure that the work is original, and does not to the best of my knowledge

breach any law of copyright, and has not been taken from the work of others save and to the

extent that such work has been cited and acknowledged within the text of my work.

Signed: —————————–

Pooyan Jamshidi

Student ID: 10112308

Date: 18/09/2014

iii

Contents

Declaration ... 2

Contents ... 3

List of Abbreviations .. 8

List of Figures ... 9

List of Tables .. 13

Abstract .. 15

Acknowledgement ... 17

Dedication .. 18

Propositions ... 19

Chapter 1 .. 1

1. Introduction .. 1

1.1. CHAPTER OVERVIEW .. 2
1.2. RESEARCH CONTEXT .. 2

1.2.1. Component-Based Systems ... 3
1.2.2. Component Connectors ... 3

1.2.2.1. A tangible example of component connectors ... 4
1.2.2.2. The language aspect of component connectors ... 5

1.2.3. Self-Adaptive Software .. 5
1.3. RESEARCH MOTIVATION ... 6
1.4. RESEARCH PROBLEM .. 9

1.4.1. Central Hypothesis ... 9
1.4.2. Research Questions ... 9

1.5. PROPOSED SOLUTION AND CONTRIBUTIONS ... 10
1.5.1. Solution Framework .. 11
1.5.2. Research Contributions .. 12

1.6. RESEARCH METHODOLOGY ... 13
1.7. THESIS .. 15

1.7.1. Thesis Statement ... 15
1.7.2. Research Claim .. 15

1.8. LIST OF PUBLICATIONS .. 16
1.9. THESIS OUTLINE .. 18
1.10. CHAPTER SUMMARY .. 20

Chapter 2 .. 21

2. Background ... 21

2.1. CHAPTER OVERVIEW .. 22
2.2. UNCERTAINTY IN SELF-ADAPTIVE SOFTWARE .. 22

2.2.1. Lack of knowledge vs. variability ... 22
2.2.2. Reducibility vs. irreducibility .. 23
2.2.3. Mathematical theories for representing and controlling uncertainty ... 23

iv

2.2.3.1. Probability theory ... 23
2.2.3.2. Fuzzy theory .. 24

2.3. ANALYTICAL (STOCHASTIC) MODELS AT RUNTIME ... 24
2.3.1. Discrete-Time Markov Chains .. 26

2.3.1.1. Model Specification with DTMCs .. 27
2.3.1.2. Markov assumption verification ... 28

2.3.2. Continuous-Time Markov Chains ... 28
2.3.3. Logics for requirement specification on analytical models.. 30

2.3.3.1. Probabilistic Computation Tree Logic ... 31
2.3.3.2. Continuous Stochastic Logic (CSL) ... 31

2.3.4. Extending Markov models and requirement specification logics with rewards 32
2.4. TYPE-2 FUZZY LOGIC ... 33

2.4.1. Type-2 fuzzy sets .. 33
2.4.2. Type-2 fuzzy logic systems ... 34

2.5. REO COMPONENT CONNECTORS .. 35
2.5.1. Stochastic Reo ... 36

Chapter 3 .. 37

3. State-of-the-art ... 37

3.1. CHAPTER OVERVIEW .. 38
3.2. COMPARISON CRITERIA .. 38
3.3. EXISTING FRAMEWORKS FOR CONTROLLING UNCERTAINTY .. 40

3.3.1. Requirement specification uncertainty .. 40
3.3.2. Internal uncertainty ... 42
3.3.3. External uncertainty .. 43
3.3.4. Design-time uncertainty .. 44
3.3.5. Control theory for handling uncertainty .. 45

3.4. DISCUSSIONS AND CONCLUSIONS ... 46

Chapter 4 .. 48

4. Robust Model Calibration for Requirement Verification .. 48

4.1. INTRODUCTION ... 50
4.1.1. Problem statement and contributions ... 51
4.1.2. Chapter structure... 53

4.2. A ROBUST MODEL CALIBRATION .. 53
4.2.1. Models at runtime: an enabler for self-adaptive behavior and assurance tasks 54
4.2.2. The choice of analytical models ... 55
4.2.3. Robustness in model calibration .. 57

4.3. THE MODEL FRAMEWORK .. 58
4.3.1. DTMC models .. 59
4.3.2. CTMC models ... 60
4.3.3. HMM models ... 61

4.4. MODEL PARAMETER ESTIMATION .. 62
4.4.1. The need for an accurate parameter estimation ... 63
4.4.2. Estimation of transition matrix of a DTMC .. 65

4.4.2.1. Parameter estimation with complete data ... 65
4.4.2.2. Parameter estimation with incomplete data .. 65
4.4.2.3. Failure detection using the Bayes estimator ... 67
4.4.2.4. Bayes estimator with exponential smoothing .. 68

v

4.4.2.5. An extended DTMC estimation algorithm .. 69
4.4.2.6. Experimental evaluation ... 70
4.4.2.7. Quantitative evaluations: measuring estimation accuracy ... 91
4.4.2.8. Limitations and Threats to validity .. 98

4.4.3. Estimation of transition matrix of a CTMC .. 99
4.4.3.1. Sampling strategies for endpoint-conditioned CTMC ... 100
4.4.3.2. The proposed estimation algorithm.. 103
4.4.3.3. Experimental evaluation ... 105

4.5. RELATED WORK .. 120
4.6. CONCLUSIONS, LIMITATIONS AND FUTURE WORK.. 121

Chapter 5 .. 123

5. Adaptation Reasoning ... 123

5.1. CHAPTER OVERVIEW .. 125
5.2. A HIGH-LEVEL OVERVIEW OF ADAPTATION REASONING .. 126

5.2.1. Environment representation .. 126
5.2.2. Autonomous reasoning ... 126
5.2.3. Types of reasoning in self-adaptive software .. 127

5.2.3.1. Offline reasoning ... 128
5.2.3.2. Online reasoning ... 128

5.3. EXISTING REASONING TECHNIQUES IN SELF-ADAPTIVE SOFTWARE .. 128
5.3.1. Rule-based reasoning .. 128
5.3.2. Goal-based reasoning .. 129
5.3.3. Utility function reasoning .. 130
5.3.4. Reactive planning based reasoning ... 130
5.3.5. Heuristic-based reasoning ... 130
5.3.6. Test-based reasoning .. 131
5.3.7. Learning-based reasoning ... 131
5.3.8. Model-based quantitative reasoning .. 132
5.3.9. Control theory based reasoning .. 132
5.3.10. Summary of reasoning techniques .. 133

5.4. NON-FUNCTIONAL REQUIREMENTS FOR COMPONENT CONNECTORS ... 135
5.4.1. A specification of non-functional requirements with Type-1 (T1) fuzzy sets (FS) 135
5.4.2. The need for revisiting non-functional requirement specifications ... 139
5.4.3. A specification of non-functional requirements with Type-2 (T2) fuzzy sets (FS) 140

5.4.3.1. Requirement specifications with IT2-FS .. 141
5.4.3.2. Measure of relationships between requirements .. 141
5.4.3.3. Non-functional requirements tradeoff analysis .. 142
5.4.3.4. Non-functional requirement change analysis ... 144

5.5. ROBUST2: A FRAMEWORK FOR AUTONOMOUS ADAPTATION REASONING USING TYPE-2 FUZZY LOGIC SYSTEMS 145
5.5.1. Fuzzy logic systems and uncertainty control ... 145

5.5.1.1. The Concept of Uncertainty in Fuzzy Logic Systems ... 146
5.5.1.2. Knowledge base (Rule base) ... 147
5.5.1.3. Membership functions .. 147
5.5.1.4. Fuzzifier ... 152
5.5.1.5. Inference Engine ... 154
5.5.1.6. Output Processor .. 157
5.5.1.7. Fuzzy logic control surfaces .. 158
5.5.1.8. Benefits of Using IT2 FLS over T1 FLS .. 159

5.5.2. Running example ... 159

vi

5.5.3. Research challenges .. 160
5.5.4. Overview of autonomous adaptation reasoning ... 160
5.5.5. Adaptation knowledge elicitation ... 161

5.5.5.1. Eliciting Adaptation Knowledge from Knowledgeable Experts in Fuzzy.. 162
5.5.5.2. Eliciting Adaptation Knowledge from Experts who are not Knowledgeable in Fuzzy 166
5.5.5.3. Evaluation of Adaptation Knowledge Extraction Methodology .. 172

5.5.6. Fuzzy logic system design for adaptation reasoning ... 177
5.5.6.1. Rule-base design ... 177
5.5.6.2. Input membership functions design ... 178
5.5.6.3. Output membership functions design .. 179
5.5.6.4. Adaptation reasoning process using the designed FLS ... 180
5.5.6.5. Fuzzy logic control surfaces .. 182

5.5.7. Benefits of Using IT2 FLS over T1 FLS ... 183
5.5.8. Experimental evaluations and validation .. 184

5.5.8.1. Adaptation rule reduction (Q1) ... 184
5.5.8.2. Robustness testing of the reasoner (Q2) .. 186

5.5.9. Limitations and future work .. 188
5.6. CONCLUSION .. 189

Chapter 6 .. 190

6. Adaptation Execution Mechanism for Component Connectors ... 190

6.1. INTRODUCTION ... 192
6.2. ADAPTATION MECHANISMS IN SELF-ADAPTIVE SOFTWARE.. 192

6.2.1. Reflection-based mechanism ... 193
6.2.2. Aspect-oriented mechanism .. 193
6.2.3. Mode-based mechanism ... 194
6.2.4. Model-based mechanism .. 194

6.2.4.1. Architecture-based models at runtime ... 194
6.2.4.2. Variability models at runtime ... 195
6.2.4.3. Model composition at runtime ... 195
6.2.4.4. Goal-based requirement models at runtime .. 195

6.2.5. Summary of adaptation mechanism ... 196
6.3. DYNAMIC RECONFIGURATION MECHANISM FOR COMPONENT CONNECTORS .. 198

6.3.1. Connector configurations .. 198
6.3.1.1. Connector configuration ... 200
6.3.1.2. Architectural invariants for connectors .. 202
6.3.1.3. Structural constructs of component connectors .. 202
6.3.1.4. Connector composition ... 205
6.3.1.5. Connector sub-structures ... 206

6.3.2. Connector reconfigurations ... 209
6.4. ADAPTATION EFFECTUATION THROUGH DYNAMIC SOFTWARE PRODUCT LINES .. 211

6.4.1. Runtime adaptation and dynamic software product line .. 211
6.4.2. Feature models for component connectors ... 213
6.4.3. Mode-based adaptation of component connectors through feature models 216

6.5. LIMITATIONS AND THREATS TO VALIDITY .. 219
6.6. CONCLUSIONS .. 219

Chapter 7 .. 220

7. Implementation and Evaluation .. 220

7.1. INTRODUCTION ... 221

vii

7.2. AN OVERVIEW OF THE PROPOSED SOLUTION FRAMEWORK ... 222
7.3. EVALUATION CRITERIA ... 224
7.4. CASE STUDY, IMPLEMENTATION AND EXPERIMENTAL EVALUATION ... 225

7.4.1. ElasticQueue as a concrete case of self-adaptive component connectors 226
7.4.2. Architectural modes of ElasticQueue component connector .. 230
7.4.3. Tool Support: Design Components of the ElasticQueue .. 232
7.4.4. Implementation technologies of the ElasticQueue .. 235

7.4.4.1. Architectural reconfiguration challenges in the cloud .. 237
7.4.5. Controller design for ElasticQueue: an empirical perspective ... 243

7.4.5.1. Adaptation policy elicitation through survey .. 243
7.4.5.2. Survey processing ... 243

7.4.6. Experimental evaluations .. 247
7.4.6.1. Experimental setting ... 247
7.4.6.2. Results ... 248

7.5. LIMITATIONS AND THREATS TO VALIDITY .. 256
7.5.1. Limitations ... 257
7.5.2. Threats to validity .. 257

7.6. CONCLUSIONS .. 258

Chapter 8 .. 260

8. Conclusions ... 260

8.1. CHAPTER OVERVIEW .. 261
8.2. RESEARCH SUMMARY: A REMINISCENCE .. 261

8.2.1. Research Questions Revisited .. 261
8.2.2. Research Hypothesis Revisited .. 263

8.3. RESEARCH CONTRIBUTIONS ... 264
8.4. LIMITATIONS .. 265
8.5. FUTURE WORK ... 266

Bibliography ... 270

Appendix A. The Survey Template .. 1

viii

List of Abbreviations

Continuous Stochastic Logic: CSL, 31

Continuous-Time Markov Chain: CTMC, 59

Discrete-Time Markov Chain: DTMC, 59

Event-Condition-Action: ECA, 129

Footprint of Uncertainty: FOU, 34

Fuzzy Logic Systems: FLS, 22

Fuzzy Set: FS, 33

Hidden Markov Models: HMM, 59

Interval Type-2: IT2, 33

Linear Temporal Logic: LTL, 129

Lower Membership Function: LMF, 34

Membership Function: MF, 33

Non-Functional Requirements: NFR, 6

Probabilistic Computation Tree Logic: PCTL, 31

Quality of Service: QoS, 50

Robust Control of Uncertainty: RCU, 11

Self-Adaptive Software: SAS, 126

Service Level Agreement: SLA, 7

State-Space Model: SSM, 59

Type-1: T1, 33

Type-2: T2, 33

Upper Membership Function: UMF, 34

ix

List of Figures

FIGURE 1.1. SCOPE OF THIS THESIS. ... 3
FIGURE 1.2. AN OVERVIEW OF SELF-ADAPTIVE SOFTWARE CONNECTORS. .. 11
FIGURE 1.3. OVERVIEW OF OUR SOLUTION FRAMEWORK.. 12
FIGURE 1.4. OVERVIEW OF OUR RESEARCH METHODLOGY. ... 14
FIGURE 1.5. AN OVERVIEW OF THE THESIS ORGANIZATION. ... 18
FIGURE 2.1. THE ROLE OF MODELS AS THE K IN THE MAPE-K LOOP IN SELF-ADAPTIVE SOFTWARE. ... 24
FIGURE 2.2. AN INTERVAL TYPE-2 FUZZY SET BASED POSSIBILITY DISTRIBUTION. .. 33
FIGURE 2.3. THE ARCHITECTURE OF TYPE-2 FUZZY LOGIC SYSTEM (ADAPTED FROM (JM MENDEL, 2000)). .. 35
FIGURE 2.4. PRIMATIVE CONNECTOR CHANNELS. .. 35
FIGURE 2.5. PRIMITIVE CONNECTOR CHANNELS WITH STOCHASTIC ANOTATIONS. .. 36
FIGURE 3.1. SOURCES OF UNCERTAINTY IN SELF-ADAPTIVE SOFTWARE. ... 39
FIGURE 4.1. SCOPE OF CHAPTER 4. .. 50
FIGURE 4.2. OVERVIEW OF THE SELF-RECONFIGURABLE COMPONENT CONNECTOR. ... 51
FIGURE 4.3. OVERVIEW OF MODEL CALIBRATION. .. 52
FIGURE 4.4. ARCHITECTURAL FRAMEWORK OF ROBUST MODEL CALIBRATION. .. 54
FIGURE 4.5. INTERACTIONS BETWEEN MODEL AT RUNTIME SOFTWARE AND ITS RUNTIME ENVIRONMENT. .. 54
FIGURE 4.6. THE ROLE OF MODELS AT RUNTIME IN SELF-ADAPTATION LOOP. .. 55
FIGURE 4.7. OVERVIEW OF ROBUST MODEL CALIBRATION AT RUNTIME.. 58
FIGURE 4.8. A DTMC EXAMPLE. ... 60
FIGURE 4.9. MATRIX REPRESENTATION OF THE DTMC EXAMPLE. .. 60
FIGURE 4.10. A CTMC EXAMPLE. ... 61
FIGURE 4.11. MATRIX REPRESENTATION OF THE CTMC EXAMPLE. .. 61
FIGURE 4.12. HIDDEN MARKOV MODEL WITH HIDDEN CTMC MODEL AS RUNTIME MODEL. ... 62
FIGURE 4.13. OVERVIEW OF PARAMETER ESTIMATION USING MATHEMATICAL MODEL. .. 63
FIGURE 4.14. DIFFERENT SCENARIOS IN PARAMETER ESTIMATION (ADAPTED FROM (METZGER ET AL., 2013)). 64
FIGURE 4.15. TASK QUEUE CONNECTOR. .. 71
FIGURE 4.16. EXPERIMENTAL SETUP OVERVIEW. .. 72
FIGURE 4.17. EXPERIMENT 1’S RESULT. .. 76
FIGURE 4.18. EXPERIMENT 2’S RESULT. .. 77
FIGURE 4.19. EXPERIMENT 3’S RESULT. .. 78
FIGURE 4.20. EXPERIMENT 4’S RESULT. .. 79
FIGURE 4.21. EXPERIMENT 5’S RESULT. .. 80
FIGURE 4.22. EXPERIMENT 6’S RESULT. .. 81
FIGURE 4.23. EXPERIMENT 7’S RESULT. .. 82
FIGURE 4.24. EXPERIMENT 8’S RESULT. .. 83
FIGURE 4.25. EXPERIMENT 9’S RESULT. .. 84
FIGURE 4.26. EXPERIMENT 10’S RESULT. .. 85
FIGURE 4.27. EXPERIMENT 11’S RESULT. .. 86
FIGURE 4.28. EXPERIMENT 12’S RESULT. .. 87
FIGURE 4.29. EXPERIMENT 13’S RESULT. .. 88
FIGURE 4.30. EXPERIMENT 14’S RESULT. .. 89
FIGURE 4.31. ESTIMATION ANALYSIS IN THE CONTEXT OF EXPERIMENTAL SETUP. ... 91
FIGURE 4.32. POINT ESTIMATION ERROR FOR THE EXPERIMENT NUMBER 14. ... 93
FIGURE 4.33. COMPARISON OF POINT ESTIMATION ERRORS FOR THE EXPERIMENT NUMBER 14. .. 93
FIGURE 4.34. SHORTCOMINGS OF ESTIMATION ERROR NUMERICAL METRICS. ... 94

x

FIGURE 4.35. SENSITIVITY OF CONTINGENCY TABLE METRICS TO THE THRESHOLD. ... 98
FIGURE 4.36. OVERVIEW OF OUR ESTIMATION APPROACH. ... 103
FIGURE 4.37. EXPERIMENTAL SETUP OVERVIEW. .. 106
FIGURE 4.38. POSTERIOR DISTRIBUTION, AUTOCORRELATION PLOT AND SAMPLE PATHS OF Q(1,2). ... 108
FIGURE 4.39. POSTERIOR DISTRIBUTION, AUTOCORRELATION PLOT AND SAMPLE PATHS OF Q(1,3). ... 108
FIGURE 4.40. POSTERIOR DISTRIBUTION, AUTOCORRELATION PLOT AND SAMPLE PATHS OF Q(2,4). ... 109
FIGURE 4.41. BOOTSTRAPPED DISTRIBUTION OF DEFAULT PROBABILITIES... 110
FIGURE 4.42. BOX PLOT OF DEFAULT PROBABILITIES IN DIFFERENT SCALES. .. 110
FIGURE 4.43. BOX PLOTS OF DEFAULT PROBABILITIES IN ONE SCALE. ... 111
FIGURE 4.44. SCATTER PLOTS OF THE POSTERIOR DISTRIBUTION OF ESTIMATES THAT SHOW TYPICAL PATTERN. 111
FIGURE 4.45. ESTIMATION ANALYSIS IN THE CONTEXT OF EXPERIMENTAL SETUP. ... 112
FIGURE 4.46. ESTIMATION ERROR WITH DIFFERENT METRICS OVER SIMULATION ROUNDS. .. 114
FIGURE 4.47. ESTIMATION ERROR WITH DIFFERENT METRICS OVER BURN-IN ROUNDS. ... 114
FIGURE 4.48. VISUAL COMPARISON OF ESTIMATION ERRORS BETWEEN EXPERIMENTS (CF. TABLE 4.34). ... 116
FIGURE 4.49. RUNTIME PERFORMANCE W.R.T. OBSERVATION SIZE (CF. TABLE 4.27 AND TABLE 4.33). .. 117
FIGURE 4.50. RUNTIME PERFORMANCE W.R.T. OBSERVATION SIZE (ONLY THE FIRST 9 EXPERIMENTS, CF. TABLE 4.33). 117
FIGURE 4.51. VISUAL COMPARISON OF ESTIMATION ERRORS BETWEEN EXPERIMENTS (CF. TABLE 4.36). ... 119
FIGURE 5.1. SCOPE OF CHAPTER 5. .. 125
FIGURE 5.2. SATISFACTION FUNCTION FOR REQUIREMENT NFR1. .. 135
FIGURE 5.3. SATISFACTION FUNCTION FOR REQUIREMENT NFR2. .. 136
FIGURE 5.4. A TRIANGULAR SATISFACTION FUNCTION. ... 136
FIGURE 5.5. A TRAPEZOIDAL SATISFACTION FUNCTION. .. 137
FIGURE 5.6. A GAUSSIAN SATISFACTION FUNCTION. .. 138
FIGURE 5.7. A BELL SATISFACTION FUNCTION. .. 138
FIGURE 5.8. A SIGMOIDAL SATISFACTION FUNCTION. ... 138
FIGURE 5.9. A TRAPEZOIDAL POSSIBILITY DISTRIBUTION.. 140
FIGURE 5.10. POSSIBILITY DISTRIBUTIONS ELICITED FROM DIFFERENT USERS. .. 140
FIGURE 5.11. AN INTERVAL TYPE-2 FUZZY SET BASED POSSIBILITY DISTRIBUTION. .. 141
FIGURE 5.12. CONFLICTING IMPRECISE NON-FUNCTIONAL REQUIREMENTS. ... 142
FIGURE 5.13. TWO IT2-FSS, A AND B (ADAPTED FROM (J MENDEL & WU, 2010)). .. 143
FIGURE 5.14. VISUAL REPRESENTATION OF UNION OF TWO IT2-FSS (ADAPTED FROM (J MENDEL & WU, 2010)). 143
FIGURE 5.15. VISUAL REPRESENTATION OF INTERSECTION OF TWO IT2-FSS (ADAPTED FROM (J MENDEL & WU, 2010)). 143
FIGURE 5.16. THE ARCHITECTURE OF TYPE-1 FUZZY LOGIC SYSTEM (ADAPTED FROM (JM MENDEL, 2000))..................................... 146
FIGURE 5.17. THE ARCHITECTURE OF TYPE-2 FUZZY LOGIC SYSTEM (ADAPTED FROM (JM MENDEL, 2000))..................................... 146
FIGURE 5.18. SINGLETON MEMBERSHIP FUNCTION. .. 147
FIGURE 5.19. INTERVAL TYPE-1 MEMBERSHIP FUNCTION. .. 148
FIGURE 5.20. AN INTERVAL TYPE-2 MEMBERSHIP FUNCTION. .. 148
FIGURE 5.21. GENERAL TYPE-2 MEMBERSHIP FUNCTION. ... 148
FIGURE 5.22. THE NINE POINTS THAT REPRESENT AN IT2 FS (ADAPTED FROM (J MENDEL & WU, 2010)). 149
FIGURE 5.23. A DISCRETIZED IT2 MF. ... 150
FIGURE 5.24. IT2 MFS FOR INPUT 𝑥1 (WORKLOAD). .. 152
FIGURE 5.25. IT2 MFS FOR INPUT 𝑥2 (RESPONSE TIME). .. 153
FIGURE 5.26. NON-NULL FUZZIFIED SETS FOR 𝑥1. .. 153
FIGURE 5.27. NON-NULL FUZZIFIED SETS FOR 𝑥2. .. 154
FIGURE 5.28. THE FUZZIFIER MODULE: MAPS CRISPS INPUTS INTO INTERVAL TYPE-2 FUZZY SETS OUTPUTS. 154
FIGURE 5.29. THE INFERENCE ENGINE: CALCULATION OF THE FIRING DEGREE FOR RULE #9 (INFERENCE OPERATION: PRODUCT). 156
FIGURE 5.30. THE INFERENCE ENGINE MODULE: MAPS IT2 FSS INPUTS INTO IT2 FSS OUTPUTS. .. 156
FIGURE 5.31. THE OUTPUT PROCESSING: AGGREGATE INTERVAL TYPE-2 FUZZY SETS AND TRANSFORMS THEM INTO A CRISP OUTPUT. 157
FIGURE 5.32. OUTPUT CONTROL SURFACE (A), CONFIDENCE INTERVAL (I.E., 𝑦𝑙, 𝑦𝑟) (B) AND THEIR DIFFERENCES (I.E., 𝑦𝑟 − 𝑦𝑙) (C). . 158

xi

FIGURE 5.33. ARCHITECTURAL MODE SWITCHING IN WEB SERVER (ADAPTED FROM (F CHAUVEL ET AL., 2010)). 159
FIGURE 5.34. HIGH-LEVEL VIEW OF AUTONOMOUS FUZZY REASONING. ... 161
FIGURE 5.35. FOU OF PERSON 1 FOR THE LINGUISTIC "MEDIUM" REGARDING THE WORKLOAD. ... 163
FIGURE 5.36. FOUS FROM THREE EXPERTS REGARDING THE LINGUISTIC “MEDIUM”. ... 164
FIGURE 5.37. AGGREGATION OF THE THREE FOUS REGARDING THE LINGUISTIC “MEDIUM”. .. 165
FIGURE 5.38. AGGREGATED FOU REGARDING THE LINGUISTIC “MEDIUM”. .. 165
FIGURE 5.39. TRAPEZOIDAL APPROXIMATION OF THE UMF, AND TRIANGULAR APPROXIMATION OF THE LMF OF THE LINGUISTIC

“MEDIUM”. ... 166
FIGURE 5.40. WORKLOAD LINGUISTICS WITH THEIR INTERVALS AND UNCERTAINTIES. ... 168
FIGURE 5.41. RESPONSE TIME LINGUISTICS WITH THEIR INTERVALS AND UNCERTAINTIES. .. 168
FIGURE 5.42. IT2 MFS OF THE WORKLOAD LINGUISTICS RESULTING FROM THE TRANSFORMATION USING IA APPROACH..................... 174
FIGURE 5.43. IT2 MFS OF THE WORKLOAD LINGUISTICS AFTER THE TRANSFORMATION USING IA APPROACH WITH THEIR EMBEDDED T1

MFS. ... 174
FIGURE 5.44. IT2 MFS OF THE WORKLOAD LINGUISTICS RESULTING FROM THE TRANSFORMATION USING BLURRING PARAMETER

(BLURRING HERE IS 0.5). ... 175
FIGURE 5.45. IT2 MFS OF THE ANTECEDENTS’ LINGUISTIC LABELS (𝛼 = 0.5). .. 179
FIGURE 5.46. IT2 MFS OF THE ANTECEDENTS’ LINGUISTIC LABELS (𝛼 = 0.7). .. 179
FIGURE 5.47. IT2 MFS OF THE CONSEQUENT’S LINGUISTIC LABELS. .. 179
FIGURE 5.48. OUTPUT CONTROL SURFACE OF THE IT2 FLS FOR ADAPTATION REASONING (𝛼 = 0.5) (A), CONFIDENCE INTERVAL (I.E.,

𝑦𝑙, 𝑦𝑟) (B) AND THEIR DIFFERENCES (I.E., 𝑦𝑟 − 𝑦𝑙) (C). .. 182
FIGURE 5.49. OUTPUT CONTROL SURFACE OF THE IT2 FLS FOR ADAPTATION REASONING (𝛼 = 0.7) (A), CONFIDENCE INTERVAL (I.E.,

𝑦𝑙, 𝑦𝑟) (B) AND THEIR DIFFERENCES (I.E., 𝑦𝑟 − 𝑦𝑙) (C). .. 183
FIGURE 5.50. OUTPUT CONTROL SURFACE OF THE T1 FLS. ... 183
FIGURE 5.51. THE RMSES FOR THE TWO FLS TYPES OVER 20 DESIGNS. ... 185
FIGURE 5.52. THE RMSES FOR THE FLS UNDER NOISE. ... 186
FIGURE 5.53. THE RMSES FOR THE FLS WITH BLURRING 0.7. .. 187
FIGURE 5.54. THE RMSES FOR THE FLS WITH BLURRING 0.95. .. 187
FIGURE 5.55. THE RMSES FOR THE T1 FLS. ... 188
FIGURE 6.1. SCOPE OF CHAPTER 6. .. 192
FIGURE 6.2. PRIMATIVE CONNECTOR CHANNELS. .. 199
FIGURE 6.3. THE SEQUENCER CONNECTOR. ... 200
FIGURE 6.4. A SEQUENCER CONNECTOR WITH INTERNAL COMPONENT. ... 201
FIGURE 6.5. SOFTWARE COMPONENT CORRESPONDING TO THE SEQUENCER CONNECTOR. .. 201
FIGURE 6.6. A DYNAMICFIFO CONNECTOR. .. 203
FIGURE 6.7. A PATH IN SEQUENCER CONNECTOR. ... 204
FIGURE 6.8. COMPOSITION OF TWO CONNECTORS. ... 206
FIGURE 6.9. SUB-CONNECTORS RESULTING FROM CUTTING S1. ... 207
FIGURE 6.10. A DISCONNECTED CONNECTOR. .. 207
FIGURE 6.11. A STRUCTURAL VARIANT OF SEQUENCER CONNECTOR. .. 208
FIGURE 6.12. A STRUCTURAL VARIANT OF SEQUENCER CONNECTOR. .. 208
FIGURE 6.13. A RECONFIGURED VERSION OF SEQUENCER CONNECTOR AFTER APPLICATION OF REMOVAL. .. 210
FIGURE 6.14. A SIMPLE CONNECTOR. ... 210
FIGURE 6.15. THE PROACTIVE WAITING SEQUENCER. ... 210
FIGURE 6.16. THE PROACTIVE WAITING WEAK SEQUENCER. .. 211
FIGURE 6.17. SEQUENCER CONNECTOR FEATURE MODEL. .. 214
FIGURE 6.18. REFINED SEQUENCER CONNECTOR FEATURE MODEL. ... 214
FIGURE 6.19. INITIAL CONFIGURATION (MODE) OF SEQUENCER CONNECTOR. ... 214
FIGURE 6.20. THE “PRO-ACTIVE WAITING” SEQUENCER CONNECTOR MODE. .. 215
FIGURE 6.21. THE WEAK SEQUENCER CONNECTOR MODE. .. 216

xii

FIGURE 6.22. THE QUASI-WEAK SEQUENCER CONNECTOR MODE. .. 216
FIGURE 6.23. THE “PRO-ACTIVE DEPENDENT” SEQUENCER CONNECTOR MODE. .. 216
FIGURE 6.24. PRODUCT DERIVATION PROCESS IN SPL. .. 217
FIGURE 6.25. DYNAMIC ADAPTATION OF SOFTWARE SYSTEM WITH VARIABILITY MODEL AT RUNTIME. ... 217
FIGURE 6.26. DYNAMIC ADAPTATION OF SOFTWARE SYSTEM WITH DYNAMIC VARIABILITY MODEL AT RUNTIME. 218
FIGURE 7.1. SCOPE OF CHAPTER 7. .. 221
FIGURE 7.2. THE PROPOSED FRAMEWORK. .. 222
FIGURE 7.3. PARAMETRIC REQUIREMENT VERIFICATION PROCESS. .. 224
FIGURE 7.4. AN INSTANCE OF COMPETING CONSUMERS IN A TYPICAL CLOUD ARCHITECTURE. .. 226
FIGURE 7.5. THE ADOPTION OF ELASTIC QUEUE IN PRIORITIZED REQUESTS. .. 227
FIGURE 7.6. AN EXAMPLE OF PIPES-AND-FILTERS ARCHITECTURE IN THE CLOUD BY EXPLOITING ELASTIC QUEUES. 228
FIGURE 7.7. THE ADOPTION OF ELASTIC QUEUE FOR LOAD LEVELING. .. 228
FIGURE 7.8. THE ADOPTION OF ELASTIC QUEUE FOR REQUEST SCHEDULING. ... 229
FIGURE 7.9. AN INSTANCE OF INTEGRATION IN MULTI/HYBRID CLOUD BY HETEROGENEOUS COMPONENTS WITH ELASTIC QUEUE. 229
FIGURE 7.10. AN INSTANCE OF INTEGRATION IN HYBRID CLOUD BY CONNECTING STATIC LAYERS WITH ELASTIC QUEUES. 230
FIGURE 7.11. FIVE ARCHITECTURAL MODES OF ELASTICQUEUE (CF. TABLE 7.1). .. 231
FIGURE 7.12. TOOL CHAIN ARCHITECTURE. .. 232
FIGURE 7.13. ELASTICQUEUE ARCHITECTURE – LOAD INJECTION SCENARIO. ... 233
FIGURE 7.14. ELASTICQUEUE ARCHITECTURE - MONITORING SCENARIO. ... 234
FIGURE 7.15. ELASTICQUEUE ARCHITECTURE - SCALING SCENARIO. .. 235
FIGURE 7.16. MONITORING DASHBOARD UI OF ROBUST2SCALE. .. 238
FIGURE 7.17. LOAD GENERATOR UI. .. 239
FIGURE 7.18. SCALING ENGINE UI (A RECONFIGURATION IS INITIATED). .. 240
FIGURE 7.19. SCALING ENGINE UI (SENSITIVITY TO ENVIRONMENTAL DATA). ... 241
FIGURE 7.20. SCALING ENGINE UI (A RECONFIGURATION IS IGNORED DUE TO A PENDING ACTION). .. 242
FIGURE 7.21. IT2 MFS OF THE WORKLOAD LABELS. .. 245
FIGURE 7.22. IT2 MFS OF THE RESPONSE TIME LABELS. ... 246
FIGURE 7.23. OUTPUT OF THE IT2 FLS FOR ELASTICITY REASONING. .. 246
FIGURE 7.24. EXPERIMENTAL SETTING FOR ELASTICQUEUE. ... 248
FIGURE 7.25. RUNTIME PERFORMANCE W.R.T. # OF LINGUISTICS/RULES. .. 249
FIGURE 7.26. RUNTIME PERFORMANCE W.R.T. # OF ANTECEDENTS/RULES. ... 250
FIGURE 7.27. PREDICTED VS. ACTUAL WORKLOAD. ... 252
FIGURE 7.28. ESTIMATION ERRORS W.R.T. WORKLOAD PATTERNS. ... 253
FIGURE 7.29. RMSES OF THE CONTROLLER WITH DIFFERENT BLURRINGS. .. 255
FIGURE 7.30. DISTANCE BETWEEN DECISION BOUNDARIES (IT2FLS). ... 256
FIGURE 8.1. DYNAMIC SWITCH BETWEEN ADAPTATION STRATEGIES. ... 267
FIGURE 8.2. SATISFIED AND VIOLATED INTERVALS IN AN IMPRECISE REQUIREMENT. ... 268
FIGURE 8.3. BLURRING OF T1-FS TO BUILD AN IT2-FS. ... 269
FIGURE 8.4. ELASTICQUEUE ADAPTATION MANAGEMENT WITH A FUZZY CONTROLLER. ... 1

xiii

List of Tables

TABLE 1.1. SUMMARY OF THE RESEARCH METHODOLOGY STEPS AND THEIR RELEVANCE TO THE THESIS CHAPTERS. 15
TABLE 1.2. RESEARCH CLAIMS, EVALUATION METHOD AND RELEVANT CHAPTERS. .. 16
TABLE 1.3. A MAPPING OF THE RELATED PUBLICATIONS TO THE INDIVIDUAL THESIS CHAPTERS. .. 17
TABLE 3.1. LITERATURE COMPARISON ADDRESSING SOURCE OF UNCERTAINTY AND THE ACTIVITIES THEY COVER IN THE FEEDBACK CONTROL

LOOP. .. 47
TABLE 4.1. POTENTIAL MODELS AT RUNTIME AND THEIR SUPPORTS FOR NON-FUNCTIONAL REQUIREMENTS (ADAPTED FROM (ARDAGNA ET

AL., 2008)). ... 56
TABLE 4.2. FACTORS RELATED TO THE CHOICE OF EVALUATION APPROACH. .. 70
TABLE 4.3. LIST OF CONTROLLED VARIABLES AND THEIR PURPOSE IN OUR EXPERIMENTS. ... 73
TABLE 4.4. THE PLATFORMS USED IN THE CONTROLLED EXPERIMENTS. .. 73
TABLE 4.5. CHANGE PATTERN IN THE PERFORMED EXPERIMENTS.. 74
TABLE 4.6. SETTING OF THE EXPERIMENT 1 (CF. TABLE 4.3). .. 76
TABLE 4.7. SETTING OF THE EXPERIMENT 2 (CF. TABLE 4.3). .. 77
TABLE 4.8. SETTING OF THE EXPERIMENT 3 (CF. TABLE 4.3). .. 78
TABLE 4.9. SETTING OF THE EXPERIMENT 4 (CF. TABLE 4.3). .. 79
TABLE 4.10. SETTING OF THE EXPERIMENT 5 (CF. TABLE 4.3). .. 80
TABLE 4.11. SETTING OF THE EXPERIMENT 6 (CF. TABLE 4.3). .. 81
TABLE 4.12. SETTING OF THE EXPERIMENT 7 (CF. TABLE 4.3). .. 82
TABLE 4.13. SETTING OF THE EXPERIMENT 8 (CF. TABLE 4.3). .. 83
TABLE 4.14. SETTING OF THE EXPERIMENT 9 (CF. TABLE 4.3). .. 84
TABLE 4.15. SETTING OF THE EXPERIMENT 10 (CF. TABLE 4.3). .. 85
TABLE 4.16. SETTING OF THE EXPERIMENT 11 (CF. TABLE 4.3). .. 86
TABLE 4.17. SETTING OF THE EXPERIMENT 12 (CF. TABLE 4.3). .. 87
TABLE 4.18. SETTING OF THE EXPERIMENT 13 (CF. TABLE 4.3). .. 88
TABLE 4.19. SETTING OF THE EXPERIMENT 14 (CF. TABLE 4.3). .. 89
TABLE 4.20. OVERVIEW OF THE EXPERIMENTAL OBSERVATIONS; FIRST COLUMN: N: COULD NOT DETECT, Y: COULD DETECT, Y<: COULD

DETECT SOONER THAN THE OTHER METHOD, SECOND COLUMN: Y: HAS FALSE POSITIVES, Y<: HAS LESS FALSE POSITIVES THAN THE

OTHER METHOD, THIRD COLUMN: Y: IS MORE CLOSE TO THE ACTUAL PROBABILITY. ... 90
TABLE 4.21. ESTIMATION ERROR METRICS (WITTEN & FRANK, 2005). 𝑝 ESTIMATED, 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙 ACTUAL PROBABILITY, 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙

AVERAGE OF ACTUAL PROBABILITY. .. 92
TABLE 4.22. ESTIMATION ERROR MEASUREMENTS FOR THE EXPERIMENT NUMBER 14. .. 94
TABLE 4.23. CONTINGENCY TABLE. .. 95
TABLE 4.24. CONTINGENCY TABLE METRICS (SALFNER ET AL., 2010). .. 96
TABLE 4.25. CONTINGENCY METRICS MEASUREMENT FOR THE EXPERIMENT NUMBER 14. .. 97
TABLE 4.26. EVALUATED CONTINGENCY METRICS FOR THE EXPERIMENT 14 AFTER CHANGING THE THRESHOLD VALUE. 98
TABLE 4.27. LIST OF CONTROLLED VARIABLES AND THEIR PURPOSE IN OUR EXPERIMENTS. ... 107
TABLE 4.28. THE 𝑞_𝐴𝑐𝑡𝑢𝑎𝑙 MATRIX IN THE EXPERIMENT. ... 107
TABLE 4.29. CONTROLLED VARIABLES IN THE EXPERIMENT (CF. TABLE 4.27).. 107
TABLE 4.30. MEAN ESTIMATES OF DEFAULT PROBABILITIES AND THEIR DIFFERENCES WITH DEFAULT PROBABILITIES OF ACTUAL MATRIX. 109
TABLE 4.31. ESTIMATION ERROR METRICS. .. 113
TABLE 4.32. ESTIMATION ERROR MEASUREMENTS. ... 113
TABLE 4.33. EXPERIMENTAL SETTINGS FOR RUNTIME PERFORMANCE EVALUATIONS (CF. TABLE 4.27)... 115
TABLE 4.34. ESTIMATION ERROR COMPARISON BETWEEN EXPERIMENTS (CF. TABLE 4.33). .. 116
TABLE 4.35. EXPERIMENTAL SETTINGS FOR SENSIVITY ANALYSES (CF. TABLE 4.27). ... 118
TABLE 4.36. ESTIMATION ERROR COMPARISON BETWEEN EXPERIMENTS (CF. TABLE 4.33). .. 118

xiv

TABLE 5.1. CLASSIFICATION AND COMPARISON OF ADAPTATION REASONING APPROACHES. ... 134
TABLE 5.2. WEIGHTED AVERAGES OF THE INTERVAL T1 MF. ... 151
TABLE 5.3. COMPUTATIONAL COMPLEXITY OF CENTROID CALCULATION FOR OUR IT2 MF EXAMPLE. ... 151
TABLE 5.4. FUZZY RULES WITH SINGLETON CONSEQUENT.. 155
TABLE 5.5. DATA REGARDING WORKLOAD AND RESPONSE TIME LABELS. ... 167
TABLE 5.6. MEAN AND STANDARD DEVIATION FOR THE T1 MFS (JM MENDEL, 2008).. 170
TABLE 5.7. LOCATIONS OF THE MAIN POINTS OF IT2 MFS. ... 171
TABLE 5.8. RAW DATA FOR 5 LINGUISTICS W.R.T. WORKLOAD COLLECTED FROM 21 EXPERTS. ... 172
TABLE 5.9. REMAINING DATA INTERVALS AND THEIR MEAN AND STANDARD DEVIATION. ... 173
TABLE 5.10. UNCERTAINTY MEASURES OF THE IT2 FSS OF THE WORKLOAD LINGUISTICS W.R.T. THE TWO TRANSFORMATION APPROACHES.

 .. 176
TABLE 5.11. QUESTIONS FOR ADAPTATION POLICIES AND RESPONSES. .. 178
TABLE 5.12. DATA REGARDING ANTECEDENTS AND CONSEQUENT LABELS. ... 178
TABLE 5.13. THE PERFORMANCE OF RULE REDUCTION IN DIFFERENT SCENARIOS. .. 185
TABLE 6.1. CLASSIFICATION AND COMPARISON OF ADAPTATION MECHANISMS. .. 197
TABLE 6.2. PRIMATIVE CHANNEL BEHAVIOR. .. 199
TABLE 6.3. A LIST OF ARCHITECTURAL INVARIANTS FOR CONNECTOR CONFIGURATIONS. ... 202
TABLE 6.4. VARIABILITY BINDING IN EXISTING APPROACHES. ... 213
TABLE 7.1. LINGUISTIC LABELS TO DESCRIBE ELASTICQUEUE OPERATING MODE... 230
TABLE 7.2. PROCESSED SURVEY RESULTS: WORKLOAD AND RESPONSE TIME. ... 244
TABLE 7.3. PROCESSED SURVEY RESULTS: ADAPTATION RULES. .. 244
TABLE 7.4. LOCATIONS OF THE MAIN POINTS OF IT2 MFS. ... 245
TABLE 7.5. DEPLOYMENT DETAILS OF OUR EXPERIMENTAL SETTING. ... 247
TABLE 7.6. SUMMARY OF RUNTIME PERFORMANCE EVALUATIONS. .. 250
TABLE 7.7. SUMMARY OF RUNTIME PERFORMANCE EVALUATIONS. .. 251
TABLE 7.8. COMPUTATIONAL COMPLEXITY OF CENTROID CALCULATION. .. 251
TABLE 7.9. COMPARISON OF THE EFFECTIVENESS OF ROBUST2SCALE. .. 254
TABLE 7.10. A BENCHMARK ON PERFORMANCE FOR REASONING. .. 257
TABLE 8.1. FLS INPUT–OUTPUT DESCRIPTION. ... 2
TABLE 8.2. LINGUISTIC LABELS TO DESCRIBE WORKLOAD. ... 2
TABLE 8.3. LINGUISTIC LABELS TO DESCRIBE LOAD. ... 3
TABLE 8.4. LINGUISTIC LABELS TO DESCRIBE RESPONSE TIME. .. 3
TABLE 8.5. LINGUISTIC LABELS TO DESCRIBE ELASTICQUEUE OPERATING MODE... 4
TABLE 8.6. FUZZY ADAPTATION RULES. ... 5

xv

A Framework for Robust Control of Uncertainty in

Self-Adaptive Software Connectors

Pooyan Jamshidi

Abstract
Context and motivations. The desired behavior of a system in ubiquitous environments

considers not only its correct functionality, but also the satisfaction of its non-functional

properties, i.e., its quality of service. Given the heterogeneity and dynamism characterizing the

ubiquitous environments and the need for continuous satisfaction of non-functional properties,

self-adaptive solutions appear to be an appropriate approach to achieve interoperability. In this

work, self-adaptation is adopted to enable software connectors to adapt the interaction protocols

run by the connected components to let them communicate in a timely manner and with the

required level of quality. However, this self-adaptation should be dependable, reliable and

resilient to be adopted in dynamic, unpredictable environments with different sources of

uncertainty. The majority of current approaches for the construction of self-adaptive software

ignore the uncertainty underlying non-functional requirement verification and adaptation

reasoning. Consequently, these approaches jeopardize system reliability and hinder the adoption

of self-adaptive software in areas where dependability is of utmost importance.

Objective. The main objective of this research is to properly handle the uncertainties in the non-

functional requirement verification and the adaptation reasoning part of the self-adaptive

feedback control loop of software connectors. This will enable a robust and runtime efficient

adaptation in software connectors and make them reliable for usage in uncertain environments.

Method. In the context of this thesis, a framework has been developed with the following

functionalities: 1) Robust control of uncertainty in runtime requirement verification. The main

activity in runtime verification is fine-tuning of the models that are adopted for runtime

reasoning. The proposed stochastic approach is able to update the unknown parameters of the

models at runtime even in the presence of incomplete and noisy observations. 2) Robust control

of uncertainty in adaptation reasoning. A general methodology based on type-2 fuzzy logic has

been introduced for the control of adaptation decision-making that adjusts the configuration of

component connectors to the appropriate mode. The methodology enables a systematic

development of fuzzy logic controllers that can derive the right mode for connectors even in the

presence of measurement inaccuracy and adaptation policy conflicts.

Results. The proposed model evolution mechanism is empirically evaluated, showing a

significant precision of parameter estimation with an acceptable overhead at runtime. In addition,

the fuzzy based controller, generated by the methodology, has been shown to be robust against

uncertainties in the input data, efficient in terms of runtime overhead even in large-scale knowledge

bases and stable in terms of control theory properties. We also demonstrate the applicability of

the developed framework in a real-world domain.

xvi

Thesis statement. We enable reliable and dependable self-adaptations of component connectors

in unreliable environments with imperfect monitoring facilities and conflicting user opinions

about adaptation policies by developing a framework which comprises: (a) mechanisms for

robust model evolution, (b) a method for adaptation reasoning, and (c) tool support that allows

an end-to-end application of the developed techniques in real-world domains.

Keywords: Uncertainty, Self-Adaptive Software, Software Connector, Models at Runtime, Fuzzy Logic

System, Type-2 Fuzzy Logic Control, Mode-based Reconfiguration.

xvii

Acknowledgement

The completion of this thesis has been made possible through the support and encouragement of

several people and I wish to acknowledge their contribution. In particular, I would like to thank

my supervisor, Claus Pahl, for his constant support and inspiration, and for all the time and effort

he has devoted towards my research. Claus has been my principal resource and guide throughout

my PhD. He is a remarkable advisor for providing the right amount of guidance at the right time.

He has entrusted me with independence and responsibility when I had learned the ropes. I could

not have hoped for a better supervisor. I am also grateful to my thesis external and internal

examiners, Pete Sawyer and Kevin Casey for their constructive comments. David Sinclair, my

transfer examiner, also provided a number of useful comments that have helped to shape the

direction of my thesis research right in the middle of this journey.

Over the years, I have been fortunate to receive useful input on my research from great people. I

would like to particularly acknowledge the contributions of Aakash Ahmad, Yasunari Inamura

and Colette Real. Aakash has been a continual source of helpful comments, guidance, and

encouragement throughout my research. Yasunari helped me a lot when I was struggling in the

implementation of model calibration approach in this thesis. Colette assisted me by proofreading

the final draft of this thesis. I am especially indebted to Saeed Mansour, Fereidoon Shams and

Mohsen Sharifi for introducing me into the field of system and software engineering research and

providing me the opportunity to participate in practical research already as a master student.

I have been fortunate to have great friends during my PhD: Irina Roznovat, Kosala Bandara,

Wang Ming Xue, Muhammad Javed, Yalemisew Abgaz, Paul Clarke, Fattah Alizadeh, Alireza

Dehghani, Mohsen Moheimany, Marija Bezbradica, Na Li, John Pendlebury, Huanhuan Xiong,

Frank Fowley, Graham Hunt, Lei Xu and Sergej Svorobej. Thanks for all your help and for making

my PhD so much fun! A big thank you to Patricia Lacey, Clare McInerney, Susan Mitchell, Patsy

Finn and Dara O’Connor for their invaluable administrative support at DCU and Lero.

I am very obliged to all the organizations that have provided support for this work. I would like

to particularly express my gratitude to Lero- the Irish Software Engineering Research Centre. The

steady support provided by the Lero over the three years of my PhD has enabled me to explore

the topic of self-adaptive software. I also would like to acknowledge the support of IC4 – the Irish

Centre for Cloud Computing and Commerce over the last year. The consistent support provided

by IC4 and the centre director, Tony McEnroy, has enabled me to apply my ideas to cloud

computing, helping to significantly improve the maturity of this thesis.

I will be forever grateful for the lifelong emotional and practical support that my family has

provided me throughout my education. Mom, Dad, and Parnian: I can never thank you enough

for all you have done for me!

Most of all, I am thankful for Hoorieh, my wife, who accompanied me to Dublin, enduring some

hard times with me while we adjusted to a new life. It has been a long yet crazy journey together

and as I have told you many times, this accomplishment is also yours. I love you.

xviii

Dedication

To Mehri, Ahmad, Parnian, Hoorieh, Bahman and Running!

xix

Propositions

Belonging to the PhD dissertation

A Framework for Robust Control of Uncertainty in

Self-Adaptive Software Connectors
1. Software connectors play an important role in increasing the interoperability of software.

Software connectors coordinating heterogeneous components support interoperability in

ubiquitous environments.

2. The desired behavior of a system in ubiquitous environments considers not only its

correct functionality, but also the satisfaction of non-functional properties, i.e., its quality

of service.

3. Given the heterogeneity and dynamism characterizing the ubiquitous environments and

the need for continuous satisfaction of non-functional properties, self-adaptive solutions

appear to be an appropriate approach to achieve interoperability.

4. Self-adaptive connectors adapt the interaction protocols run by connected components to

let them communicate timely and with the required level of quality.

5. However, such self-adaptation should be dependable, reliable and resilient to be adopted

in such a dynamic environments with different sources of uncertainty.

6. To achieve dependable self-adaptive software connectors, mechanisms to enable the self-

adaptation for component connectors should be robust against different sources of

uncertainty.

7. For quantitative verifications of non-functional properties, it is required to consider

parametric analytical models that can be calibrated at runtime to accurately measure such

properties. However, the challenge is that how accurate and trustworthy model

calibration can perform given that the input measurement data typically are not complete

and contain noise (Chapter 4).

8. Having quantitatively verified non-functional properties and detected a violation, an

adaptation is required to change the interaction protocol to let the components

communicate with the desired level of quality. However, this adaptation should also be

reliable given the input information as well as the adaptation policies may contain

uncertainties (Chapter 5).

9. Assuming that dependable model calibration and adaptation reasoning is in place, their

integration in the MAPE-K self-adaptation loop to ensure the reliability of the self-

adaptation of component connectors in real-world unreliable environment needs to be

considered (Chapter 7).

1

Chapter 1

1. Introduction
“Never promise more than you can perform” – Publilius Syrus (85 - 43 BC).

Contents

1.1. CHAPTER OVERVIEW .. 2
1.2. RESEARCH CONTEXT .. 2

1.2.1. Component-Based Systems ... 3
1.2.2. Component Connectors ... 3

1.2.2.1. A tangible example of component connectors ... 4
1.2.2.2. The language aspect of component connectors ... 5

1.2.3. Self-Adaptive Software .. 5
1.3. RESEARCH MOTIVATION ... 6
1.4. RESEARCH PROBLEM .. 9

1.4.1. Central Hypothesis ... 9
1.4.2. Research Questions ... 9

1.5. PROPOSED SOLUTION AND CONTRIBUTIONS ... 10
1.5.1. Solution Framework .. 11
1.5.2. Research Contributions .. 12

1.6. RESEARCH METHODOLOGY ... 13
1.7. THESIS .. 15

1.7.1. Thesis Statement ... 15
1.7.2. Research Claim .. 15

1.8. LIST OF PUBLICATIONS .. 16
1.9. THESIS OUTLINE .. 18
1.10. CHAPTER SUMMARY .. 20

2

1.1. Chapter Overview

Recently, software has become one of the key influential entities of modern society. Consequently, the

expectations people place on software systems have quickly changed, even more recently as software

systems have become essential for living. With the rise of a new computing paradigm (such as service-

oriented and cloud computing), in which the main principle is to move towards independent management

of computing entities, applications use and integrate functionality from third-party, potentially distributed

services, implemented in different environments and running on different platforms.

Therefore, interoperability and dependability have become fundamental requirements for building

software-intensive systems. This raises questions of not only how we coordinate different pieces of

software and how we can reason about the properties of the subsequent systems, but also how we can

robustly adapt the coordination architecture at runtime due to the intrinsic dynamics and uncertainties of

the environment. The robust handling of uncertainty in self-adaptive software connectors is the topic of

this thesis. The term robustness here means the persistence of a system’s characteristic behavior under

perturbations or unusual conditions of uncertainty. More concretely, we aim at developing mechanisms

for enabling a reliable (i.e., dependable) adaptation of the coordination architecture even if its

assumptions that have been made at design-time are somewhat violated by the situations at runtime. In

other words, we enable resilient self-adaptive software connectors that perform well in uncertain

environments. Throughout this thesis, we may use the three key terms in the last two sentences (i.e.,

reliability, dependability and resiliency) interchangeably, but in the context of this thesis, we mean that

we intend to develop a safe and reliable self-adaptation for software connectors in the presence of

uncertainty.

The rest of this chapter describes the motivations for this work and provides an overview of the proposed

solution. We first give a broad overview of the research context including component-based systems,

component connectors as well as self-adaptive software (Section 1.2) and motivate the need for a

dependable self-adaptive software connector (Section 1.3). We then elaborate on the problem that this

work aims to address by deliberating the hypotheses and research questions (i.e., the problem space in

Section 1.4). Afterwards, the basic elements of the proposed solution and specific contribution of this

thesis are discussed (i.e., the solution space in Section 1.5). The details of the research methodology that

we have followed throughout this work are then presented (Section 1.6). The thesis of this dissertation

and research claims are then stated (Section 1.7). A mapping of the related publications to the individual

chapters in the thesis is also provided (Section 1.8). Finally, the structure of the remainder of this

document, explaining each chapter’s relevance to the stated thesis is presented (Section 0).

1.2. Research Context

In this section, before examining the research motivations of this thesis, we first introduce the most

related aspects, which intersect to determine the scope of this research as illustrated in Figure 1.1.

3

Figure 1.1. Scope of this thesis.

1.2.1. Component-Based Systems

Software intensive systems that are built according to the component-based paradigm are called

component-based software systems. A component-based system is described as a composition of

components that interact with each other to offer original functionalities resulting from the composition

of individual component functionalities. Composition of components not only defines the rules according

to which the individual components can interact, but it also describes the interaction between the

composed components.

The traditional concept of separation between computation and interaction (Gelernter & Carriero, 1992)

is now a necessity for modern large-scale software intensive systems. The separation between

computation and interaction becomes more prominent in the component-based paradigm, where

reusability, evolution, maintainability and heterogeneity are key principles. In order to realize this

separation, the notion of a connector has been coined to act as an interaction media. Unfortunately, the

majority of programming languages for component-based systems do not provide any mechanism to

express the connectors explicitly. This forces the interaction logic to be programmed within components.

As a result, the interaction logic becomes entirely hidden inside individual components. This limits the

usage of components to the very specific interaction protocol that it contains. Ultimately, this limits the

reusability and dynamic interchangeability of software components.

In this thesis, we consider interaction between components as a first-class entity. Here, rather than

focusing on the self-adaptation of component-based systems, we focus on the self-adaptation of

interaction protocols that describe how the individual components interact and evolve over time to

accommodate the changes in the surrounding environment. Interaction protocols are promoted forming

a special class of components, the so-called component connectors. In this thesis, we intend to build on

component connectors by promoting the notion of self-adaptation and form a special class of component

connectors, which we call self-adaptive component connectors.

1.2.2. Component Connectors

Connectors participate in the design of component-based systems by defining the interaction protocols

for composing individual components. Connectors prescribe how the constituting components of a

system connect and interact with each other. As opposed to the components, which provide system-

specific functionality, connectors have no responsibility for the computation carried out by the overall

4

system. This means that connectors define interaction protocols between components. To form a

coherent system that realizes its requirements, connectors are responsible for the coordination of

activities realized by components to ensure their correct interaction.

1.2.2.1. A tangible example of component connectors

In order to investigate the details of component connectors, we introduce this notion by a tangible

example. Let us use two individual and physical components, a camera and a mini-display. We consider

these components as black boxes, with their internal behavior hidden, and they only expose an interface

for interaction purposes. The camera interface has a single output port to which it writes a captured data

stream. The display module also has an interface to the input data stream to be displayed. The objective

is to construct a simple component-based system that enables the user to capture a scene and have the

photo of the scene shown on the display. Let us imagine a scenario where there is a mismatch between

the rate at which the photo on the display can be refreshed and the rate at which the camera writes the

stream to the output port. More specifically, the camera is able to capture the scenes successively one

after another at a higher rate than the display allows the photos to be updated on its screen. The situation

in this scenario means that we cannot simply connect the output port of the camera with the input port

of the display. What would happen when the user starts capturing the scene at a pace that exceeds the

rate at which the display can show the respective captured photo? The following potential scenarios can

be considered:

1. The photographer is forced to wait for when its output port is not busy to capture another photo.

This means that the output port of the camera is synchronized with the input port of the display.

2. The extra data stream is buffered and can be displayed in order as they have queued.

3. The photos that are captured are disregarded while the display is busy showing another photo.

4. The second and the third scenarios are combined by offering a limited buffer where a number of

photos can be buffered while the display is busy. Once the buffer is full, extra photos are

disregarded.

5. The forth scenario is extended by estimating the rate of photo capturing and adapt the buffer by

the objective of scaling out the size of the buffer in order not to lose any photos and scaling in the

size of the buffer by releasing extra resources.

Let us consider scenario 3 and ignore the extra data stream captured by camera when the display is busy

and not ready to show new photos. When someone follows this scenario to construct a composed system,

the result would be a system that allows the photographer to capture photos and have the photo shown

in the display, but with the issue that if the user captures too quickly, he needs to capture repeatedly until

the photo is shown in the display. This example shows a common scenario faced by component-based

system designers in which constructing a desirable system is not possible by only wiring the input-output

ports together. There is a need for a piece of software, usually called glue code, to coordinate the

interaction of individual components.

Coordination languages (Papadopoulos & Arbab, 1998) are a class of modeling as well as programming

languages that offer a solution for the problem of specifying and managing the glue code. More

particularly, coordination languages offer mechanisms for composing and controlling systems made of

independent and possibly heterogeneous components. There are two classes of coordination languages

(Papadopoulos & Arbab, 1998): endogenous and exogenous. In endogenous coordination languages, the

coordination can be realized by incorporating the interaction logic with computation. The component-

5

based systems that use endogenous languages for coordination utilize the provided primitives for defining

the interaction inside the components. This intermixes the coordination with computation inside

components and leads to an implicit coordination logic. In contrast, exogenous coordination languages

enable the interactions outside the components as separate entities. This makes the role of coordination

explicit in component-based systems and enhances the reusability of individual components.

In the example, we exemplified a connector to enable the interactions between the camera and the

display according to the exogenous class of coordination. In exogenous coordination, connectors are

separated from components and we can deal with them as a first class entity. The connector acts as a

mediator between the camera and the display to enforce the behavior of scenarios that we want for the

composed system. This solution retains both the camera and the display independent, reusable, and

interchangeable for different contexts. If we need to enforce a new kind of scenario, we could still use the

same components, but design a different connector for realizing such behavior. Note that neither camera

nor display are aware of the presence of each other. However, the display here dictates the rate at which

the resulting composed system is able to display the photos.

1.2.2.2. The language aspect of component connectors

In this thesis, we explicitly work with component connectors designed in the coordination model Reo

(Arbab, 2004). Component connectors built using Reo are composed out of primitive channels, with

specific behavior, that can be plugged together with the help of nodes. This resembles the arcs and nodes

of general graphs in graph theory. The channel based compositions control the dataflow between the

components they are coordinating by enforcing well-defined communication protocols among them. This

coordination behavior involves a number of different semantics such as (a)synchronous communication,

buffering, data manipulation, context dependent behavior and mobility. The Reo coordination language

is based on a formal foundation and promotes loose coupling, distribution, mobility, exogenous

coordination and dynamic reconfigurability (Arbab, 2004). The formal basis of Reo guarantees verification

of quality of service properties and well-defined execution semantics for component compositions. There

are also some supporting tools associated with Reo for modeling component connectors, simulating

connector behavior, providing formal operational semantic languages and facilities to derive analytical

models, which we employ in this thesis.

1.2.3. Self-Adaptive Software

Currently software facilitates many human activities in modern society. With this ubiquitous usage and

the expectations that users have, new directions and perspectives have recently been envisaged.

In traditional software development, one of the key concerns is a meticulous requirement analysis in order

to avoid costly changes in later stages of the software development process. The situation in recent

software engineering processes is different. Software systems are constructed by composing

independently developed components that might be offered as third party services. Deployment

configuration can be changed quickly thanks to the flexibility of infrastructure in the cloud. Because of the

pervasiveness of mobile devices, the use of software becomes ubiquitous and integrated with everyday

life in a continuous fashion.

Modern software-intensive systems usually interact with an environment that is not under the control of

software itself. Because of the unpredictable occurrence of changes in the environment, a system may

6

not be able to meet the desired requirements. Consequently, software systems need to self-adapt

themselves to the occurrence of changes with limited or without any kind of human interventions.

Additionally, because software systems are continuously running in their desired environments, they

cannot be simply shut down in order to perform the required changes. Therefore, there is a need for a

special class of software systems that, while running, is required to recognize the occurrence of changes,

analyze the changes and reason about possible reactions to them in a self-managed manner. Systems that

fit into this class are called self-adaptive systems (SAS).

A number of relevant changes in the environment that affect software systems are:

1. Changes in the components of the systems that are not the core assets of the system itself and

are managed by third parties. This set of components is composed in the system under specific

considerations and when they change, it causes unexpected behavior of the composed system.

2. Changes in the usage profile of the system’s functionality. Users of user-intensive software

systems may change their behavior over time by overloading the system at specific time points

and cause the system to response slowly.

3. Changes in the deployment infrastructure of the system. For example, the changes for resources

that are available for computational purposes may cause the system to violate certain quality of

service requirements.

There are also other sources of changes for software-intensive systems comprising the changes in system

requirements, which may affect the software system. However, in this thesis, we assume the system

requirements are stable over time and we primarily focus on the changes in the environment in which

software is embedded. The changes in the environment of software cause some non-functional

requirements (NFR) such as performance or reliability to be violated. However, users of the systems

require a continuous satisfaction of the requirements despite the changes. Most non-functional

requirements correspond to quantitative properties (Marta Kwiatkowska, 2007). A convenient adaptation

of software can be triggered whenever a quantitative property corresponding to a requirement is violated.

1.3. Research Motivation

In traditional software development, the development processes mostly concentrated on how to carefully

analyze the requirements in early phases and avoid costly changes in the latter phases of the development

process (L Baresi, 2006). Therefore, in the research context, developing methods and techniques to

capture requirements and avoiding changes was one of the central themes for a long period of time, when

organizations were centralized and development environments and deployment infrastructure were

mostly stable.

However, interestingly, almost none of these assumptions are still valid (Luciano Baresi & Ghezzi, 2010; A

Filieri, Tamburrelli, & Ghezzi, 2013). Software development has now become decentralized. Software

applications are constructed by composing independent components potentially developed and operated

by third parties. The coordination between components and binding to their implementations is delayed

until runtime. Infrastructure is often provisioned in the cloud and may change quickly. Accessibility devices

are ubiquitous in everyday life, providing continuous interaction with billions of different users through

social networks. Communication networks are pervasive and heavily shape software execution.

7

Today software systems must be designed for change (Luciano Baresi & Ghezzi, 2010) and in the future

more software will be required to continuously adapt in response to unpredictable changes in its

environment and objectives (Lemos, Giese, & Müller, 2013). In particular, self-adaptation is a key solution

to deal with the issues of modern software development (A Filieri et al., 2013):

 Instability of requirements, as a consequence of the volatility of user needs

 Uncertainty in the environment in which software operates and in the accuracy of design-time

parameters

 Variability in the behavior of third party components, infrastructure and users.

Another major difference between traditional concerns in software engineering and its current progress

is the role of non-functional requirements, such as performance, energy consumption and

reliability. Users require the continuous assurance of service level agreements (SLAs), regardless of

uncertainties. This requirement has necessitated an important technique typically used in self-adaptive

paradigm nowadays (Calinescu, Ghezzi, Kwiatkowska, & Mirandola, 2012). Quantifiable non-functional

requirements enable automated verification of specific quantitative properties (Marta Kwiatkowska,

2007). In other words, the realization of this technique enables continuous verification of important

properties of software in order to trigger an appropriate adaptation action whenever a requirement is

violated.

Self-adaptation is an appropriate approach to deal with the changing dynamics in the surrounding

environment of software systems. As in biological systems (Kitano, 2004), when facing external (or

internal) perturbations, a self-adaptive software system modifies itself in response to changes in the

environment (or requirements). Even though self-adaptive software is beneficial in many application

domains, it is not a widely adopted solution (Lemos et al., 2013). It is regarded as a non-dependable

solution, which is subject to uncertainty (Lemos et al., 2013). The research community has managed to

address the complexities in building self-adaptive software systems (Lemos et al., 2013). However, as

reported by other researchers (Esfahani, Kouroshfar, & Malek, 2011; Esfahani & Malek, 2013; Lemos et

al., 2013), there is a serious lack of applicable techniques for handling uncertainty in the context of self-

adaptive software.

In the field of software engineering in general, the phenomena of uncertainty is considered as a second-

class citizen (David Garlan, 2010). Although it is conceivable to decrease the degree of uncertainty, it is

not possible to fully eliminate the effect of uncertainty in both real-world physical systems (J. M.

Aughenbaugh & Paredis, 2006) and software-intensive systems (David Garlan, 2010). Self-adaptive

software is not an exception and uncertainty plays a major role in this area (Esfahani & Malek, 2013).

Uncertainty is present in every facet of adaptation, but to varying degrees. As representatives of

uncertainty sources, one can refer to the following items:

1. Uncertainty in monitored parameters of the system. Sensors employed for monitoring the

environment are not usually free of noise. As a result, the monitoring data are rarely a single crisp

value. However, they mostly correspond to a distribution of values obtained over an observation

period.

2. Uncertainty in analytical models at runtime. Analytical models for evaluating system-level quality

attributes make simplifying assumptions, which obviously introduces some uncertainty for

reasoning purposes. This kinds of analytical models provide only acceptable estimates of the

8

system quality and since they model based on an underlying theory, they ignore unrelated

aspects of the system at a time.

3. Uncertainty in user preferences. User preferences for non-functional requirements are imprecise.

When users specify their preferences for formulating the utility functions measuring the overall

quality of the system, they make subjective decisions. This makes the analysis based on them

error prone.

The uncertainty that manifests itself in the aspects that we mentioned above poses critical risks to the

adaptive software. Note that we only mentioned a few sources of uncertainty among the several to

highlight the problem and motivate the research. We have provided a more detailed discussion of the

sources of uncertainty in self-adaptive software in Chapter 3 (mainly motivated by the work of Esfahani

et al. (Esfahani & Malek, 2013)). These sources of uncertainty fall into two diverse categories. The first

category is associated with the environment surrounding the software. The environment in which

software is embedded produces different noises, which is called external uncertainty (Esfahani et al.,

2011). The impact of adaptation decisions (e.g. replacing a component or reconfiguring a connector) on

system quality properties (e.g. response time) cannot be measured precisely at design-time. As a result,

this produces a distinct source of uncertainty, which is categorized as internal uncertainty (Esfahani et al.,

2011). The focus of this thesis is to find a solution for addressing the challenges posed only by external

uncertainty.

Some uncertainty is because of the lack of knowledge while some other is because of the variation in

adaptation parameters. Therefore, techniques that are used to mitigate one type of uncertainty are

different from the other types. This distinction is related to the location of uncertainty, i.e., the user or

the system itself (J. Aughenbaugh, 2006). In other words, variability is the uncertainty inherent in the

system under study, while the lack of knowledge is associated with uncertainty of the human being.

The software engineering research community has made progress towards addressing the complexities

involved in the construction of self-adaptive software (Lemos et al., 2013). However, despite the fact that

uncertainty is predominant in self-adaptive software systems, as reported by a community wide roadmap

(Lemos et al., 2013) and reviews of uncertainty handling techniques (Esfahani & Malek, 2013; A. J.

Ramirez, Jensen, & Cheng, 2012), there is still a lack of methods and techniques for handling uncertainty

in self-adaptive software. These seminal references imply that the issues related to uncertainties are

treated in an ad-hoc fashion. For example, (Esfahani & Malek, 2013) hypothesize that this might be related

to a lack of understanding and common knowledge about different sources of uncertainties in self-

adaptive software, due to the diverse characteristics of each source. In the self-adaptive software

community, only a handful of researchers have proposed to address uncertainty issues related to different

aspects of software. The main aspects that have been addressed so far are related to 1) requirements

specification (Luciano Baresi, Pasquale, & Spoletini, 2010; Whittle, Sawyer, Bencomo, Cheng, & Bruel,

2009). 2) internal quality objectives (S. Cheng & Garlan, 2007; Esfahani et al., 2011; Q.-L. Yang et al., 2013).

3) external environments (Calinescu & Kwiatkowska, 2009; Chan, 2008; Cooray, Malek, Roshandel, &

Kilgore, 2010; Epifani, Ghezzi, Mirandola, & Tamburrelli, 2009; Esfahani, Elkhodary, & Malek, 2013;

Gmach, Krompass, Scholz, Wimmer, & Kemper, 2008).

All of the mentioned sources of uncertainty challenge the confidence with which decisions are made

during the adaptation process. In this thesis, we identify different sources of uncertainty in the self-

adaptive loop of component connectors and treat them explicitly in the loop in order to enhance the

9

dependability of self-adaptive component connectors. Therefore, the key objective in this thesis is to

robustly handle uncertainty in the self-adaptation of component connectors. Although we constrain the

scope of this project to component connectors, in general, the developed techniques can be applied for

self-adaptive software systems after some customizations.

1.4. Research Problem

Based on the identified research gap to handle uncertainty in the self-adaptation process of component

connectors, in this section, we outline research challenges that we address in this thesis. The primary

objective of this thesis is to enable robust control of uncertainty in self-adaptive component connectors

to increase the dependability in component-based software systems. The main reason for choosing

software connectors in this thesis is their ever-increasing importance to interconnect heterogeneous

components in application domains like cloud, where interoperability with an acceptable performance is

essential. In this section, we outline the central hypothesis and research questions.

1.4.1. Central Hypothesis

We outline the central hypothesis for this thesis as:

The application of parameter estimation for calibrating models for non-functional requirement

verification, in the presence of imprecise monitoring data and fuzzy logic in adaptation reasoning, and the

integration of the two in the self-adaptation process, enable component connectors to become robust

against uncertainty in the surrounding environment.

We propose that in order to robustly control the uncertainty sources in the self-adaptation process of

component connectors, we need to employ appropriate analytical techniques from probability theory for

adaptation reasoning in the presence of imprecise (or noisy) monitoring data. By adaptation reasoning

here we mean decision making about the changes in the architecture at runtime and this obviously

requires adjusting some parameters in the model corresponding to the system architecture. Additionally,

we also propose to utilize proper fuzzy reasoning technique in order to plan adaptation in the presence

of uncertain measurements. An analysis of the central hypothesis suggests that the research problem that

we aim to address in this thesis can be divided:

 How to calibrate analytical models that we employ at runtime for adaptation reasoning of

component connectors in the presence of imperfect observations? (see RQ1)

 How to plan the appropriate configuration for component connectors in the presence of

imprecise measurements and conflicting objectives? (see RQ2)

1.4.2. Research Questions

In this section, we outline the primary research questions that we aim to address in this thesis. Each of

the research questions outlines a key challenge that we identified for this research and an individual

aspects of the proposed solution. We validate the proposed solution by evaluating the degree to which

each question has been addressed in the proposed solution (Chapter 7).

10

Research Question 1 (RQ1). How can we estimate the parameters of (i.e., calibrate) the analytical models

at runtime that we employ for non-functional requirement verification of component connectors in the

presence of noisy monitoring data?

The primary objective of this research question is the development of an appropriate estimation

technique based on probability theory for robust model calibration at runtime. Note that the runtime data

that has been observed by monitoring facilities and probes contain dynamic noise. However, all existing

approaches for model calibration assume that the monitoring data is complete and noise free. As a result,

the verification of non-functional requirements based on this assumption is error prone. This question

allows us to evaluate the proposed model calibration approach in handling dynamic noises in monitoring

data.

Research Question 2 (RQ2). How can we reason about adaptation and derive appropriate configuration

for component connectors at runtime in the presence of noisy measurements and imprecise objectives?

The primary objective of this research question is the development of an appropriate adaptation

reasoning technique based on fuzzy theory for robust control of uncertainty in reasoning. Note that for

reasoning we need to feed measurement data such as workload or response time for reasoning. The

reasoning process for deriving an appropriate configuration that is optimal based on the current situation

of the connector and its surrounding environment is based on the preferences of stakeholders in terms

of adaptation policies. The policies are specified based on imprecise terms such as “if response time is

high then …”. Different stakeholders with different opinions can specify these policies and they might be

conflicting with each other. This question allows us to evaluate the proposed adaptation reasoning to

derive appropriate configurations in the presence of imprecise and conflicting objectives.

Research Question 3 (RQ3). How well can our approach for model calibration and adaptation reasoning in

the feedback control loop ensure the reliability of the self-adaptation of component connectors in a real-

world unreliable environment?

The primary objective of this research question is the integration of both robust model calibration and

robust adaptation reasoning in the self-adaptation loop of component connectors. Even though we apply

model calibration that can handle noisy data, the analytical models themselves are an abstraction of the

component connectors. These abstractions as mentioned in (Esfahani & Malek, 2013) are a source of

uncertainty in self-adaptive software. This question allows us to evaluate the integration of model

calibration with adaptation reasoning to provide an end-to-end mechanism for guaranteeing uncertainty

in the self-adaptation process of component connectors.

1.5. Proposed Solution and Contributions

Based on the identified research challenges, an overview of the proposed contribution as an integration

of robust model calibration and robust adaptation reasoning is illustrated in Figure 1.2. In contrast to

limitations identified in earlier sections, the solution aims to control uncertainty in the self-adaptation

process of component connectors to enhance dependability of a component-based system, which

consumes such connectors for interaction.

11

Figure 1.2. An overview of self-adaptive software connectors.

In the context of this thesis, we deal with two types of uncertainty. We provide a solution for robust

handling of uncertainty for monitoring and planning in the self-adaptation loop. We utilize probability for

updating models that are being kept at runtime for analysis purposes. The techniques that we developed

for updating models have the capability to deal with incomplete and noisy data. Probability theory is an

obvious choice for dealing with uncertainty, which are related to variability in data rather than lack of

knowledge. On the other hand, we adopt fuzzy logic for adaptation reasoning at runtime. The aim of

reasoning is to find the appropriate configuration to replace the existing configuration. The kind of

uncertainty we deal with for reasoning is related to the users of self-adaptive software. Different users

often have different and even conflicting opinions about an adaptation policy that needs to be taken when

the software meets a certain condition. This makes the adaptations based on user preferences uncertain

and error prone. The sort of uncertainty that we are dealing with here is not related to the variability in

the data, but the lack of knowledge. As a result, we chose fuzzy theory for adaptation reasoning.

In Summary, we address two types of uncertainty in this thesis:

1. Uncertainty due to measurement inaccuracies (see Chapter 4).

2. Uncertainty in the adaptation knowledge specification (see Chapter 5).

1.5.1. Solution Framework

The solution in Figure 1.3 is an integration of two developed mechanisms. The first mechanism, which we

call RobustMC, enables the robust model calibration of component connectors. The second mechanism,

which we call RobusT2, enables robust adaptation reasoning. We integrate the mechanisms in a

framework called Robust Control of Uncertainty in component connectors (RCU) as a coherent framework

that guarantees reliability in the self-adaptation loop. Note that the process of runtime observation (i.e.,

monitoring) and execution of change plans (change effectuation) is out of the scope of this thesis. In order

to demonstrate the applicability of this approach in real-world domain, we had to implement those two

parts as well (see Chapter 7). We use estimation techniques based on time series analysis for model

calibration at runtime (see Chapter 4). We also use runtime efficient verification techniques to verify the

non-functional requirements at runtime. When a violation is detected, we use fuzzy reasoning for deriving

the appropriate configuration that satisfies the requirements (see Chapter 5).

Environment=D
Environment=D’

Environment=D’

Adapted to satisfy

requirements

while it is running
 Reliable (Robust)

 Run-time Efficient

12

Figure 1.3. Overview of our solution framework.

1.5.2. Research Contributions

In this thesis, we introduce the RCU framework (cf. Figure 1.3) as the main contribution that enables:

1. Robust control of uncertainty in runtime verification.

The runtime verification task has been split into two sub-tasks – model calibration and

quantitative evaluation. The model calibration enables the update of models at runtime. The

proposed stochastic approach is able to update the unknown parameters of the models at

runtime even in the presence of incomplete and noisy observations. The proposed model

calibration technique has been implemented and empirically evaluated, showing a significant

precision of parameter estimation and a reasonable overhead at runtime. This contribution

will be the main subject of Chapter 4.

2. Robust control of uncertainty in adaptation reasoning.

A general methodology based on fuzzy logic has been defined for the control of adaptation

decision that adjusts the configuration of component connectors to the appropriate operating

mode. The methodology enables a systematic development of fuzzy logic controllers that can

determine the right operating mode for connectors considering that different users with

potentially different and even conflicting opinions can specify the adaptation policies. The

fuzzy based controller, generated by the methodology, has been shown to be robust against

uncertainties in the input data and efficient in terms of runtime overhead, allowing a reliable

13

decision-making in the self-adaptive component control. The control methodology and

experimental evaluations are presented in Chapter 5.

3. Reliable and dependable self-adaptive component connector.

The evaluation of the primary contributions – i.e., robust model calibration and adaptation

reasoning, is performed by applying the solution to enable self-adaptation of a real-world

connector. The approach has been shown to be effective as an end-to-end solution for

controlling uncertainty in the feedback control loop of the self-adaptive connectors. This

evaluation is dealt with in Chapter 7.

Although in this thesis we claimed for three different contributions as listed above, we consider the

second contribution that is reported in Chapter 5 as the main and core contribution of this thesis. Taming

uncertainty in the adaptation knowledge specification is the novel contribution that has been proposed

for the first time in this thesis.

1.6. Research Methodology

While behavioral science is the appropriate methodology for studying phenomena that are related to

human aspects or requirements aspects of software systems, design-science (Hevner, March, Park, &

Ram, 2004) is a methodology to study phenomena related to software through building and evaluating

artifacts. The synthetic nature of software engineering aligns with the subject of study of the design-

science paradigm. Design science is essentially an action-based problem-solving methodology that seeks

to create and evaluate artifacts intended to solve identified problems. It concentrates on the usefulness

or utility of a method or artifact in practice rather than on its truth, taking into account real-world

constraints and practical considerations. Design-science helps in managing the complicated issues linked

to the design of useful artifacts in domain areas in which existing theory or previous knowledge is often

not enough. It essentially addresses important unsolved problems in unique or innovative ways, or solved

problems in more effective or efficient ways (Hevner et al., 2004).

Since the objectives of this research are synthetic (i.e. robust control of uncertainty in self-adaptive

component connectors), we followed a research methodology consistent with the principles of design-

science. The artifact that is developed for this thesis is “a framework comprising analytical techniques and

mechanisms for controlling uncertainties in component connectors environment” to enable “reliable self-

adaptation” of component connectors. The application domains of the research artifacts (i.e., analytical

techniques and mechanisms) are in the area of evolving critical systems (e.g., safety-critical, mission-

critical, business-critical, or security-critical). The evaluation of the artifacts (i.e., framework and its

comprising analytical techniques and mechanisms) are performed through controlled experiments.

Controlled experiments are frequently used to evaluate and validate research artifact correctness and

how precisely the research goals are met through measurement of some criteria. Controlled experiments

provide a better understanding of the problem and feedback to improve the mechanisms. Experiments

also explain the contributions of the mechanism when compared to existing practices.

While design science provides general guidelines for conducting research, we performed our research

according to the model in (Davison, Martinsons, & Kock, 2004), which provides a rigorous step-wise

process. Figure 1.4 provides an overview of the research activities performed for this thesis.

14

The following activities has been followed in this research:

1. Diagnosis. In this step, we identified the research problem that needs to be addressed. The

general domain of our research is architecture-centric software evolution and more specifically

self-adaptive software. In order to identify the research gap in this domain, we performed a

systematic literature review reported in (Jamshidi, Ghafari, Ahmad, & Pahl, 2013). This study

enabled us to identify the primary research challenge of this thesis, which is controlling the

uncertainty in the self-adaptation process of component connectors.

2. Planning. In this step, we planned the actions need to be performed according to the research

gaps identified in the diagnosis step. A research proposal and a completion plan were prepared.

In the research proposal, we described, in detail, the deliverables and ultimate outcome of this

research as well as the methods needs to be adopted for evaluating the research outcomes.

3. Intervention. In this step, we conducted the activities that were required to develop the solution

to solve the identified research problem. The framework that is developed as the primary

solution in this thesis concerns runtime model calibration as well as change planning in the self-

adaptation loop. The first process includes updating analytical models based on runtime data

observation. The techniques that are developed in this process can handle precise model update

in the presence of uncertainty such as incomplete data or noisy data. The second process includes

planning the right configuration for the component connector based on environmental and

internal quality measurements. The techniques that are developed in this process can plan

appropriate configuration in the presence of noisy runtime measurements.

4. Evaluation. In this step, we evaluated our solution through controlled experiments on individual

techniques and mechanisms that we have developed in order to control uncertainty in self-

adaptive component connectors.

5. Reflection. Reflection consists of activities that involve illustration of the research impact to a

specific research community. In the context of this research, the research outcomes were

communicated though publications and implementations of the techniques were made available

for replicating the results.

Figure 1.4. Overview of our research methodlogy.

15

In Table 1.1, we summarize the steps of our research methodology that we have followed throughout this

research and their relevance to the individual thesis chapter (represented as Ch*).

Table 1.1. Summary of the research methodology steps and their relevance to the thesis chapters.

Research Methodology Steps
Thesis Chapters

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8
Diagnosis – Problem Identification √ √ √
Planning – Develop Research Plan √
Intervention – Execute Research Steps √ √ √
Evaluation – Conduct Research Evaluation √ √ √
Reflection – Research Impact √ √

1.7. Thesis

This section first describes the thesis that this work intends to support. This section also explains the

research claims of this thesis.

1.7.1. Thesis Statement

In this thesis, we enable reliable and dependable self-adaptation of component connectors in unreliable

environments with imperfect monitoring facilities by providing: (a) techniques for robust model

calibration, (b) a method for robust adaptation reasoning, and (c) tool support that allows an end-to-end

application of the developed techniques.

1.7.2. Research Claim

The thesis statement explains a concise solution to the stated problem being addressed in this thesis.

However, it does not explicitly talk about specific claims or the criteria for evaluating the approach. In this

section, we consider three research claims and explain an appropriate evaluation method. A summary of

these items is shown in Table 1.2.

Research claim 1 (runtime efficiency). The approach for model calibration and adaptation reasoning

imposes acceptable overheads and is runtime efficient, satisfying the timing restriction of the self-

adaptation loop.

The activities that need to be integrated in the self-adaptation requires being time efficient. Therefore, as

part of ensuring the practicality of the approach, there is a need to evaluate the runtime complexity of

the approach.

Research claim 2 (scalability). The approach for model calibration is practical in terms of runtime efficiency

with large models. In addition, the approach for adaptation reasoning is applicable even with a large

knowledge base.

It is not sufficient for the approach to be time efficient for small models but it needs to impose an

acceptable overhead to large-scale systems, which correspond to complex models. As a result, there is

required to ensure the scalability of the approach by scaling out models at runtime for model calibration

and fuzzy rule base for adaptation reasoning.

16

Research claim 3 (robustness). The approaches for model calibration and adaptation reasoning are

resilient against dynamic uncertainty in their input.

The approach needs to be resilient against different amplitude of noises, which resembles the reality of

uncertain environments that component connectors are operating. It is required that different levels of

noise are injected to the input parameters of the approach and the robustness of the approach is

evaluated under dynamic uncertainty.

Research claim 4 (applicability). The approach is applicable to real-world component connectors.

The approach presented in this thesis develops a set of techniques and methods to control the uncertainty

in self-adaptation of component connectors. However, it is not evident that these techniques and

methods are actually useful in real world settings. In order to evaluate the applicability of our approach

in a real world context, we conducted a case study.

Table 1.2. Research claims, evaluation method and relevant chapters.

Research Claim Evaluation Method Associated Chapter (s)

Runtime efficiency Controlled experiment Chapter 5, Chapter 7

Scalability Controlled experiment Chapter 5, Chapter 7

Robust Controlled experiment Chapter 4, Chapter 5, Chapter 7

Applicability Case study Chapter 7

1.8. List of Publications

The following publication has been produced during the course of the last three years as part of my PhD

research:

Refereed Journal Papers:

[J1] P. Jamshidi, A. Ahmad, C. Pahl, Taming Knowledge Specification Uncertainty in Self-Adaptive Software,

Elsevier Journal of Systems and Software, 2014, Under Review.

[J2] P. Jamshidi, A. Ahmad, C. Pahl, Cloud Migration Research: A Systematic Review, IEEE Transactions on Cloud

Computing, 2013, DOI: 10.1109/TCC.2013.10. [Data]

[J3] A. Ahmad, P. Jamshidi, C. Pahl, Classification and Comparison of Architecture Evolution Reuse Knowledge - A

Systematic Review, Journal of Software: Evolution and Process, Wiley, 2014, DOI: 10.1002/smr.1643. [Data]

[J4] A. Ahmad, P. Jamshidi, C. Pahl, A Pattern Language for the Evolution of Component-based Software

Architectures, Electronic Communications of the EASST, Special Issue on Patterns Promotion and Anti-patterns

Prevention, 2014.

Refereed Conference Papers:

[C1] P. Jamshidi, C. Pahl, Orthogonal Variability Modeling to Support Multi-Cloud Application Configuration,

Seamless Adaptive Multi-cloud Management of Service-based Applications (Seaclouds), ESOCC 2014.

[C2] P. Jamshidi, A. Ahmad, C. Pahl, Autonomic Resource Provisioning for Cloud-Based Software, in 9th

International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), co-located

with ICSE'14, 2014.

http://dx.doi.org/10.1109/TCC.2013.10
http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-CM.html
http://onlinelibrary.wiley.com/doi/10.1002/smr.1643/abstract
http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html

17

[C3] P. Jamshidi, M. Ghafari, A. Ahmad, C. Pahl, A framework for classifying and comparing architecture-centric

software engineering research, in 17th European Conference on Software Maintenance and Reengineering

(CSMR), 2013.

[C4] A. Ahmad, P. Jamshidi, C. Pahl, F. Khaliq, PatEvol - A Pattern Language for Evolution in Component-Based

Software Architecture, Workshop on Patterns Promotion and Anti-Patterns Prevention, CSMR, 2013.

[C5] P. Jamshidi, C. Pahl, Business Process and Software Architecture Model Co-evolution Patterns, ICSE 2012

Workshop on Modeling in Software Engineering (MiSE 2012).

[C6] A. Ahmad, P. Jamshidi and C. Pahl, Pattern-driven Reuse in Architecture-centric Evolution for Service

Software, 7th International Conference on Software Paradigm Trends ICSOFT 2012, 2012.

[C7] A. Ahmad, P. Jamshidi, M. Arshad and C. Pahl, Graph-based Implicit Knowledge Discovery from Architecture

Change Logs, Seventh Workshop on SHAring and Reusing architectural Knowledge - SHARK 2012 (at

WICSA/ECSA'2012), 2012.

[C8] M. Ghafari, P. Jamshidi, S. Shahbazi and H. Haghighi, An architectural approach to ensure globally consistent

dynamic reconfiguration of component-based systems, 15th International ACM SIGSOFT Symposium on

Component-based Software Engineering (CBSE’2012), Bertinoro, Italy, June 2012.

[C9] M. Ghafari, P. Jamshidi, S. Shahbazi, H. Haghighi, Safe stopping of running component-based distributed

systems: challenges and research gaps, International Conference on Adaptive and Reconfigurable Service-

oriented and Component-based Applications and Architectures, Toulouse, France, June 2012.

[C10] A. Ahmad, P. Jamshidi, C. Pahl, Graph-based Pattern Identification from Architecture Change Logs,

International Workshop on System/Software Architectures IWSSA’2012, CAiSE 2012.

Table 1.3. A mapping of the related publications to the individual thesis chapters.

Chapter Primary Publication Secondary Publication Outcome

Chapter 1 - C10, C7, C6, C3 Research Questions, Hypothesis

Chapter 2 - - Thesis Background

Chapter 3 C3, J3 - Research Positioning

Chapter 4 - C3 RobustMC (cf. Figure 1.3)

Chapter 5 J1, C2 - RobusT2 (cf. Figure 1.3)

Chapter 6 C8, C9 C5, C4, C1, J4 Change Execution Mechanism

Chapter 7 C2, J1 J2 Research Validation (RCU)

Chapter 8 - - Conclusions and Outlook

18

1.9. Thesis Outline

The structural organization of the thesis is illustrated in Figure 1.5. In the remainder of this section, we

provide an overview of the contribution of each chapter that follows a summary of the objectives and

outcome for each chapter presented in Table 1.3.

Figure 1.5. An overview of the thesis organization.

Chapter 2 presents the research background and related definitions and concepts that we use throughout

this thesis.

We explain some of the fundamental concepts that provide background details before the discussion of

thesis contribution. In this chapter, we focus on the role of uncertainty in self-adaptive software, the role

of models at runtime in non-functional requirement verification and the central role of fuzzy logic systems

in adaptation reasoning.

Chapter 3 critically reviews the state-of-the-art of existing approaches for controlling uncertainty for self-

adaptive software systems.

19

First, a number of comparison criteria of related approaches is given. Then, we provide a demarcation and

detailed description of each related research work. Finally, a detailed comparison of the related work

according to the comparison criteria is discussed.

Chapter 4 proposes a method for model calibration in the presence of uncertainty.

In this chapter, we present the analytical models to model the component connector behavior. We also

propose mechanisms to calibrate the unknown parameters of the models at runtime. The key contribution

here is that the mechanisms are capable of carefully determining the parameters even in the presence of

uncertainty. The proposed method is comprehensively evaluated with thorough discussions of the results.

The results in this chapter provides an answer for research question RQ1.

Chapter 5 describes in details the design, implementation and experimental validation of the adaptation

reasoning for component connectors.

In this chapter, we first review the state-of-the-art of adaptation reasoning techniques and mechanisms.

We then propose the RobusT2 framework to realize the adaptation reasoning using type-2 fuzzy logic

system. After presenting the concept of uncertainty and type-2 fuzzy logic systems, this chapter

introduces in detail the interval type-2 fuzzy logic systems considered in this research. This chapter

presents the application of type-2 fuzzy logic control developed in this research for adaptation reasoning.

The chapter explains by using numerical examples the subsystems of the developed framework. This

chapter also presents experimental evaluations of the framework. The results in this chapter provide an

answer to research question RQ2.

Chapter 6 presents a mechanism to enact the transitions from the current connector configuration to the

target configuration.

Considering the heterogeneity of models and languages involved in software connectors, this chapter

introduces an approach to derive reconfiguration plans using reasoning based on graph theory and

feature models. We describe a mechanism for transforming these feature models corresponding to the

connector modes to an executable reconfiguration plan.

Chapter 7 reports an end-to-end evaluation of individual research components and overall validation of

the proposed framework.

In this chapter, we show how the three key parts of the RCU framework are integrated to enable self-

adaptation of component connectors through a real-world case study. To conduct this research, we

followed the guidelines of the action research methodology (Chapter 1) that provides a rigorous set of

steps focused on planning (Chapter 2, Chapter 3) and conducting the research (Chapter 4, Chapter 5,

Chapter 6) along with the evaluations of the research results (Chapter 7). Therefore, in this chapter, we

focus on an experimental evaluation of the adaptation management of component connectors in the RCU

framework. In summary, we show the validity of the research claims that are discussed in Section 1.7.2.

The results in this chapter provide an answer to research question RQ3.

Chapter 8 concludes our research contribution in the context of research gaps identified in Section 1.4.

In this chapter, we review the contribution once again. We also discuss limitations, threats to validity and

the potential for future research.

20

Appendix A presents the design of the fuzzy logic system used in Chapter 5.

The type-2 fuzzy logic system used for adaptation reasoning is designed by using expert knowledge. A

survey based on a real-world connector was conducted among experts in cloud computing. The survey

allows extracting expertise in the form of IF-THEN rules. This appendix chapter mainly presents the

template that we adapted from (Solano Martínez, 2012) and extended to use in the survey.

1.10. Chapter Summary

This chapter provides the research motivation based on a brief overview of existing research and its

limitations. Based on the identified research challenges, we outlined the central hypothesis that allowed

us to identify the research questions. The role of individual research questions is vital in highlighting the

solution requirements. We highlighted the adoption of a customized research methodology to plan,

conduct the research, evaluate the developed artifacts and reflect on the research implications. We also

specified our research claims, which become the main criteria for evaluating the approach.

Finally, we provided an overview of the organization of the thesis. The chapter provides a foundation to

present the results of our literature review and to provide an overview of the proposed solution. A

summary of the objectives and the outcome for the individual chapters in this thesis is presented in

Table 1.3 that allows us discuss the research positioning, contributions and evaluation in subsequent

chapters (cf. Figure 1.5).

21

Chapter 2

2. Background

“We shall not cease from exploration and the end of all our exploring will be to arrive where we started

and know the place for the first time.” – Thomas Stearns Eliot (1888-1956).

Contents

2.1. CHAPTER OVERVIEW .. 22
2.2. UNCERTAINTY IN SELF-ADAPTIVE SOFTWARE .. 22

2.2.1. Lack of knowledge vs. variability ... 22
2.2.2. Reducibility vs. irreducibility .. 23
2.2.3. Mathematical theories for representing and controlling uncertainty ... 23

2.2.3.1. Probability theory ... 23
2.2.3.2. Fuzzy theory .. 24

2.3. ANALYTICAL (STOCHASTIC) MODELS AT RUNTIME ... 24
2.3.1. Discrete-Time Markov Chains .. 26

2.3.1.1. Model Specification with DTMCs .. 27
2.3.1.2. Markov assumption verification ... 28

2.3.2. Continuous-Time Markov Chains ... 28
2.3.3. Logics for requirement specification on analytical models.. 30

2.3.3.1. Probabilistic Computation Tree Logic ... 31
2.3.3.2. Continuous Stochastic Logic (CSL) ... 31

2.3.4. Extending Markov models and requirement specification logics with rewards 32
2.4. TYPE-2 FUZZY LOGIC ... 33

2.4.1. Type-2 fuzzy sets .. 33
2.4.2. Type-2 fuzzy logic systems ... 34

2.5. REO COMPONENT CONNECTORS .. 35
2.5.1. Stochastic Reo ... 36

22

2.1. Chapter Overview

Several research fields, the most important ones being “Self-Adaptive Software”, “Models at Runtime”,

“Fuzzy Logic Systems” and “Component Connectors”, influence this thesis. Each field is divided into many

research communities each focusing on special aspects of the respective field. The self-adaptive software

community provides the general theme underlying this thesis, and the outcome of this thesis contributes

mainly to this community. The “models at runtime” is a closely related technique to realize self-adaptive

software, which was a main inspiration for this thesis. Fuzzy logic is a field of research, which has been

investigated, tailored and adapted for adaptation reasoning in this thesis. Finally, component connectors

play a fundamental role in this thesis as the principal domain to which we apply our solution framework

in order to enable dependable self-adaptive architectures.

This chapter serves to ease the understanding of the succeeding chapters by summarizing the most

important aspects of the four related research fields to the topic this thesis. Note that readers can skip

this chapter as it is not a core contribution chapter and it consists mainly of fundamental definitions that

we borrowed from standard literature in order to back up the propositions of this thesis. In other words,

none of the definitions that are given in this chapter are originated here and we only include them to

make this thesis a self-contained manuscript. In core chapters (i.e., Chapter 4, Chapter 5, Chapter 6 and

Chapter 7), wherever necessary, we refer back to the definitions in this chapter.

In the following, Section 2.2 discusses the phenomena of uncertainty in self-adaptive software, followed

by an overview of mathematical techniques for controlling uncertainty in Section 2.2.3. Section 2.3

introduces background on analytical models, which are adopted in this thesis for adaptation reasoning.

Section 2.4 discusses background on fuzzy logic systems, upon which our adaptation planning is based.

Section 2.5 discusses the basic definitions related to the scope of this thesis, which is the notion of

component connectors and the adopted language for representing component connectors.

2.2. Uncertainty in Self-Adaptive Software

In self-adaptive software, not all sources of uncertainty have the same features (Esfahani & Malek, 2013).

Approaches for modeling different uncertainties are very dissimilar to each other (Esfahani et al., 2011;

Esfahani & Malek, 2013). For example, uncertainty for specifying objectives of self-adaptive software is

due to lack of knowledge and it is not possible to specify this with a probability distribution suitable for

specifying uncertainty due to variability.

2.2.1. Lack of knowledge vs. variability

A distinction that is common in the literature is between aleatory uncertainty and epistemic uncertainty

(J. Aughenbaugh, 2006). The former uncertainty comes from the Latin word for gambler “aleatory” and

refers to uncertainty rooted in a random process. The later uncertainty arises from the Greek term

“episteme” meaning knowledge. Aleatory uncertainty refers to inherent variability in the observed

phenomena and is commonly modeled using probability theory. In contrast, epistemic uncertainty is

instigated by a lack of knowledge about the observable phenomena. This distinction is because of the

location of uncertainty – in the state of the analyst, users, decision maker vs. state of the software system

under consideration (J. Aughenbaugh, 2006).

23

The distinction between aleatory and epistemic uncertainty is not always clear (J. Aughenbaugh, 2006).

For instance, one may argue that variability observed in the environmental dynamics of software systems

is due to the limitations of scientific models and, therefore, lack of knowledge. While these opinions are

somehow correct, these distinctions depend on one’s specific point of view. More clearly, in one point of

view, a phenomenon might be uncertain due to lack of knowledge, but it also might be uncertain due to

variability in a different point of view.

2.2.2. Reducibility vs. irreducibility

The uncertainty with respect to unknowable phenomena is often referred to as irreducible uncertainty (J.

Aughenbaugh, 2006). Similarly, the uncertainty linked with knowable phenomena, which are currently

unknown, is referred to as reducible uncertainty (J. Aughenbaugh, 2006). The distinction between these

types of uncertainty is also disputable. One of the main causes behind irreducibility of uncertainty is

related to the existing capability of science to mitigate the intractable complexity of phenomena. For

example, it is a fact that the physical world is a non-linear system. However, since we do not know enough

non-linear mathematics, we model the system through linear mathematics and as a result, models

contains irreducible uncertainty.

2.2.3. Mathematical theories for representing and controlling uncertainty

This section provides an overview of two commonly applicable approaches for handling uncertainty in

software engineering in general and self-adaptive software in particular. As it is discussed in the state-of-

the-art (Esfahani & Malek, 2013), existing work has often relied on one of these approaches to either

model or reduce the effects of uncertainty.

2.2.3.1. Probability theory

Probability theory (Bertsekas & Tsitsiklis, 2002) is the most widely used approach for handling uncertainty

in the self-adaptive software domain (Esfahani & Malek, 2013). Probability was formerly connected to the

classical interpretation of the theory. This interpretation is because the outcome of a phenomenon is

equally possible. This classical interpretation of the theory produces inconsistencies when it is used

beyond games of chance. Because of this limitation, the frequentist interpretation was conceived. In this

interpretation, the probability of an event is delineated as a limit of its relative frequency in large trials.

Bayesian theory (Hoff, 2009) is founded on the subjective explanation of the probability. In this

interpretation, the probability is defined as a manifestation of a rational belief of a human about uncertain

propositions. This explanation generalizes the frequentist interpretation as it allows probability

assignment to a single observation regardless of whether or not it is part of a larger observation. This

interpretation is very useful in cases where there is not enough data for frequentists. For instance, by

frequentist interpretation we are not be able to analyze a new unknown phenomenon for which enough

data is not available, while Bayesians can use subjective information based on related phenomena to

analyze the new phenomenon. Bayesian approaches are a unified theory for both data-rich and data-poor

problems. Many modern machine-learning methods, including those adopted within this thesis, are based

on Bayesian principles.

24

2.2.3.2. Fuzzy theory

Fuzzy theory (Zadeh, 1965) is an extension of classical set theory. In classical set theory, either an element

of a set is a member of the set with membership value 1 or it is not a member of the set with membership

value 0. However, in fuzzy theory, a member can be in some degree a member of a set. To that end, the

membership value of an element with respect to a set is any value between zero and one. The higher a

membership degree is, the more likely that element belongs to that set. As a result, the boundary of a

fuzzy set is not evidently defined, while the boundary of a classical set is defined with a crisp value.

Fuzzy theory is useful in domains where information is incomplete or imprecise. For instance, fuzzy sets

have been used in linguistics to deal with ambiguity of words. As another example, temperatures that are

considered to be cold and warm may be different from person to person. In fact, some temperatures can

be considered both cold and warm to some extent. A program that tries to understand written text can

use the fuzzified versions of coldness and warmness to deal with uncertainty regarding understanding of

the text.

While probability theory deals with quantifying the variability in data, fuzzy theory focuses on quantifying

the ambiguity of data. Although, sometimes the two theories can be used interchangeably, it has been

shown that the two theories are different. In general, possibility theory is useful when there is little

information or imprecise data. However, when more precise information is available, it is better to use

probability theory.

2.3. Analytical (Stochastic) Models at Runtime

Runtime modeling of a software system describes the behavior of software, comprising its interaction

with users and the environment (cf. Figure 2.1). There are some factors including the dependency of

software on physical resources, third party services, and variability of the usage profile that produce

uncertainty for the software. All of these changes are not under the control of the system and may occur

unpredictably. For instance, the usage load of a cloud-based application may change suddenly during

special events like Christmas (Jamshidi, Ahmad, & Pahl, 2014).

Figure 2.1. The role of models as the K in the MAPE-K loop in self-adaptive software.

25

The key focus of this thesis is on non-functional requirements (Pohl, 2010), in particular performance and

reliability, that are considerably affected by environmental dynamics. These requirements are often hard

to predict at design-time because of their interdependence on environmental factors that are prone to

change at runtime. Moreover, even if the predictions were initially made, they are likely to change at

runtime. These predictions are often based on human experience, historical data or the observation of

similar systems (A Filieri, Ghezzi, & Tamburrelli, 2012). Even when such data is available to make design-

time assumptions about the environment, sudden changes in the environment can nullify them.

In order to quantify non-functional requirements, we need to deal with unavoidable uncertainty. By

abstracting the behavior of software (component connectors here in this thesis) to a finite and countable

set of states, we are able to formally analyze the properties in which we are interested to study finite-

state stochastic processes. The reason behind this choice is quite natural. Firstly, since our focus is on non-

functional properties of software systems, we specify systems via stochastic models, which support

quantitative probabilistic specifications that are particularly suitable to express reliability, performance,

and cost concerns. Secondly, reasoning is supported by model checking, which can be utilized to

automatically verify a system model against requirements expressed in a suitable logic notation.

Consecutively, this may trigger proper adaptation strategies to change system configurations and avoid

predicted requirements violations. Conceptually, this framework, usually called models at runtime (Blair,

Bencomo, & France, 2009), establishes a feedback control loop between analytical models, here

stochastic models, and the running system. At runtime, the system feeds data back to update the

analytical model. Models are alive at runtime and they evolve since their parameters are constantly

updated by monitoring relevant aspects of the running software, which recognize relevant changes as

they occur at runtime and modify the models accordingly (Epifani et al., 2009).

Note that all definitions given in this section are standard definitions in probability theory, stochastic

model checking and quantitative verification that we borrowed from standard literature, e.g., (Calinescu

et al., 2012; M Kwiatkowska, Norman, & Parker, 2007; Marta Kwiatkowska, 2007; Pinsky & Karlin, 2010).

A stochastic process (Pinsky & Karlin, 2010) is a family of random variables 𝑋𝑡 that is intended to model

time dependent stochastically evolving dynamic systems, such as software systems. Note that each of the

random variables signifies the state of the system at a time point 𝑡. More concretely, we describe a

stochastic process as:

Definition 1. A stochastic process is a mapping
 𝑋: 𝑇 × Ω → 𝑆 (2.1)

, where Ω is a probability (sample) space, 𝑇 is a set of time points and 𝑆 is the state space of the
stochastic process 𝑋.

The quantity 𝑋(𝑡, 𝜔) is the value of the stochastic process at time 𝑡 for the outcome 𝜔 ∈ Ω. To simplify

the definition, the dependence of 𝑋 on 𝜔 can be avoided, we can write the process as 𝑋(𝑡), which

represents the state of the process at time. One can consider discrete-time processes with 𝑡 ∈ ℕ, or

continuous-time processes with 𝑡 ∈ ℝ. In this thesis, we consider both discrete-time and continuous-time

processes.

The temporal evolution of stochastic processes representing a software system is indicated by its previous

history, design-time assumptions and random variables capturing the uncertainty about users and

environment. Markov processes are a special class of stochastic systems satisfying the Markov property.

26

Definition 2. A stochastic process 𝑋(𝑡) have a Markov property if for each 𝑡 ≥ 0 and a subset 𝐴 ⊆ 𝑆:
 ℙ(𝑋(𝑡 + 1) ∈ 𝐴|𝑋(0) = 𝑥0, … , 𝑋(𝑡) = 𝑥𝑡) = ℙ(𝑋(𝑡 + 1) ∈ 𝐴|𝑋(𝑡) = 𝑥𝑡) (2.2)

Therefore, for a Markov process the only information about the past needed to predict the future is the

current state of the random variable. On the other hand, knowledge of the values of earlier states do not

change the transition probability. Note ℙ(𝑋(𝑡 + 1) ∈ 𝐴|𝑋(𝑡) = 𝑥𝑡) is one-step transition probability.

Under the assumption of discreteness (finiteness and countability) of state space 𝑆 , the one-step

transition structure of 𝑋 can be summarized through a square transition matrix 𝑃, whose entry 𝑝𝑖,𝑗 is the

value ℙ(𝑋(𝑡 + 1) = 𝑠𝑗|𝑋(𝑡) = 𝑠𝑖) with 𝑠𝑖, 𝑠𝑗 ∈ 𝑆.

A stochastic process satisfying the Markov property is called Markov process (Pinsky & Karlin, 2010). A

Markov chain refers to a sequence of random variables (𝑋0, … , 𝑋𝑛) generated by a Markov process.

Generally, the term Markov chain is used to convey a Markov process which has discrete (finite or

countable) state space. More specifically, the possible values of 𝑋𝑖 form a countable state space of the

chain. There are many alternatives to Markov processes, suitable for representing several aspects of the

modeled software systems such as reliability, execution time, or energy consumption (A Filieri et al.,

2012). A Markov chain either can be defined for a discrete set of times or can take continuous

values {𝑋(𝑡): 𝑡 ≥ 0}. In the former case, the Markov chain is called Discrete-Time Markov Chain (DTMC)

and in the latter case, it is called Continuous-Time Markov Chain (CTMC).

2.3.1. Discrete-Time Markov Chains

Discrete-Time Markov Chains (DTMC) (Pinsky & Karlin, 2010) are widely adopted in software engineering

for reliability measurement and analysis (L. Cheung, Roshandel, Medvidovic, & Golubchik, 2008; Pham,

2006; Roshandel, Medvidovic, & Golubchik, 2007; W.-L. Wang, Pan, & Chen, 2006). One common

characteristics of these approaches is that they are used for reliability assessment of systems composed

by cooperating parts (e.g. component-based software, or service-oriented architectures) at design-time

(Immonen & Niemelä, 2007). The most important aspect for adopting DTMCs for reliability analysis is that

the system’s behavior with some tolerable approximation should meet the Markov property.

Definition 3. A Discrete-Time Markov Chain is a stochastic process satisfying the Markov property with
𝑇 ⊆ ℕ and 𝑆 is finite and countable. This structure is usually represented by Kripke notation as
(𝑆, 𝑠0, 𝑃, 𝐿), where:

 S is a finite set of states.

 𝑠0 is the initial state.

 𝑃: 𝑆 × 𝑆 → [0,1] is the probability of transitions between states. 𝑃(𝑖, 𝑗), 𝑃(𝑠𝑖 , 𝑠𝑗), 𝑝𝑖,𝑗 are

interchangeably used for representing the transitions.

 𝐿: 𝑆 → 2𝐴𝑃 is a labeling function that associates to each state the set of atomic propositions
(i.e., 𝐿(𝑠)) that are true in that state.

An element of 𝑃 such as 𝑝𝑖,𝑗 signifies the probability that the next state of the process will be 𝑠𝑗 given that

the current state is 𝑠𝑖. Note that ∑ 𝑝𝑖𝑗𝑠𝑗∈𝑆 = 1, where {𝑝𝑖𝑗} is the next state distribution for a state 𝑠𝑖.

Usually, 𝑠 = 𝑠𝑖, 𝑠 = 𝑖 are the default atomic propositions of each state 𝑠𝑖 . The probability of a path

originating from 𝑠𝑖 and ending in 𝑠𝑗 in precisely 2 steps, i.e., having one intermediate step, is

∑ 𝑝𝑖𝑥 ∗ 𝑝𝑥𝑗𝑠𝑥∈𝑆 . This summation is the entry (𝑖, 𝑗) of matrix 𝑃2. Similarly, the probability of moving from

𝑠𝑖 to 𝑠𝑗 in exactly 𝑘 steps is the entry (𝑖, 𝑗) of matrix 𝑃𝑘.

27

Definition 4. An execution path is a sequence of states 𝜋 = 𝑠0, 𝑠1, 𝑠2, … of a DTMC if for any pair
(𝑠𝑖, 𝑠𝑖+1), 𝑝𝑖,𝑖+1 > 0. 𝜋[𝑖] is used to represent the 𝑖th state in the path 𝜋. The probability of a finite path

to be observed is ∏ ℙ(𝑠𝑖, 𝑠𝑖+1)
|𝜋|−2
𝑖=0 , and 1 when |𝜋| = 1.

Definition 5. A state 𝑠𝑖 is transient if:

 ∑ 𝑝𝑖,𝑖
𝑛

𝐼𝑛𝑓.

𝑛=1
< ∞ (2.3)

It is recurrent if:

 ∑ 𝑝𝑖,𝑖
𝑛

𝐼𝑛𝑓.

𝑛=1
= ∞ (2.4)

And it is absorbing if 𝑝𝑖,𝑖 = 1.

In other words, the number of transitions into state 𝑠𝑖 is finite, while recurrent states will be visited

infinitely.

Definition 6. A DTMC model is well-formed if:

 Every state that is recurrent is also absorbing

 All states of the model are reachable from the starting state

 There is a path to at least one absorbing state from every transient state

2.3.1.1. Model Specification with DTMCs

In this section, a few points about the modeling process with DTMCs are provided.

DTMCs have been adopted for modeling different phenomena, e.g. chemical reactions, DNA sequences,

financial trading, demographic evolution, human behavior, or business processes (Pinsky & Karlin, 2010).

DTMCs can be perceived as state-transition systems with annotated transitions through which non-

functional aspects can be specified. State-transition systems are frequently used in practice by software

designers and can be used at different levels of abstraction to model software systems.

Several software modeling standards such as UML can be automatically translated into DTMC models by

means of automated model transformations, e.g., (Gallotti & Ghezzi, 2008; Carlo Ghezzi & Sharifloo,

2011). Moreover, some integrated design frameworks can automatically transform their design models

into corresponding Markov chains in order to provide quality assessment, e.g., (Becker, Koziolek, &

Reussner, 2007; Ciancone, Filieri, & Drago, 2011).

Because of its inherent characteristics, DTMCs have been widely used to analyze system reliability (Pham,

2006). The common idea behind the various software reliability analysis approaches is that special states

represent software failure condition. The existence of a failure is then represented by a transition toward

one of these states. In general, a state in a DTMC model represents an observable condition of the system

at runtime that is relevant from the modeling perspective at a specific abstraction level (A Filieri et al.,

2012). In this thesis, we assume that it is possible to identify a portion of the execution of the system that

we can associated with only one state of the DTMC.

28

In order to map the execution state of a software system into a DTMC model, there is no general guideline

and procedure. In (R. Cheung, 1980) a state of a DTMC model corresponds to a program module and state

transitions correspond to control flow between the modules. In (Littlewood, 1975), the very same concept

with a different name, i.e., program sub-unit, is used for reliability analysis of a software program. In

(Calinescu, Grunske, Kwiatkowska, Mirandola, & Tamburrelli, 2011; A Filieri et al., 2012), a state is referred

to as an external service invocation. Moreover, special states such as the initial state of DTMC models

represent the users and its outgoing transitions represent user profiles. Similarly, in (A Filieri, Ghezzi,

Grassi, & Mirandola, 2010), a state represents service execution, but also contain accumulated errors in

the data flow up to the point.

A common practice in the mentioned work is that they classify the states in a way that leads to at least

one absorbing state. As we mentioned earlier, when an absorbing state is reached, the model will stay

there forever. This characteristic makes absorbing states appropriate for occurrences of failure or

successful completion of software. In this thesis, it is assumed that every analytical model that we use

here has at least one absorbing state demonstrating the termination of the software execution.

One of the interesting features of Markov models in general and DTMC models in particular is that their

transition matrices can handle the temporal changes of the model perfectly (Pinsky & Karlin, 2010). Model

change in this type of analytical models is defined as variation in the values of the entries of 𝑃. In this

thesis, we assume two types of entries exist in the transition matrix of a DTMC model. Some entries in the

transition matrix are assumed to be known at design-time and stable at runtime. An example is failure of

a particular hardware services, e.g. storage. Some other entries are assumed as either unknown at design-

time and/or subject to change at runtime. For instance, usage profiles of users may change due to

unexpected events. Note that discovering changes at runtime requires observation of the running system

and suitable learning techniques. In this thesis, the latter entries of 𝑝 are referred to as parameters of the

model, and a model that has at least one parameter is called parametric.

2.3.1.2. Markov assumption verification

According to the Markov property as stated in Definition 2, the next state to be executed in a Markov

process is independent from the previous history and depends only on the current state. However, it not

always easy to verify the satisfaction by looking at the source code of a software. In (R. Cheung, 1980;

Ramamoorthy, 1966), several experiments showed that this assumption often holds at architectural level.

In the case that the next action depends on previous history, there are still some cases that can be

approximated by a Markov process. The first is the case where a limited number of previous moves, let

say 𝑘 of them, affect the next step. This situation can be modeled by a 𝑘-th order Markov process, that is

one where the next action depends only on the previous 𝑘 actions. Nonetheless, a software systems might

expose an intrinsically non-Markov behavior (Gokhale, 2007), thus the Markov assumption must be

verified before proceeding with the analysis (Billingsley, 1961; Pinsky & Karlin, 2010).

2.3.2. Continuous-Time Markov Chains

Despite the fact that each transition between states in a DTMC model corresponds to a discrete time-step

in a Continuous Time Markov Chain (CTMC) (Pinsky & Karlin, 2010), transitions occur in real time. For

DTMCs, we assume a fixed set of atomic propositions 𝐴𝑃.

29

Definition 7. A Continuous-Time Markov Chain is a stochastic process satisfying the Markov property
with 𝑇 ⊆ ℝ and 𝑆 is finite and countable. This structure is usually represented by Kripke notation as
(𝑆, 𝑠0, 𝑅, 𝐿), where:

 S is a finite set of states.

 𝑠0 is the initial state.

 𝑅: 𝑆 × 𝑆 → ℝ≥0 is the transition rate matrix.

 𝐿: 𝑆 → 2𝐴𝑃 is a labeling function that associates to each state a set of atomic propositions
(i.e., 𝐿(𝑠)) that are true in that state.

The matrix 𝑅 assigns rates to each pair of states in a CTMC. A transition can only occur between states 𝑠1

and 𝑠2 if 𝑅(𝑠1, 𝑠2) > 0 and, in this case, the probability of this transition being triggered within 𝑡 time-

units equals 1 − 𝑒−𝑅(𝑠1,𝑠2)∗𝑡. Typically, in a state 𝑠, there is more than one state 𝑠′ for which 𝑅(𝑠; 𝑠′) >

0. This is called race condition. The first transition to be triggered determines the next state of the CTMC.

The time spent in state 𝑠, before any transition occurs, is exponentially distributed with the exit rate of

state 𝑠, i.e., 𝐸(𝑠), where:

 𝐸(𝑠) ≝ ∑𝑅(𝑠, 𝑠′)

𝑠′∈𝑆

 (2.5)

A state 𝑠 is called absorbing if 𝐸(𝑠) = 0, i.e., if it has no outgoing transitions. Note that the actual

probability of each state 𝑠′ being the next state, to which a transition from state 𝑠 is made, is independent

of the time at which this occurs. This is defined by the notion of an embedded DTMC.

Definition 8. The embedded DTMC of a CTMC 𝐶 = (𝑆, 𝑠0, 𝑅, 𝐿) is the DTMC 𝑒𝑚𝑏(𝑐) =

(𝑆, 𝑠0, 𝑃
𝑒𝑚𝑏(𝑐), 𝐿), where:

 𝑃𝑒𝑚𝑏(𝑐)(𝑠, 𝑠′) = {
𝑅(𝑠, 𝑠′) 𝐸(𝑠)⁄ 𝑖𝑓 𝐸(𝑠) ≠ 0

1 𝑖𝑓 𝐸(𝑠) = 0 𝑎𝑛𝑑 𝑠 = 𝑠′
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.6)

By considering the above definition, the behavior of the CTMC can be considered in an alternative way.

The model will remain in a state 𝑠 for a delay, which is exponentially distributed with rate 𝐸(𝑠) and then

make a transition. The probability that this transition is to state 𝑠′ is given by 𝑃𝑒𝑚𝑏(𝑐)(𝑠, 𝑠′).

Definition 9. The infinitesimal generator matrix for a CTMC 𝐶 = (𝑆, 𝑠0, 𝑅, 𝐿) is the matrix 𝑄: 𝑆 × 𝑆 → ℝ
defined as:

 𝑄(𝑠, 𝑠′) = {
𝑅(𝑠, 𝑠′) 𝑖𝑓 𝑠 ≠ 𝑠

−∑ 𝑅(𝑠, 𝑠′′)
𝑠′′≠𝑠

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.7)

Definition 10. An infinite path of a CTMC 𝐶 = (𝑆, 𝑠0, 𝑅, 𝐿) is a non-empty sequence 𝜋 =
𝑠0, 𝑡0, 𝑠1, 𝑡1, 𝑠2, … where 𝑅(𝑠𝑖, 𝑠𝑖+1) > 0 and 𝑡𝑖 ∈ ℝ>0 . Similarly, a finite path is 𝜋 =
𝑠0, 𝑡0, 𝑠1, 𝑡1, … 𝑠𝑘−1, 𝑡𝑘−1, 𝑠𝑘 , such that 𝑠𝑘 is an absorbing state. As with DTMCs, 𝜋[𝑖] is used to
represent the 𝑖th state in the path 𝜋. 𝜋@𝑡 represents 𝑤(𝑗) where 𝑗 is the smallest index for which

∑ 𝑡𝑖
𝑗
𝑖=0 ≥ 𝑡.

There are some traditional properties regarding CTMC models: transient behavior, which relates to the

state of the model at a certain instant of time; and steady-state behavior, which describes the state of the

CTMC model in the long run. For a CTMC model 𝐶 = (𝑆, 𝑠0, 𝑅, 𝐿), the transient probability 𝜋𝑠,𝑡
𝐶 (𝑠′) is

30

defined as the probability of having the model started in state 𝑠 and being in state 𝑠′ at time instant 𝑡.

Using the definitions of the previous section:

 𝜋𝑠,𝑡
𝐶 (𝑠′) ≝ ℙ(𝜋 ∈ 𝑃𝑎𝑡ℎ𝐶(𝑠)|𝜋@𝑡 = 𝑠′) (2.8)

On the other hand, the steady-state probability 𝜋𝑠
𝐶(𝑠′) is the probability of having the model started in

state 𝑠 and being in state 𝑠′ in the long run:

 𝜋𝑠,𝑡
𝐶 (𝑠′) ≝ lim𝑡→𝐼𝑛𝑓 ℙ(𝜋 ∈ 𝑃𝑎𝑡ℎ

𝐶(𝑠)|𝜋@𝑡 = 𝑠′) (2.9)

In this thesis, we only consider CTMC models that are homogeneous and finite-state, i.e., the limit in the

above definition always exists.

Uniformization is a method to compute transient solutions of finite state CTMC, by approximating the

process by DTMC.

For a CTMC model 𝐶 = (𝑆, 𝑠0, 𝑅, 𝐿) , Π𝑡
𝐶 represents the matrix of all transient probabilities, i.e.,

Π𝑡
𝐶(𝑠, 𝑠′) = 𝜋𝑠,𝑡

𝐶 (𝑠′).

Definition 11. For a CTMC model 𝐶 = (𝑆, 𝑠0, 𝑅, 𝐿) with infinitesimal generator 𝑄, the uniformized DTMC

is given by 𝑢𝑛𝑖𝑓(𝐶) = (𝑆, 𝑠0, 𝑃
𝑢𝑛𝑖𝑓(𝐶), 𝐿), where 𝑃𝑢𝑛𝑖𝑓(𝐶) = 𝐼 + 𝑄/𝑞 and 𝑞 ≥ max {𝐸(𝑠)}.

The uniformization rate 𝑞 is determined by the state with the shortest mean residence time. All

exponential delays in the CTMC 𝐶 are normalized with respect to 𝑞. This means that for each state 𝑠 with

𝐸(𝑠) = 𝑞, one time period in 𝑢𝑛𝑖𝑓(𝐶) corresponds to a exponentially distributed delay with rate 𝑞 after

which one of its successor states is selected (M Kwiatkowska et al., 2007).

2.3.3. Logics for requirement specification on analytical models

Transient-state and steady-state analysis are two traditional methods for analyzing Markov models in

software engineering (Marta Kwiatkowska, Norman, & Parker, 2010). These two classical methods enable

the investigation of the probability of the analytical model to be in a particular state at a certain time or

in a long run respectively. Although because of their long time use in mathematics they are mature

enough, these two types of analysis cannot express behavioral properties, such as the probability of

eventually reaching a particular state or never hitting an error before completion.

Probabilistic behavioral properties are appropriate formulations of software requirements, such as

invariance, precedence, response, or constrained or unconstrained reachability (Grunske, 2008) that can

be interpreted on probabilistic models, like Markov processes. They can be adopted, in general, to specify

constraints on the probability that particular (un)desired behaviors may be observed for the system:

 C1 (Reliability): “The probability of handling a request successfully must be greater than 0.98”

 C2 (Complexity): “At least 50% of the requests must be processed within 7 operations”

 C3 (Cost): “The average cost for running a request must be less 0.0005 dollars”

 C4 (Response time): “The 95th percentile of response time must be less than 0.02s”

A suitable formal language must specify these informal requirements (i.e., C1 to C4) in order to apply

automatic verification techniques. For a more comprehensive examples of such quantitative

requirements, we refer to (Antonio Filieri, 2013).

31

2.3.3.1. Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic (PCTL) (Hansson & Jonsson, 1994) is a temporal logic, based on CTL

(Baier & Katoen, 2008). A PCTL formula expresses conditions on a state of a DTMC, and it is evaluated to

either true or false on the model.

The syntax of PCTL is defined by the following rules:

𝜙 ∷= 𝑡𝑟𝑢𝑒|𝑎|𝜙 ∧ 𝜙|¬𝜙|𝒫⋈𝑝(𝜓)

𝜓 ∷= 𝑋𝜙|𝜙𝑈≤𝑡𝜙
(2.10)

, where 𝑎 represents an atomic proposition and 𝑝 ∈ [0,1],⋈∈ {<,≤,>,≥}, 𝑡 ∈ ℕ⋃{∞}. The temporal

operators 𝑋 and 𝑈 are called “Next” and “Until”, respectively. Note that formulae that are based on the

axiom 𝜙 are called state formulae and those that are originated by 𝜓 are instead called path formulae.

Here is some examples of state formulae:

𝑠 ⊨ 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆

𝑠 ⊨ 𝑎 𝑖𝑓𝑓 𝑎 ∈ 𝐿(𝑠)

𝑠 ⊨ ¬𝜙 𝑖𝑓𝑓 𝑠 ⊭ 𝜙

𝑠 ⊨ 𝜙1 ∧ 𝜙2 𝑖𝑓𝑓 𝑠 ⊨ 𝜙1 𝑎𝑛𝑑 𝑠 ⊨ 𝜙2

𝑠 ⊨ 𝒫⋈𝑝(𝜓) 𝑖𝑓𝑓 ℙ(𝜋 ⊨ 𝜓|𝜋[0] = 𝑠) ⋈ 𝑝

(2.11)

A path 𝜋 originating in 𝑠 satisfies a path formula 𝜓 according to the following rules:

𝜋 ⊨ 𝑋𝜙 𝑖𝑓𝑓 𝜋[1] ⊨ 𝜙

𝜋 ⊨ 𝜙1𝑈
≤𝑡𝜙2 𝑖𝑓𝑓 ∃0 ≤ 𝑗 ≤ 𝑡 (𝜋[𝑗] ⊨ 𝜙2 ∧ (∀0 ≤ 𝑘 < 𝑗: 𝜋[𝑘] ⊨ 𝜙1))

(2.12)

As a short form for 𝑡𝑟𝑢𝑒𝑈≤𝑡𝜙, we use operator ⋄ instead, which means eventually: ⋄≤𝑡 𝜙.

PCTL can specify a large number of properties on a Markov model. For example, it can specify constraints

on the probability of reaching an absorbing state demonstrating a failure or success, given the initial state.

This property is a specific example of the more general class of reachability properties. Reachability

properties are specified as 𝒫⋈𝑝(⋄ 𝜙), which shows that the probability of reaching a state where 𝜙 is valid

meets the constraint ⋈ 𝑝.

2.3.3.2. Continuous Stochastic Logic (CSL)

Continuous Stochastic Logic (CSL) (Aziz, Sanwal, Singhal, & Brayton, 1996) is a temporal logic, where the

state formulae are interpreted over states of a CTMC and it is a natural extension of PCTL logic.

The syntax of CSL is defined by the following rules:

𝜙 ∷= 𝑡𝑟𝑢𝑒|𝑎|𝜙 ∧ 𝜙|¬𝜙|𝒮⋈𝑝(𝜙)|𝒫⋈𝑝(𝜓)

𝜓 ∷= 𝑋𝜙|𝜙𝑈≤𝑡𝜙
(2.13)

, where 𝑎 represents an atomic proposition and 𝑝 ∈ [0,1],⋈∈ {<,≤,>,≥}, 𝑡 ∈ ℝ≥0⋃{𝑖𝑛𝑓. } . The

temporal operators 𝑋 and 𝑈 are called “Next” and “Until”, respectively.

32

Here is some examples of state formulae:

𝑠 ⊨ 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆

𝑠 ⊨ 𝑎 𝑖𝑓𝑓 𝑎 ∈ 𝐿(𝑠)

𝑠 ⊨ ¬𝜙 𝑖𝑓𝑓 𝑠 ⊭ 𝜙

𝑠 ⊨ 𝜙1 ∧ 𝜙2 𝑖𝑓𝑓 𝑠 ⊨ 𝜙1 𝑎𝑛𝑑 𝑠 ⊨ 𝜙2

𝑠 ⊨ 𝒮⋈𝑝(𝜙) 𝑖𝑓𝑓 lim𝑡→𝐼𝑛𝑓 ℙ(𝜋@𝑡 ⊨ 𝜙|𝜋[0] = 𝑠) ⋈ 𝑝

𝑠 ⊨ 𝒫⋈𝑝(𝜓) 𝑖𝑓𝑓 ℙ(𝜋 ⊨ 𝜓|𝜋[0] = 𝑠) ⋈ 𝑝

(2.14)

A path 𝜋 originating from 𝑠 satisfies a path formula 𝜓 according to the following rules:

𝜋 ⊨ 𝑋𝜙 𝑖𝑓𝑓 𝜋[1] ⊨ 𝜙

𝜋 ⊨ 𝜙1𝑈
≤𝑡𝜙2 𝑖𝑓𝑓 ∃0 ≤ 𝑗 ≤ 𝑡 (𝜋[𝑗] ⊨ 𝜙2 ∧ (∀0 ≤ 𝑘 < 𝑗: 𝜋[𝑘] ⊨ 𝜙1))

(2.15)

2.3.4. Extending Markov models and requirement specification logics with rewards

In this section, we represent an extension for DTMCs with the capability to specify rewards (or costs) and

extend the corresponding requirement specification PCTL with the capability to specify over reward

structure. A reward can be adopted for specifying additional information about the system that the

analytical model describes, e.g., number of messages sent or the number of lost requests, or even the

cost for consumptions of energy.

Definition 12. For a DTMC model 𝐷 = (𝑆, 𝑠0, 𝑃, 𝐿) , a reward structure (𝜌, 𝜄) allows two types of
reward. A state reward function 𝜌: 𝑆 → ℝ≥0 assigns rewards to states of the model. A transition reward
function 𝜄: 𝑆 × 𝑆 → ℝ≥0 assigns rewards to transitions between states of the model. The state reward
𝜌(𝑠) is acquired per time-step, while a transition reward 𝜄(𝑠, 𝑠′) is incurred each time a transition
between the two states 𝑠, 𝑠′ occurs.

The PCTL logic is extended by reward properties by means of the following state formulae (M Kwiatkowska

et al., 2007):

 𝑅⋈𝑟(𝐶
≤𝑘)|𝑅⋈𝑟(𝐼

=𝑘)|𝑅⋈𝑟(𝐹𝜙) (2.16)

, where ⋈∈ {<,≤,>,≥}, 𝑟 ∈ ℝ≥0, 𝑘 ∈ ℕ and 𝜙 is a state formula.

Intuitively, the interpretation of the extended structure is as follows:

 𝑅⋈𝑟(𝐶
≤𝑘) is true in state 𝑠, if from the state 𝑠, the expected reward cumulated after 𝑘 time-steps

satisfies ⋈ 𝑟.

 𝑅⋈𝑟(𝐼
=𝑘) is true in state 𝑠, if the expected state reward in the state entered at time-step 𝑘 along

the path originating from 𝑠 meets the bound ⋈ 𝑟.

 𝑅⋈𝑟(𝐹𝜙) is true in state 𝑠 , if the expected reward cumulated before a state satisfying 𝜙 is

reached meets the bound ⋈ 𝑟. In order to calculate the average cost of a run of the system, we

can use this construct by computing the expected cumulated cost until the execution reaches the

end state.

For a more detailed description of the reward extension, we refer to (M Kwiatkowska et al., 2007).

33

2.4. Type-2 Fuzzy Logic

In this section, we only briefly introduce the notion of type-2 fuzzy sets and systems. In the corresponding

chapter (i.e., Chapter 5), the details of each key components of such systems are discussed.

2.4.1. Type-2 fuzzy sets

The concept of type-2 (T2) fuzzy sets (FS) was firstly introduced by Zadeh (Zadeh, 1975) and further

elaborated by Mendel (JM Mendel & John, 2002; JM Mendel, 2007). This type of FSs is an extension of the

ordinary ones (also known as type-1 (T1) FS). A T2 FS is characterized by a membership function (MF, cf.

Figure 2.2), which associates a FS to each elements of the set, unlike a T1 set where its MF associates a

crisp number in [0,1] to each element of the set. Such sets are useful in circumstances where it is

infeasible to determine the exact MF. This additional dimension provides new degrees of freedom, which

is useful for incorporating uncertainty (Wu, 2012).

Figure 2.2. An interval type-2 fuzzy set based possibility distribution.

One may consider Figure 2.2 as the blurred version of the T1 MF by shifting the points on the trapezoid

either to left or to the right. Therefore, at a specific value, 𝑥′, there is not a single value, but an interval of

values. These values do not necessarily have the same weight. This leads to the definition of a three

dimensional MF, a T2 MF, which characterizes a T2 FS. Note all definitions in this section as well as those

given in Chapter 5 are standard definitions in fuzzy theory that we borrowed from standard literature

(e.g., (JM Mendel & John, 2002; Jerry M. Mendel, John, & Liu, 2006) and more specifically (JM Mendel,

Hagras, & John, 2010)).

Definition 13. A T2 FS, denoted by �̃�, is characterized by a type-2 membership function 𝜇�̃�(𝑥, 𝑢)

 �̃� = {((𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢))|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 , 𝜇�̃�(𝑥, 𝑢) ≤ 1} (2.17)

When these values have the same weight, it leads to the definition of a two dimensional MF, which at a

specific point, 𝑥′, has a range [0,1]. This type of FSs are called interval T2 FS (IT2 FS) (Definition 14).

Definition 14. When all 𝜇�̃�(𝑥, 𝑢) = 1 in (2.17), then �̃� is an interval T2 FS (IT2 FS).

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

�̃�

𝜇�̃�(𝑥)

𝜇�̃�(𝑥)
𝑅𝑒

𝑥′

𝐽𝑥′ = [𝜇�̃�(𝑥
′), 𝜇�̃�(𝑥′)]

Uncertainty

about end

point

Uncertainty

about

satisfaction

degree

𝑭𝑶𝑼 (�̃�)

= [𝜇
𝑅
(𝑥),𝜇𝑅 (𝑥)]

𝑥∈𝑋

LMF

UMF

𝑥 ∈ 𝑋

Primary

variable

Secondary

variable

34

Therefore, the MF of IT2 FS can be fully specified by the two T1 MFs (cf. Definition 16). The area between

the two MFs (the grey region in Figure 2.2) characterizes the uncertainty.

Definition 15. The uncertainty in the membership function of an IT2-FS, �̃� , is called footprint of

uncertainty (FOU) of �̃�, i.e.,

 𝐹𝑂𝑈(�̃�) = 𝐽𝑥
𝑥∈𝑋

= {(𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀ 𝑢 ∈ 𝐽𝑥} (2.18)

Definition 16. The upper membership function (UMF) and lower membership function (LMF) of �̃� are
two T1-MFs 𝜇�̃�(𝑥), 𝜇�̃�(𝑥) respectively that bound the FOU.

Definition 17. An embedded fuzzy set 𝑅𝑒 is a T1 FS that is located inside the FOU of �̃�.
In Figure 2.2, LMF, UMF and 𝜇𝑅𝑒 are three embedded MFs.

2.4.2. Type-2 fuzzy logic systems

The theory of IT2 FLS is given in (JM Mendel, 2000). Here, we briefly summarize calculating the parameters

that we need for adaptation reasoning process. Figure 2.3 represents the architecture of an IT2 FLS (N.

Karnik & Mendel, 1999) with a rule base consisting of 𝐿 rules:

 𝑅𝑙: 𝐼𝐹 𝑥1 𝑖𝑠 �̃�1
𝑙 𝑎𝑛𝑑…𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 �̃�𝑝

𝑙 , 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 �̃�𝑙 (2.19)

, where �̃�𝑖
𝑙(𝑖 = 1,… , 𝑝) and �̃�𝑙 are IT2 FSs. When a FLS receives input 𝑋′ = {𝑥1

′ , … , 𝑥𝑝
′ }, the inference

engine computes the firing degree by performing a meet operation (JM Mendel, 2007):

 𝜇�̃�1𝑙
(𝑥1
′)⨅…⨅𝜇�̃�𝑝𝑙 (𝑥𝑝

′) (2.20)

Theorem 1. In an IT2 FLS, the firing interval of the 𝒍th rule is computed as:

𝐹𝑙 = [𝑓𝑙 , 𝑓
𝑙
]

𝑓𝑙 = 𝜇�̃�1𝑙
(𝑥1
′) ⨂… ⨂𝜇�̃�𝑝𝑙 (𝑥𝑝

′)

𝑓
𝑙
= 𝜇�̃�1𝑙
(𝑥1
′) ⨂… ⨂𝜇�̃�𝑝𝑙 (𝑥𝑝

′)

(2.21)

The proof is given in (JM Mendel, 2000). Afterwards, the type reducer transforms the fired IT2 FS to a T1

FS, which shows the possible disparity in the crisp output of the FLS. It establishes an interval around the

output in the same way that a confidence interval is established for a point estimate. However, this

represents linguistic uncertainties.

35

Figure 2.3. The architecture of type-2 fuzzy logic system (adapted from (JM Mendel, 2000)).

A general T2 FLS has a high computational complexity (N. Karnik & Mendel, 1999), but the calculations

simplify dramatically when we use IT2 FSs in the rules. Therefore, IT2 FLSs are better suited for runtime

efficient computation in the adaptation reasoning in self-adaptive software.

2.5. Reo Component Connectors

A component connector, in the context of this research, corresponds to a coordination pattern (Arbab,

2004; N Oliveira & Barbosa, 2013; Nuno Oliveira & Barbosa, 2013) on architectural elements (e.g.

components) that performs I/O operations through that connector. In other words, here, the term

connector is adopted to name entities that can regulate the interaction of (potentially) heterogeneous

components. Thus, connectors must deal with exogenous coordination, handling all those aspects that lie

outside the scopes of individual components (Bruni, Melgratti, & Montanari, 2013). A coordination

pattern is formally given as a graph of channels whose nodes represent the points for interactions

between channels. The edges of this graph are represented with channel types and channel identifiers.

To provide a concrete illustration of this approach, we utilize Reo coordination model (Arbab, 2004).

Therefore, a channel is considered here as a Reo channel (Arbab, 2004).

In the Reo model, channels are primitives out of which more complex and composite component

connectors are constructed. A connector channel is directional (except one channel type) with a unique

identifier and specific semantics (i.e. coordination protocol). A channel in this model accepts an I/O

operation (data flow) on its source end and dispenses it from its sink end. Figure 6.2 illustrate the basic

channel type in the Reo coordination model. Note that Reo support an open-ended set of channels (Arbab,

2004), each exhibit a unique behavior with a precise and distinguishing semantic. However, for the

purpose of this research, we only consider the construction of component connectors based on the

primitive channels, represented in Figure 6.2.

Figure 2.4. Primative connector channels.

O

36

2.5.1. Stochastic Reo

Stochastic Reo (Moon, Arbab, & Silva, 2011) extends Reo in a way that channels are annotated with

stochastic values representing distributions of their relevant data-flow and request arrival at the channel

ends. These distributions are respectively referred to as processing delay rates and request arrival rates.

Such stochastic values are non-negative real values and describe the probability of a certain value of a

discrete random variable, or similarly intervals that represent continuous random variables. Figure 2.5

shows some primitive channels of Stochastic Reo that correspond to the primitives of Reo in Figure 6.2.

In this figure, 𝛾𝑎 means the arrival rate at node 𝑎 and similarly, 𝛾𝑎𝑏 means channel delay between two

nodes 𝑎 and 𝑏. We describe these concepts later in Chapter 6 in more detail.

Figure 2.5. Primitive connector channels with stochastic anotations.

Note that the annotations do not change the semantics of Reo connectors, thus, when the rates are

ignored, the semantics of Reo connectors and stochastic counterparts are the same. The labels annotating

Stochastic Reo channels can be categorized into the following two groups:

Channel delays. A delay rate represents the duration that a channel takes to perform a certain activity

such as transferring a data item from one end to the other end. For instance, a 𝐿𝑜𝑠𝑠𝑦𝑆𝑦𝑛𝑐 has two

associated variables 𝛾𝑎𝑏 and 𝛾𝑎𝐿 for the stochastic delay rates of, respectively, successful data-flow from

node 𝑎 to node 𝑏, and losing the data item at node 𝑎 when a read request is absent at node 𝑏. In a 𝐹𝐼𝐹𝑂

channel, 𝛾𝑎𝐹 means the delay for data-flow from its source node 𝑎 into the buffer, and 𝛾𝐹𝑏 means the

delay for sending the data from the buffer to the sink node 𝑏. Similarly, 𝛾𝑎𝑏 of a 𝑆𝑦𝑛𝑐 (and a 𝑆𝑦𝑛𝑐𝐷𝑟𝑎𝑖𝑛,

respectively) indicates the delay for data-flow from its source node 𝑎 to its sink node 𝑏 (and losing data

at both ends, respectively).

Arrivals at nodes. Arrival rates describe the time between consecutive arrivals of requests at source and

sink nodes of Reo channels. For instance, 𝛾𝑎 and 𝛾𝑏 in Figure 2.5 represent the associated arrival rates of

write/take requests at nodes 𝑎 and 𝑏, respectively. Note that at most one request can wait at a boundary

node for acceptance. That is, if a boundary node is occupied by a pending request, then the node is

blocked and consequently all further arrivals at that node are lost.

Stochastic Reo supports the same compositional framework of joins of connectors as Reo (Moon, 2011).

The nodes in Stochastic Reo have certain quality attributes associated with them. Therefore, joining nodes

must accommodate quality property composition. A mixed node delivers data items instantaneously to

the source end(s) of its connected channel(s). Therefore, mixed nodes have no associated arrival rates.

However, arrival rates on nodes model their interaction with the environment.

37

Chapter 3

3. State-of-the-art

“If I have seen farther than others, it is because I was standing on the shoulder of giants.”– Isaac Newton

(1643-1727).

Contents

3.1. CHAPTER OVERVIEW .. 38
3.2. COMPARISON CRITERIA .. 38
3.3. EXISTING FRAMEWORKS FOR CONTROLLING UNCERTAINTY .. 40

3.3.1. Requirement specification uncertainty .. 40
3.3.2. Internal uncertainty ... 42
3.3.3. External uncertainty .. 43
3.3.4. Design-time uncertainty .. 44
3.3.5. Control theory for handling uncertainty .. 45

3.4. DISCUSSIONS AND CONCLUSIONS ... 46

38

3.1. Chapter Overview

In this chapter, various approaches covering uncertainty control in self-adaptive systems are investigated.

This chapter summarizes related approaches and particularly exposes how the contribution of this thesis

for controlling the uncertainty for self-adaptive component connectors makes advances in the state of

the art. Note that this chapter only focuses on work that specifically proposes a framework for addressing

the issues that uncertainty introduces in self-adaptive software. However, the related work considering

the individual contribution chapters (i.e., model adjustment techniques in Chapter 4; adaptation

reasoning approaches in Chapter 5; and change execution mechanisms in Chapter 6) is covered in their

respective chapters.

Section 3.2 provides a number of comparison criteria of related approaches. Then, Section 3.3 presents a

demarcation and detailed description of each related research work. Finally, a systematic comparison of

the related work according to the comparison criteria is given in Section 3.4.

3.2. Comparison Criteria

In this section, a set of comparison criteria for an objective comparison of related research is discussed.

Figure 3.1 illustrates an overview of a self-adaptive software system consistent with the FORMS reference

model (Danny Weyns, Malek, & Andersson, 2010). Based on this reference model, the self-adaptive

system can be decoupled into two separate subsystems: Meta-Level and Base-Level. The base-level

subsystem provides the application behavior, while the meta-level subsystem controls the base-level

subsystem by adapting its behavior. At the meta-level, we use the IBM reference model for autonomic

systems called MAPE-K (JO Kephart & Chess, 2003). There are also two other entities in Figure 3.1. Users

use the functionalities of the system and specify adaptation logic and the environment within which the

software system operates.

The different elements as depicted in Figure 3.1 are loosely coupled. The meta-level depends on models

of other elements to decide about the adaptation of the base-level system. The loose coupling between

the meta-level and the other elements in self-adaptive software are either unavoidable (e.g., system and

environment) or essential to provide flexibility, reusability and managing the complexity of constructing

self-adaptive software systems. In fact, this loose coupling between the meta-level and the other

elements (i.e. Environment, User, and Base level) is the origin of uncertainty in self-adaptive software. A

comprehensive number of sources of uncertainty is enumerated and discussed in (Esfahani & Malek,

2013). In this section, we recall them and extend them in order to compare the related work and to

identify the research gap in the state-of-the-art.

39

Figure 3.1. Sources of uncertainty in self-adaptive software.

As depicted in Figure 3.1, uncertainty exists in every aspect of the self-adaptation process (Esfahani &

Malek, 2013): (1) Stakeholders often have conflicting preferences over expressing adaptation policies. (2)

Monitoring facilities receive noisy data from sensors. (3) Analytical models make simplifications for quality

assessment. (4) Adaptation facilities may not execute changes correctly or may enact the changes with a

latency. (5) Users may not use the system as it is expected. (6) The environment is inherently dynamic and

unpredictable.

We now describe these sources of uncertainty referring to the numbers that have been used to annotate

different parts of Figure 3.1:

Uncertainty in the expression of adaptation policies [annotation (1)]. This type of uncertainty is related to

the “Feed Policy” arrow in Figure 3.1. This uncertainty exists because of the difficulties in expressing

requirements and preferences that need to be elicited from users. Users have multiple and sometimes

conflicting concerns. The elicitation of user concerns is a challenge (Lemos et al., 2013). Therefore, user

preferences in terms of mathematical functions are subjective and analysis based on them is prone to

uncertainty.

Uncertainty because of noisy data [annotation (2)]. The data that feeds the meta-level (see the left part

of Figure 3.1) is not free of noise because of the errors in the employed sensors. As a result, the input data

is not a single value but a distribution of values obtained over time. Therefore, the analysis in the meta-

level should explicitly consider this measurement noise. Otherwise, the adaptation decision is prone to

uncertainty.

Uncertainty due to simplification of assumptions [annotation (3)]. The analytical models, which are

employed for analytical activities (e.g., reasoning based on the impact of adaptations on the system

quality attributes) at the meta-level, are mathematical models. These mathematical models can become

inaccurate because of the errors in estimation of some parameters in the model. Sometimes the

assumptions based on which the model is designed are not upheld at runtime. These inaccuracies, which

R
~

40

depend on the circumstances, make the analytical models an inaccurate representation of the real system

and as a result, the reasoning based on them becomes error prone.

Uncertainty because of change enactment [annotation (4)]. Some changes that are issued by the execution

module may not be enacted exactly as it is requested. Therefore, the models for reasoning in the meta-

level become inconsistent representations of the real systems. This makes reasoning based on the

inconsistent models prone to uncertainty. In some execution environments, the change enactment is not

instant and contains a latency. This time latency may also change due to a number of reasons, leading to

a more intricate source of uncertainty (Jamshidi et al., 2014).

Uncertainty because of humans in the control loop [annotation (5)]. Human behaviors are uncertain (David

Garlan, 2010). However, modern software systems become ubiquitous and more dependent on user

behavior. This creates uncertainty in the software system they use.

Uncertainty in the environment [annotation (6)]. Self-adaptive software systems are used in many

different environments. Environments themselves are inherently dynamic and unpredictable events may

happen.

Note that in addition to the above-enumerated sources of uncertainty, we also consider the techniques

that existing works apply in the feedback control loop (i.e., throughout MAPE-K activities) and their

evaluation approach (cf. Table 3.1).

3.3. Existing Frameworks for Controlling Uncertainty

The software engineering research community has made progress towards addressing the complexities

involved in the construction of self-adaptive software (Lemos et al., 2013). However, as reported by a

community-wide roadmap (Lemos et al., 2013) and reviews of uncertainty handling techniques (Esfahani

& Malek, 2013; A. J. Ramirez et al., 2012), there is still a lack of methods and techniques for handling

uncertainty in self-adaptive software. In the self-adaptive software community, a few researchers have

recently proposed to address uncertainty issues related to different aspects in self-adaptive software. In

general, we can categorize these proposals into the following categories: requirements specifications,

internal uncertainty, external uncertainty, design-time uncertainty, and control theory. We also structure

this section according to this classification.

3.3.1. Requirement specification uncertainty

RELAX (Whittle et al., 2009) is a requirements specification language that incorporates uncertain

requirements in self-adaptive systems. RELAX allows designers to explicitly express environmental

uncertainty in requirements. More concretely, RELAX defines a number of operators that can be used in

defining requirements and making them “disabled” or “relaxed” at runtime depending on the state of the

environment. Additionally, the operators are able to capture the uncertainty factor that can initiate the

relaxation of requirements.

The RELAX language is extended with goal modeling to specify the uncertainty in the objectives in (B.

Cheng, Sawyer, Bencomo, & Whittle, 2009). The sources of uncertainty with the help of threat modeling

in goal models can be identified. More specifically, threat modeling helps to identify the environmental

elements which can endanger the satisfaction of goals. Once the uncertainty is identified, mitigation

41

tactics are devised. The ultimate tactics for mitigating uncertainty are enabled by relaxing the goal that is

prone to uncertainty.

While RELAX is a specification language for identifying and assessing sources of uncertainty, AutoRELAX

(E. Fredericks, DeVries, & Cheng, 2014) is an approach that automatically generates RELAXed goal

specifications. More concretely, AutoRELAX identifies goals to RELAX through specific operators and by

determining the shape of the membership function that establishes the goal satisfaction criteria.

AutoRELAX generates solutions by making tradeoffs between minimizing the number of RELAXed goals

and maximizing functionality by reducing the number of adaptations triggered by environmental

conditions.

FLAGS (Luciano Baresi et al., 2010) uses fuzzy theory to mitigate the environmental uncertainty by

enabling the specification of adaptive goals. FLAGS enables the definition of tactics that must be taken if

some goals are not satisfied. FLAGS also deals with the uncertainty in goals themselves. More specifically,

FLAGS relies on a fuzzy temporal language to specify imprecise goals that some temporary violations are

tolerated. It also allows for the specification of crisp goals through linear temporal logic.

Goal-Driven Self-Optimization. Chen et al. (Chen, Peng, Yu, & Zhao, 2014) propose to handle the

uncertainties in goal models comprising contribution, preference and effect uncertainty. Taking the

quality indicator as the feedback and the estimated earned value as the global indicator of self-

optimization, the proposed framework dynamically updates the quantitative contributions from

alternative functionalities to quality requirements, tunes the preferences of relevant quality

requirements, and determines a proper timing delay for the last adaptation action to take effect. Then,

they apply these runtime measures to limit the negative effect of the uncertainty in goal models.

REAssuRE (Kristopher Welsh, Sawyer, & Bencomo, 2011b) enables the specification of the rationale for a

choice of alternative goal operationalization when there is uncertainty about the optimal choice by

attaching claims to the contribution links. In addition, Ramirez et al. (A. Ramirez & Cheng, 2012) integrated

REAssuRE with RELAX to introduce a fuzzy logic layer upon the evaluation criteria of claim validity. When

a claim is violated at runtime, its attached contribution link is updated and the goal model is re-evaluated

to discover a better solution. Hence, these studies presented a qualitative way to handle the contribution

uncertainty.

Bencomo and Belaggoun (N Bencomo & Belaggoun, 2013) proposed to map goal models to dynamic

decision networks (DDNs), where each contribution link corresponds to a conditional probability and each

configuration is associated with a preference. As soon as the validity of a claim is changed, the relevant

conditional probabilities will be updated at runtime and the DDN model will be re-evaluated to find a

configuration with the highest utility. Note that experts give the conditional probabilities and preferences

and only some of the conditional probabilities will be updated.

In summary, this category of research intends to adopt the concept of partial satisfaction of requirements

at design-time and to provide a resolution mechanism at runtime. This category of research, in general,

uses the notion of claims and their refinements as the marker for uncertainty at design-time and

uncertainty resolution at runtime (Kristopher Welsh, Sawyer, & Bencomo, 2011a). It monitors claims at

runtime in order to verify their satisfaction. If a violation is detected, it changes the system’s goal model

to select an alternative goal realization. This allows for the dynamic adaptation of the system in the

presence of uncertainty.

42

3.3.2. Internal uncertainty

Cheng and Garlan (S. Cheng & Garlan, 2007) proposed high-level uncertainty mitigation strategies for their

architecture-based self-adaptation framework, which is called Rainbow (D Garlan, Cheng, Huang, Schmerl,

& Steenkiste, 2004). The proposed mitigation strategies are about three specific sources of uncertainty in

the MAPE-K control loop: 1) detecting when there is a violation in the system, 2) determining the right

adaptation policy, 3) knowing whether a given adaptation achieved its intended effects. The first one is

related to Monitoring and Analysis activities of the MAPE-K loop, whereas the second and third ones are

respectively related to Planning and Execution activities. More specifically, they intend to mitigate the

uncertainty in the activities of the feedback control loop.

In order to mitigate the uncertainty in the first source, they employ probability theory to determine the

running average in monitoring to stand against the variability in the environment. The data is then

compared with probabilistic information in the architectural description of the system. Once any problem

is detected, a mitigation strategy is then selected to resolve it. The Stitch language helps to mitigate the

uncertainty in the strategy selection. Stitch allows explicit modeling of the uncertainty in strategies. As a

result, when the Rainbow framework decides a strategy, it can select it based on the expected value,

which is a representative of the underlying uncertainty. For the last source of uncertainty, they consider

how to deal with it by specifying how long the framework should monitor the implementation of the

strategy before committing the change to the running system.

POISED (Esfahani et al., 2011) is a quantitative approach to handling the challenges posed by uncertainty

in making adaptation decisions. POISED adopts fuzzy theory for assessing the positive and negative

consequences of uncertainty. They proposed a novel approach for finding an optimal solution that has

the best range of possible behaviors with regard to the system’s utility. POISED aims at improving the

quality attributes of software systems through reconfiguration in order to achieve an optimal

configuration. However, POISED redefines the traditional definition of optimal adaptation from point

estimations to the one that has the best range of behavior. In turn, the selected configuration has the

highest chance of satisfying the quality objectives, albeit due to uncertainty, properties cannot be

confirmed 100% accurately. POISED uses Possibilistic Linear Programming to make the tradeoff between

alternatives. The decision-making problem is based on a coherent representations of uncertainties allows

the specification of important aspects of uncertainties in the eye of decision makers. For example, in one

scenario one might prefer to have a solution that guarantees certain limits in the worst-case scenario.

However, in other scenarios, one may prefer a solution with a higher risk but potential higher quality.

ADC (Anticipatory Dynamic Configuration) (V Poladian, Sousa, Garlan, & Shaw, 2004) facilitates selecting

appropriate services to accomplish a task and allocate resources among these services at runtime. This

work does not consider environmental uncertainty. In a subsequent work (Vahe Poladian et al., 2007),

they extend the original work in order to incorporate anticipatory decisions and considered the inaccuracy

of future resource usage. They used the work in (Narayanan & Satyanarayanan, 2003) and utilized profiling

data to find requirements regarding resources for different configurations. By incorporating resource

availability prediction, the ADC framework chooses a configuration that optimizes the cumulative

expected value of utility over time. This significantly reduces the number of changes and the disruptions

in the system. For the adaptations, the cost of configuration switching is also considered in the work. If

the cost is low, ADC selects a better configuration. On the other hand, if the cost is high, a non-optimum

configuration is selected.

43

Camara et al. (Cámara, Moreno, & Garlan, 2014) proposed a formal analysis technique based on model

checking of stochastic multiplayer games that enables quantification of the potential benefit of

considering adaptation tactic latency in adaptation mechanisms. They conclude that explicit involvement

of this source of uncertainty, i.e., adaptation latency, in adaptation reasoning improves the outcome of

adaptation.

In summary, this category of research intends to mitigate the effects of internal uncertainty, which is

rooted in the difficulty of determining the impact of system change on the quality properties, e.g.,

determining the impact of replacing a component on the systems response time, energy usage, etc.

3.3.3. External uncertainty

FUSION (Elkhodary, Esfahani, & Malek, 2010) uses machine learning, Model Tree Learning (MTL), to self-

adapt the behavior of the system to unanticipated changes. This approach allows the system to mitigate

the uncertainty associated with the change in the environment as it progressively learns the right

adaptation in new contexts. The output of learning consists of a number of relationships between the

adaptation actions and the quality attributes of the system. The quality attributes can be derived based

on measurements by instrumenting the software provided by the underlying runtime platform. The

adaptation actions are associated with variation points in the software that can be applied at runtime.

FUSION has two cycles, a learning cycle and an adaptation cycle that complement each other. In the

learning cycle, the relationships between quality attributes of the system and the adaptation actions are

learned through measurements. In this cycle, the errors in the learned relations are also detected. As soon

as the quality factors of the software decreases below a certain threshold, the adaptation cycle make an

informed adaptation based on the learned knowledge.

RESIST (Cooray et al., 2010) focuses on the reliability of the system by monitoring internal and external

properties, changes in the structure as well as contextual properties to continuously refine reliability

measurements at runtime. The updated reliability measures are then used to decide about configuration

changing in order to improve its reliability. The target domain of RESIST is mobile, embedded and

pervasive software. These systems are highly dynamic and face unknown contexts and fluctuating

conditions. They are typically mission-critical systems and require high reliability. RESIST mitigates the

uncertainty through constant learning.

RESIST measures component level reliability by learning the unknown parameters of Discrete Time

Markov Chains (DTMC). As soon as the reliability measure at the individual component level is measured,

a compositional model is adopted to determine the reliability index at the system level. RESIST models

the uncertainty in the learning process by probability theory.

ADAM (Carlo Ghezzi, Pinto, Spoletini, & Tamburrelli, 2013) supports adaptation aimed at mitigating non-

functional uncertainty. ADAM relies on Markov Decision Processes (MDPs) to model alternative and

optional functionality implementations in self-adaptive software. According to the aggregated quality

metrics, ADAM can find the execution path with the highest probability to satisfy the non-functional

requirements and then enable adaptation by switching to alternative implementations. They do not

consider the inaccuracy of the transition probabilities in such MDP models.

KAMI (A Filieri et al., 2012) enables continuous verification of reliability and performance requirements of

self-adaptive systems by exploiting analytical models such as Discrete-Time Markov Chains (DTMCs) and

44

Continuous-Time Markov Chains (CTMCs) respectively. KAMI can update the model parameters of DTMCs

and CTMCs through Bayesian estimation based on runtime observations. KAMI employs model checking

in order to check the satisfaction of non-functional requirements and triggers adaptations accordingly.

Similarly, Sykes et al. (Sykes et al., 2013) proposed to enable self-adaptive systems to cope with

incomplete and inaccurate knowledge by updating their behavior models. They use a probabilistic rule

learning technique to not only update transition probabilities, but also discover new structures of the

model. These studies aim at updating the models used for the knowledge base of planning.

Veritas (E. M. Fredericks, DeVries, & Cheng, 2014)/Loki (A. J. Ramirez, Jensen, Cheng, & Knoester, 2011)

uses utility functions to adapt test cases as part of a runtime MAPE-T framework (E. M. Fredericks,

Ramirez, & Cheng, 2013). More specifically, Veritas adapts test cases at runtime to ensure that the

adaptive software can run reliably in the presence of environmental uncertainty. Veritas monitors an

adaptive system, generates an appropriate test plan, verify the test cases, and adapts test cases as

necessary. Veritas adopts the Loki framework (A. J. Ramirez et al., 2011) to generate unique system and

environmental configurations.

In summary, this category of research aims at mitigating external uncertainty that comes from the

environment or domain in which the software is embedded (Esfahani & Malek, 2013). For example,

external uncertainty for a software system deployed in a cleaner robot may include the likelihood of

colliding with certain objects. Software self-adaptation is one approach in dealing with the effects of

external uncertainty, e.g., in a dirty room the cleaner robot navigator component may be replaced with a

more conservative navigator to avoid a collision. Therefore, appropriate techniques have been developing

to minimize the effects of such external uncertainty in the self-adaptive community.

3.3.4. Design-time uncertainty

The issue of uncertainty control at design-time in requirements engineering has been proposed for

requirements elicitation, disambiguation and inconsistency checks. MAVO (Famelis, Salay, & Chechik,

2012; Salay, Chechik, & Horkoff, 2012) uses partial models to manage requirements uncertainty. Yang et

al. (H. Yang, De Roeck, Gervasi, Willis, & Nuseibeh, 2012) proposed an approach to detect the uncertainty

in natural language requirements. Arora et al. (Arora, Sampath, & Ramesh, 2012) focused on the

uncertainty arising from inconsistent feature interactions.

Letier and van Lamsweerde (Letier & van Lamsweerde, 2004) proposed to specify partial degrees of goal

satisfaction and quantify the impact of alternative designs on the degree of goal satisfaction for guiding

requirements elaboration and design decision making. The partial degree of goal satisfaction is modeled

by an objective function on quality variables, and probabilistic models specify the objective function. This

study uses a probabilistic technique to tackle goal satisfaction uncertainty at design-time, while we focus

on runtime handling of contribution uncertainty, preference uncertainty and effect uncertainty.

GuideArch (Esfahani, Malek, & Razavi, 2013) quantitatively guides the exploration of the architectural

solution space, including ranking the candidate architectures, finding the optimal architecture, and

identifying the critical decisions, under the uncertain impact of architectural alternatives on properties of

interest. The GuideArch framework defines a utility score for each candidate architecture using fuzzy

membership function. This study employs fuzzy logic to represent and reason about uncertainty.

45

EAGLE (M Autili, Cortellessa, & Ruscio, 2012; Marco Autili et al., 2011) is a model-based framework that

embrace the incompleteness and inaccuracy of the models with respect to the system goals. EAGLE

supports the explore-integrate-validate adaptation loop that will be realized by exploiting model-driven

techniques such as statistical inference, machine learning techniques, connector synthesis (Inverardi,

Issarny, & Spalazzese, 2010) and goal verification. This integrated framework will support the engineering

of software systems that are built by integrating, under uncertainty, existing components and that are

dynamically evolving within a changing environment.

Leitier et al. (Letier, Stefan, & Barr, 2014) proposed an approach to apply multi-objective optimization

techniques for evaluating uncertainty and its impact on system goals before making critical decisions.

They enable software architects to describe uncertainty about the impact of alternatives on system goals;

to calculate the consequences of uncertainty; to select candidate architectures; and to assess the value

of obtaining additional information before making a decision. Their work is closely aligned to the

GuideArch framework (Esfahani, Malek, et al., 2013). Although they differ in their decision analysis

techniques, these two approaches reached the same conclusion about the consequences of handling

uncertainty: “modelling uncertainty and mathematically analyzing its consequences leads to better

decisions than either hiding uncertainty behind point-based estimates” (Letier et al., 2014).

In summary, these design-time approaches more or less require user involvement, making them infeasible

to be applied in an unsupervised self-adaptation process. This category of research, although proposing a

mechanism for adaptation, does not concentrate on Monitoring or Execution part of MAPE-K loop.

However, the self-adaptive community can utilize the insights that have been produced by this category

of research to introduce novel approaches for controlling and minimizing the effects of uncertainty.

3.3.5. Control theory for handling uncertainty

Apart from the approaches listed above, there are other approaches targeting uncertainty in order to

make dependable self-adaptive software by applying the principles of control theory. The quantitative (or

measurement-driven) adaptation has been studied for decades in control theory (Antonio Filieri,

Hoffmann, & Maggio, 2014). One major benefit of using control theory in this context is the guarantee of

control properties that can be proved mathematically. In this paradigm, adaptive software can be treated

as a controllable plant allowing control theory to be applied to enable self-adaptation. Control theory is

capturing increasing interest from the software and systems engineering community (Hellerstein, Diao,

Parekh, & Tilbury, 2004; Jamshidi et al., 2014; Zhu et al., 2009). The application of control theory in

software engineering, however, is still at a very preliminary stage (Patikirikorala, Colman, Han, & Wang,

2012) and is limited to the design of controllers focused on particular ad-hoc solutions that address a

specific computing problem. Filieri et al. (Antonio Filieri et al., 2014) developed a general methodology,

which reduces the need for strong mathematical background to devise ad-hoc control solutions.

The main difference between the existing control theory approaches and our approach is that the fuzzy

logic controller we employed can handle expert knowledge and numerical data in a unified framework,

and the fuzzy-based approach, in general, has less computational complexity. The other benefit of our

approach is that the fuzzy logic controller does not require the mathematical model of the plant that it

controls. In this work, deriving an accurate mathematical model of the underlying software is a very

difficult task due the non-linear dynamics of real systems (Esfahani, Elkhodary, et al., 2013; Hellerstein et

al., 2004; Lemos et al., 2013; Zhu et al., 2009).

46

3.4. Discussions and Conclusions

Uncertainty is a critical challenge in the construction of self-adaptive software and it needs to be taken

into account specifically when the dependability of the system is important. This hinders the widespread

adoption of self-adaptive software in practice. However, as reported by others (Esfahani & Malek, 2013;

Lemos et al., 2013; Perez-Palacin & Mirandola, 2014), there is a shortage of applicable techniques for

controlling the effects of uncertainty in this setting. As also discussed in (Esfahani & Malek, 2013), there

is a need for development of appropriate mechanisms for mitigating the uncertainty underlying self-

adaptation of software that is prone to uncertainty. Only a few researchers have recently begun to address

uncertainty (Esfahani & Malek, 2013). Table 3.1 summarizes their work with regard to the sources of

uncertainty they are dealing with.

According to the approaches positioned in Table 3.1, three areas specifically lack mature mechanisms for

controlling the effects of uncertainty: I. noisy data, II. change enactment, and III. user involvement.

However, the areas related to I. adaptation policy specification and II. dynamic environments are quite

mature with several numbers of mechanisms for controlling the effects of uncertainty.

In the key chapters of this thesis that the core contribution of our work is described (i.e., Chapter 4 on

model calibration, Chapter 5 on adaptation reasoning and Chapters 6 and 7 on adaptation execution and

real-world applicability), we properly positioned our approach. In those particular chapters, we

mentioned some of the concerns that distinguishes our work from existing approaches. However, it is

useful to summarize the main characteristics that make this thesis a novel research considering the

frameworks that we summarized in Table 3.1. In general terms, the most crucial differences that

distinguish our approach from other approaches that have appeared in the literature are:

1. Our approach considers the incomplete and noisy monitoring measurements (aleatory uncertainty,

cf. Section 2.2.1). Our approach is concerned with calibrating analytical models at runtime in the

presence of uncertainty in the input data. This distinguishes it from approaches (cf. seventh column

of Table 3.1) that consider only complete data or approaches that consider noise-free data.

2. Our approach captures the uncertainties associated with users’ incomplete knowledge regarding

system adaptations policies using fuzzy logic (epistemic uncertainty, cf. Section 2.2.1). Our approach

enhances self-adaptive software with adaptation reasoning that can robustly control the

environmental noises. This distinguishes it from approaches (cf. second column of Table 3.1) that

assume the problem of conflicting subjective measures from a group of experts is solved elsewhere.

47

Table 3.1. Literature comparison addressing source of uncertainty and the activities they cover in the feedback control loop.

Framework

Source of Uncertainty Feedback Control Loop (MAPE-K)

Evaluatio
n

Adapt
ation
policy

Noisy
data

Simpli
ficati
on

Change
enactm
ent

Users
in the
loop

Dynamic
environ
ment

M A P E K

R
e

q
u

ir
e

m
e

n
t

Sp
e

ci
fi

ca
ti

o
n

 RELAX Fuzzy goal model
Case
study

AutoRELAX Fuzzy goal model
Experime
ntal study

FLAGS Fuzzy goal model Example

Goal-Driven Self-
Optimization

Prob. Prob. Prob.
goal

reasoning
 goal model

Experime
ntal study

REAssuRE Fuzzy
goal

reasoning
 goal model Example

(N Bencomo &
Belaggoun, 2013)

Prob.
goal

reasoning

Decision
model

Experime
ntal study

In
te

rn
al

Rainbow Prob. Prob. √
constraint
evaluation

√
Architectur

e model
Experime
ntal study

POISED Fuzzy Fuzzy Fuzzy optimization
Architectur

e model
Experime
ntal study

(Cámara et al.,
2014)

 Prob. game analysis
Architectur

e model
Experime
ntal study

ADC Prob.
utility

reasoning
 Utility

Case
study

Ex
te

rn
al

FUSION Prob. Prob.
√

(learning)
√

Feature
model

Experime
ntal study

RESIST Prob. Prob. Prob.
√

(learning)
√

Markov
models

Experime
ntal study

ADAM Prob.
√

(learning)
√

Markov
models

Experime
ntal study

KAMI Prob.
√

(learning)
constraint
evaluation

Markov
models

Experime
ntal study

Veritas/Loki Prob.
test case

verification

test plan
verification;
optimization

 Test cases
Experime
ntal study

C
o

n
tr

o
l (Antonio Filieri et

al., 2014)
 Control

controller
synthesis

Regression

models
Experime
ntal study

(Zhu et al., 2009) Control
integral

controller

Regression
models

Experime
ntal study

D
e

si
gn

-t
im

e

GuideArch
Fuzzy
(utilit

y)
 --

Optimization
(arch.

selection)
--

Case
study

EAGLE Prob. --
Goal

verification
Synthesis -- Example

MAVO --
Partial
model

reasoning
 --

Case
study

(H. Yang et al.,
2012)

 --
Machine
learning

Rule
reasoning

--
Experime
ntal study

(Arora et al.,
2012)

 --
Feature

interaction
 --

Case
study

(Letier & van
Lamsweerde,
2004)

 Prob. --
Partial goal
verification

 --

(Letier et al.,
2014)

 --
Monte-

Carlo
simulation

Pareto-based
optimization

--
Experime
ntal study

C
/E

/I

RCU (This Work) Fuzzy Prob. Control
√

(Bayesian
learning)

constraint
evaluation

Fuzzy
reasoning

Mode
chang

e

Markov
models +
Fuzzy rule

Experime
ntal study

48

Chapter 4

4. Robust Model Calibration for Requirement Verification

“It is the mark of an instructed mind to rest satisfied with the degree of precision which the nature of the

subject admits, and not to seek exactness when only an approximation of the truth is possible.” Aristotle

(384- 322 BC).

Contents

4.1. INTRODUCTION ... 50
4.1.1. Problem statement and contributions ... 51
4.1.2. Chapter structure... 53

4.2. A ROBUST MODEL CALIBRATION .. 53
4.2.1. Models at runtime: an enabler for self-adaptive behavior and assurance tasks 54
4.2.2. The choice of analytical models ... 55
4.2.3. Robustness in model calibration .. 57

4.3. THE MODEL FRAMEWORK .. 58
4.3.1. DTMC models .. 59
4.3.2. CTMC models ... 60
4.3.3. HMM models ... 61

4.4. MODEL PARAMETER ESTIMATION .. 62
4.4.1. The need for an accurate parameter estimation ... 63
4.4.2. Estimation of transition matrix of a DTMC .. 65

4.4.2.1. Parameter estimation with complete data ... 65
4.4.2.2. Parameter estimation with incomplete data .. 65
4.4.2.3. Failure detection using the Bayes estimator ... 67
4.4.2.4. Bayes estimator with exponential smoothing .. 68

4.4.2.4.1. The simple moving average ... 68
4.4.2.4.2. The weighted moving average ... 69
4.4.2.4.3. Single exponential smoothing ... 69
4.4.2.4.4. Double exponential smoothing ... 69

4.4.2.5. An extended DTMC estimation algorithm .. 69
4.4.2.6. Experimental evaluation ... 70

4.4.2.6.1. Experimental conception ... 70
4.4.2.6.2. Experimental setup .. 71
4.4.2.6.3. Running the experiments .. 73
4.4.2.6.4. Experimental results and interpretations .. 74
4.4.2.6.5. A qualitative summary of the results ... 90

4.4.2.7. Quantitative evaluations: measuring estimation accuracy ... 91
4.4.2.7.1. Assessing numeric estimation ... 91
4.4.2.7.2. Deficiencies of the error metrics ... 94
4.4.2.7.3. Assessing binary estimation... 95
4.4.2.7.4. Deficiencies of the contingency table metrics ... 97

4.4.2.8. Limitations and Threats to validity .. 98
4.4.3. Estimation of transition matrix of a CTMC .. 99

4.4.3.1. Sampling strategies for endpoint-conditioned CTMC ... 100
4.4.3.1.1. Forward sampling .. 101

49

4.4.3.1.2. Rejection sampling .. 101
4.4.3.1.3. Uniformization ... 102

4.4.3.2. The proposed estimation algorithm.. 103
4.4.3.3. Experimental evaluation ... 105

4.4.3.3.1. Experimental conception ... 106
4.4.3.3.2. Experimental setup .. 106
4.4.3.3.3. Running the experiments .. 107
4.4.3.3.4. Experimental results and interpretations .. 108
4.4.3.3.5. Summary of observations and interpretations of the results .. 112
4.4.3.3.6. Quantitative evaluations: measuring estimation accuracy .. 112
4.4.3.3.7. Runtime performance ... 114
4.4.3.3.8. Sensitivity of the estimation errors to simulation and burn-in rounds .. 118
4.4.3.3.9. Limitations and threats to validity ... 119

4.5. RELATED WORK .. 120
4.6. CONCLUSIONS, LIMITATIONS AND FUTURE WORK.. 121

50

4.1. Introduction

Component connectors are increasingly adopted as a paradigm for building composite connectors

facilitating coordination and interaction between functional components of software systems (Arbab,

2004). These composite structures are built by composing and integrating individual coordination

channels known as primitive connectors. Consequently, these channels can be executed and managed by

third-party providers. The providers can offer channels with different quality of service (QoS), therefore

the capabilities and quality of coordination among components will depend on the quality of third-party

channels. In other words, component connectors should become robust and resilient against the failure

of third-party channels. However, the environment surrounding the connectors, comprising functional

components and the amount of requests from them, also affect the quality of coordination.

In order to cope with managing the interaction in highly dynamic and unpredictable environments, fraught

with uncertainty, the coordination infrastructure needs to exploit adaptive capabilities. We consider self-

adaptive capabilities as a necessary runtime obligation to ensure robustness and resilience against third

party channels failure and environmental fluctuations. In order to enable self-adaptive connectors, the

feedback control loop, known as MAPE-K loop (cf. Figure 4.1), needs to be realized. One of the tasks

involved in the MAPE-K loop that needs to be realized to accommodate the Analysis activity of this loop

is continual verification of the non-functional properties (NFPs) (Calinescu et al., 2012) of such connectors.

Since the approach of this thesis for self-adaptation is white-box, i.e., using runtime models to enable

such adaptation, the challenge of continual verification of NFPs boils down to the estimation of unknown

parameters of the analytical models and then formal evaluation of the properties. This choice is motivated

by the fact that the current formalisms that are used to specify the underlying behavior of component

connectors, e.g., constraint automata, are inherently state-based and there are available tools to

transform such formalism to the Markovian models, i.e., CTMC, that we use in this thesis (Moon, 2011).

In this thesis, we call the former activity model calibration. The main outcome of this chapter is a model

calibration method that is robust against uncertainties regarding input data, comprising noise and

incomplete observations. Note that for the non-functional requirement verification, we adopt the runtime

efficient approach that is proposed in (Antonio Filieri, 2013).

Figure 4.1. Scope of Chapter 4.

51

Online model calibration in different settings, comprising (I) full observation, (II) partial observations and

(III) partial observation with measurement noise, are employed to tune the model at runtime as depicted

in Figure 4.2. The updated model is then used to detect the violation of requirements. The detection of a

violation may then trigger an adaptation, which should be Planned and Executed to adapt the running

connector.

Figure 4.2. Overview of the self-reconfigurable component connector.

4.1.1. Problem statement and contributions

Let us consider a situation where the behavior of component connectors is specified by a mathematical

model (cf. the model at the heart of Figure 4.2). This mathematical model, which corresponds to a

connector, contains some parameters. Now, we can consider some scenarios regarding the parameters.

Parameters can be constant over time and known, leading to a time-invariant model without uncertainty.

Let us also imagine a situation where the parameters are constant over time, but only known as a rough

estimations, providing a time-invariant model with uncertain parameter values. We can also consider a

situation, where parameters can change over time, resulting in a time-varying model. In this research, we

consider the last two scenarios. More specifically, in the case of uncertain and varying parameters, we

develop mechanisms to estimate their current values on the fly, based on the available “uncertain”

measurements. The latter part of the last sentence is critical because this is where our contribution lies.

Unlike the existing approaches for parameter estimation, we do not assume that available measurements

are perfect. We rather assume that they may be incomplete or noisy. While there are different sources of

uncertainty in self-adaptive software (Esfahani & Malek, 2013), the incomplete and noisy runtime

measurements are the sources that we consider to tackle in this chapter. It is important to understand

that the incarnation of uncertainty is different from adaptation reasoning which we address in Chapter 5.

52

The objective of model calibration is to estimate the unknown parameters of the model based on runtime

observations as depicted in Figure 4.3. This estimation of parameters should be accomplished accurately

and at the right time. Informally, it means that the estimation should detect as many violations as possible

as soon as the actual value of a parameter enters a violation zone. Accurate estimations are important to

avoid the execution of unnecessary adaptations. In addition, estimation at the right time is important in

order not to miss adaptation opportunities resulting from lagging behind the actual value.

Figure 4.3. Overview of Model Calibration.

As a key contribution of this work, this chapter focuses on the following three important scenarios, which

concerns robust model calibrations for reconfigurable component connectors:

1. Model calibration with full observations: In this case, the unknown parameters of the model at

runtime are estimated based on a full observation of the runtime connector. It means that for the

discrete-time models it is assumed that the full discrete time series of data is available, and for

the continuous-time models, it is assumed that continuous observations are available.

2. Model calibration with partial observations: In this case, incomplete runtime data is monitored

and collected for parameter estimation. It informally means that some components of the model

are unobserved and we have only partial observations.

3. Model calibration with incomplete and noisy observations: In this case, not only a partial

observation is available, but also the data is assumed to be perturbed by noise and measured with

some controlled errors in order to have a more realistic scenario for robust calibration.

Having considered the above realistic cases of data collection and by ensuring the accuracy of model

calibration, the key objective of this work is to enable “robust model calibration” to be adopted in the self-

adaptive loop of component connectors.

53

4.1.2. Chapter structure

The outcome of this chapter is a number of parameter estimation techniques that result in accurate

parameter estimations given that the runtime measurements contain uncertainty. In this chapter, we aim

to address RQ1 (cf. Chapter 1) which highlights the needs for a model calibration that supports non-

functional requirement verification at runtime. Non-functional requirement verification triggers the

adaptation reasoning. We discuss the adaptation reasoning in Chapter 5 and the requirement verification

in Chapter 7 of this thesis.

The rest of this chapter is structured as follows. Section 4.2 discusses the concept of models at runtime,

the type of analytical models that can be adopted as well as the robustness of model calibration.

Section 4.3 formally defines the analytical models adopted in this thesis. Section 4.4, as the main section,

introduces the proposed method for model calibration in the presence of uncertainty and

comprehensively evaluates the adopted techniques with thorough discussions on the results. Section 4.5

reviews the most related work in the literature. Section 4.6 discusses the limitations and future

dimensions of this work.

4.2. A Robust Model Calibration

Fundamentally, robustness is the basic organizational principle of dynamic evolving systems. It is attained

by some principles, which are observed by well-designed systems. Kitano (Kitano, 2004) discusses four

mechanisms that he believes ensure the robustness of biological systems:

 System control

 Alternative mechanisms

 Modularity

 Decoupling

A high-level architectural viewpoint of our model calibration approach in Figure 4.4 shows that our

approach also inherits these underlying principles of a robust mechanism. Runtime data are collected,

unknown parameters of the analytical models representing the connector are updated, adaptation

reasoning based on the adjusted model is performed and the appropriate mode of the connector is

derived and enacted on the running system. Each of these modules, though interconnected, are

decoupled and perform their own functions. There are also alternative mechanisms to handle input data

considering the uncertainty inherent in the observations.

54

Figure 4.4. Architectural framework of robust model calibration.

4.2.1. Models at runtime: an enabler for self-adaptive behavior and assurance tasks

One of the key usages of models at runtime is to exploit the causal connection between the model and its

system under investigation at runtime, see Figure 4.5. The usage of this connection has two different sides

(Eder et al., 2013). On the one hand, models and system are in descriptive causal connection by which the

changes in the system are reflected to the models. This enables analysis techniques to verify high-level

models instead of the complex implementation of the application to collect needed information for

verification. On the other hand, they are also in prescriptive causal connection. This means the models can

be changed to originate (or trigger) an adaptation of the application.

Figure 4.5. Interactions between model at runtime software and its runtime environment.

In the context of assurance of requirements for software systems, models at runtime can play different

roles for assuring both functional and non-functional requirements of a system. For instance, they may

represent requirements to be ensured, the current system state, adaptations that need to be enforced or

55

context that the software uses. They also serve several facilities in this context. For example, they may be

utilized as information sources for monitoring purposes, or change the system via model manipulations,

or model-based analyses such as verification and simulations.

The role of models at runtime specifically as an enabler for self-adaptive behavior of software systems is

represented in Figure 4.6. It uses an equivalent description of the architecture of the software system

(which here corresponds to the connector mode) that is developed at design-time. This model continues

to exist after development time and therefore can be calibrated to monitor the interaction between the

software and its runtime environment. On the other hand, the requirements of the system will be verified

continuously against the calibrated model. When a violation of a requirement is detected, the software

system can be adapted accordingly. The key enabler for this self-adaptive behavior is located at the heart

of Figure 4.6, which should be kept alive at runtime to support the tuning of the model. This extension of

the lifetime of models in this paradigm enables the autonomic adjustment of the system implementation

to tolerate new and possibly unpredictable situations (Luciano Baresi & Ghezzi, 2010).

Figure 4.6. The role of models at runtime in self-adaptation loop.

4.2.2. The choice of analytical models

A wealth of models has been proposed over time as models at runtime (Ardagna, Ghezzi, & Mirandola,

2008). They differ in the level of formality and precision, the aspects they are intended to describe, and

the types of reasoning they support (Jamshidi et al., 2013).

The type of the models that are employed as models at runtime differs from the more conventional

models used by software architects to express their design choices (Ardagna et al., 2008; Blair et al., 2009).

56

The former type, known as analytical models, are mostly used for analysis of non-functional requirements

such as reliability or performance (Cortellessa, Marco, & Inverardi, 2007). A list of potential models at

runtime is summarized in Table 4.1. For a detailed discussion about such analytical models, we refer to

(Ardagna et al., 2008).

Table 4.1. Potential models at runtime and their supports for non-functional requirements (adapted from (Ardagna et al., 2008)).

Model Family Model Name

System

Quality
Model Characteristic

P
er

fo
rm

an
ce

R
el

ia
b

ili
ty

A
d

ap
ta

b
ili

ty

C
o

st
 E

ff
ec

ti
ve

n
es

s

C
o

m
p

o
sa

b
ili

ty

Sc
al

ab
ili

ty

Queuing Models

Bound analysis X -- H H H H

Product form X -- M H H M/H

Non-product form X -- H H M L

Layered queuing networks X -- H H H M

Markov Models

Discrete-Time Markov Chains X X H H L L

Continuous-Time Markov Chains X X H H L L

Markov Decision Processes X X H H L L

Stochastic Model Checking X X H H L L

Simulation Simulation Models X X H M M/H L/M

Control-Oriented
Models

Linear Time Invariant X -- M/L L L H

Linear Parameter Varying X -- M/L L L H

A set of characteristics that can help architects to choose an appropriate model are (Ardagna et al., 2008;

Blair et al., 2009; Metzger, Sammodi, & Pohl, 2013) listed in Table 4.1. A qualitative discrete scale is

adopted as High (H), Medium (M) and Low (L) to compare the models. The characteristics are as follows:

 Adaptability: Estimation techniques should support efficient estimations under software

architecture changes.

 Cost-effectiveness: The approach should require less effort than measurement at the system level.

 Composability: Estimation techniques should be able to estimate the system level parameters

based on primitive level values.

 Scalability: Estimation techniques should be able to estimate the parameters even in large and

complex models.

Regarding adaptability, the goal is the capability to revise the model and obtain new estimates, always

remaining in the same model family. Markovian models provide a high degree of adaptability. In this type

of model, a system change can result in a change in a parameter of the model or a different probability

distribution of the state space. Considering cost-effectiveness, Markovian models are very cost-effective

57

since modeling requires a small effort comparing to prototyping. With respect to composability, the

models, which are structured hierarchically, can be composed more easily. Therefore, Markovian models

have a low degree of composability. Finally, considering scalability, Markovian models require

considerable computation time to be analyzed and therefore, have a low level of scalability.

4.2.3. Robustness in model calibration

Robustness is defined as the ability of a system to resist perturbations without adapting its initial key

functions (Kitano, 2004). More specifically, in computing, robustness is the ability of an algorithm to

continue to operate reliably despite abnormities in input, which is the characteristic of unreliable

environments with unreliable components. It is considered the fundamental feature of dynamic adaptive

systems (Kitano, 2004).

Robustness is often misinterpreted to mean remaining unchanged irrespective of environmental noises,

so that the architecture of the system, and therefore the mode of operation, is unchanged (Kitano, 2004).

In fact, it often requires the system to change its mode of operation in a smoothed way. In other words,

robustness allows changes in the structure and components of the system due to perturbations, but

specific functions are preserved.

Model calibration consists of appropriate estimation mechanisms interacting with models at runtime in a

loop as depicted in Figure 4.7. The loop is started with an analytical model, whose structure is determined

by the architecture of the software system, and it is specified by initial estimates that are available at

design-time. This analytical model with its initial estimates and the parametric values determines the

initial model at runtime. These parameters determine the parts of the system that need to be adjusted at

runtime. The observed runtime data is collected and then forms a time series, which is passed to the

estimation mechanism. The appropriate mechanism is chosen based on the characteristics of the data.

The output of the estimation is the refined estimate, which substitutes the previous values in the model

at runtime.

58

Figure 4.7. Overview of robust model calibration at runtime.

In the next section, we review the adopted analytical models in this thesis. The models will be delineated

formally to provide an appropriate foundation for later runtime analyses.

Note most concepts defined and used in this chapter are standard concepts in probability theory,

stochastic model checking and quantitative verification that we borrowed from standard literature, e.g.,

(Calinescu et al., 2012; M Kwiatkowska et al., 2007; Marta Kwiatkowska, 2007; Pinsky & Karlin, 2010).

4.3. The Model Framework

Let us now concisely introduce the analytical models we utilize in this thesis and the automatic analyses

we perform on them at run time. Since our focus is on non-functional properties of component

connectors, we specify connectors via Markov models, which support quantitative probabilistic

specifications that are particularly useful to definite reliability and performance properties (Ardagna et al.,

2008; Glinz, 2005). Markov models have been adopted quite a lot in software engineering (Ardagna et al.,

2008) and there are tools available (Moon, 2011) for deriving such models from the architectural design

of Reo connectors as this is the principal language for designing and implementing connectors in this work.

For a more detailed justification of this choice, refer to the comparison and discussion in Section 4.2.2.

59

In statistics, a Markov process is a stochastic process satisfying a certain property, called the Markov

property. A stochastic process satisfies the Markov property if the transition probabilities between

different states (i.e., 𝑋𝑖 = 𝑥𝑖) in the state space depend only on the random variable’s current state, i.e.

 ℙ (𝑋𝑛+1 = 𝑥𝑛+1|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛) (4.1)

Therefore, for a Markov process the only information about the past needed to predict the future is the

current state of the random variable. On the other hand, knowledge of the values of earlier states does

not change the transition probability.

A Markov chain refers to a sequence of random variables (𝑋0, … , 𝑋𝑛) generated by a Markov process.

Generally, the term Markov chain is used to convey a Markov process which has discrete (finite or

countable) state space. More specifically, the possible values of 𝑋𝑖 form a countable state space of the

chain. A Markov chain either can be defined for a discrete set of times or can take continuous

values {𝑋(𝑡): 𝑡 ≥ 0}. In the former case, the Markov chain is called Discrete-Time Markov Chain (DTMC)

and in the latter case, it is called Continuous-Time Markov Chain (CTMC).

In the Markov chains (DTMCs and CTMCs), states are directly visible, but in a special class of Markovian

models, the states are not directly observed, but a noisy version of them can be measured. These models

are known as Hidden Markov Models (HMM) or State-Space Models (SSM) in general. This class of models

is especially useful when we have incomplete and noisy observations of the system and we need to

estimate the parameters of runtime models to enable reliable and on-time adaptations.

4.3.1. DTMC models

The difference between DTMC and CTMC is that rather than transitioning to a new (possibly the same)

state at each time step, the system will instead remain in the current state for exponentially distributed

random time and then change its state to a different state.

DTMC is characterized by transition probabilities, 𝑝𝑖,𝑗 which are the probabilities that a process at state

space 𝑥𝑖 moves to state 𝑥𝑗 in a single step,

 𝑝𝑖,𝑗 = ℙ(𝑋𝑗 = 𝑥𝑗|𝑋𝑖 = 𝑥𝑖) (4.2)

If the state space is finite, the transition probability distribution can be represented by a transition matrix

𝑃 with the elements 𝑝𝑖,𝑗. Each row of 𝑃 adds to one and all elements are non-negative. Therefore, 𝑃 is a

proper stochastic matrix.

The following DTMC model in Figure 4.8 represents a state-based system (here, a connector channel)

consisting of 4 states. S represents the “Start” state, T represents a “Temporary” state, L corresponds to

the “Lost” state and D is associated to the “Delivery” state. System start at the start state and move to the

temporary state, then the message either will be delivered to the target or will be lost by their

corresponding probabilities.

60

Figure 4.8. A DTMC example.

 S D T L

S 0 0 1 0

D 1 0 0 0

T 0 0.9 0 0.1

L 0 0 1 0

Figure 4.9. Matrix representation of the DTMC example.

4.3.2. CTMC models

CTMC is characterized by transition rates, 𝑞𝑖,𝑗 which measure how quickly transitions 𝑥𝑖 to 𝑥𝑗 happen.

Precisely, after a small amount of time ∆𝑡, the probability of the state is now

 ℙ(𝑋(𝑡 + ∆𝑡) = 𝑥𝑗|𝑋(𝑡) = 𝑥𝑖) = 𝑞𝑖,𝑗∆𝑡 + 𝑜(∆𝑡), 𝑥𝑖 ≠ 𝑥𝑗 (4.3)

The transition rates 𝑞𝑖,𝑗 form the transition rate matrix 𝑄. As the transition rates matrix contains rates,

the off-diagonal cells indicating the rate of departing from one state to arriving at another should be

positive and the diagonal cells indicating the rate at which the system remains in a state should be

negative. The rates for a given state should add to zero, resulting in the diagonal element being:

 𝑞𝑖,𝑖 = −∑𝑞𝑖,𝑗
𝑖≠𝑗

 (4.4)

By considering 𝑝𝑡 = ℙ(𝑋(𝑡) = 𝑥𝑗), the evolution of CTMC is given by the following equation:

𝜕

𝜕𝑥
 𝑝𝑡 = 𝑝𝑡𝑄 (4.5)

61

The probability that no transition happens in some time ℎ is:

 ℙ(𝑋(𝑠) = 𝑥𝑖 , ∀𝑠 ∈ (𝑡, 𝑡 + ℎ)|𝑋(𝑡) = 𝑥𝑖) = 𝑒
𝑞𝑖,𝑖ℎ (4.6)

That means the probability distribution of the waiting time until the first move is an exponential

distribution with parameter 𝑞𝑖,𝑖.

Figure 4.10. A CTMC example.

 S D T L

S -10 0 10 0

D 6 -6 0 0

T 0 6 -10 4

L 0 0 2 -2

Figure 4.11. Matrix representation of the CTMC example.

4.3.3. HMM models

In HMM, there are basically three involved stochastic process: a hidden one {𝑋𝑖|𝑖 = 0,1, … } and an

observed one {𝑌𝑖|𝑖 = 1,2, … }. In this model, it is assumed that the hidden process {𝑋𝑖|𝑖 = 0,1, … } is a

Markov chain. Here we assume that the Markov chain is a continuous-time Markov chain {𝑍(𝑡)|𝑡 ≥ 0}.

𝑋𝑖 is governed by 𝑍(𝑡) and it has a direct influence on 𝑌𝑖. 𝑌𝑖 is a noisy version of 𝑋𝑖. In other words, we

model runtime data as being noisy observations of some unobserved stochastic process as it is shown in

Figure 4.12. The model consists of:

 ℙ(𝑋0): Initial distribution

 ℙ(𝑋𝑖|𝑋𝑖−1), 𝑖 = 1,2,…: Transitions

 ℙ(𝑌𝑖|𝑋𝑖), 𝑖 = 1,2, …: Likelihood

62

Figure 4.12. Hidden Markov model with hidden CTMC model as runtime model.

4.4. Model Parameter Estimation

The model calibration as depicted in Figure 4.13 consists of two main tasks: 1) data collection (or runtime

observations), 2) parameter estimation (or model fitting, model calibration, model adjustment, model

update). The observed runtime data is collected and is then processed by the estimation mechanisms.

The runtime observations, in general, can be seen as samples of appropriate stochastic processes. The

outputs of the estimation methods are the refined estimates, which substitute the initial values in the

models at runtime. In this section, we first motivate the need for accurate parameter estimations

considering the uncertainties in the runtime observations. We then describe the proposed methods for

the estimation of the unknown parameters of the analytical models (i.e., DTMC and CTMC) that we

consider in this thesis as the runtime models for connector self-adaptation. As a result of this selection,

the problem of parameter estimation of the runtime models, therefore, reduce to the estimation of

transition probabilities for DTMC models and transition rates for CTMC models.

63

Figure 4.13. Overview of parameter estimation using mathematical model.

4.4.1. The need for an accurate parameter estimation

In order to perform adaptive changes to running component connectors especially in a self-managed

manner to respond to the requirement violations, the connectors need to be enhanced with an estimation

capability to detect the violations as soon as possible. A key objective of such approaches is to estimate

the parameters of the analytical model at runtime (here, DTMC and CTMC models) accurately. By accurate

we mean most of the violations of non-functional requirements should be detected, while generating as

few false “need for adaptation” decisions as possible. In other words, the more “true” and less “false”

violations that can be detected by an estimation approach, the more accurate it would be. In this section,

we elaborate on the relevance of accurate estimation for self-adaptive component-connectors.

Figure 4.14 illustrates different situations, which may occur when performing parameter estimation of

the runtime models and their correlation to accurate self-adaptations.

0 500 1000 1500 2000 2500 3000 3500
0.884

0.886

0.888

0.89

0.892

0.894

0.896

0.898

0.9

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

n

XXX ,...,
2

,
1

64

Figure 4.14. Different scenarios in parameter estimation (adapted from (Metzger et al., 2013)).

We assume here that the monitoring mechanisms are in place and once the running connector changes

its state to a different state according to its analytical model, its runtime data including this state change

is observed. These observations provide the main input for the estimation of the parameters of the

runtime models. The diagram above illustrates this by sketching a CTMC model corresponding to a running

connector. The changes in the connector in terms of its runtime state represent the points in time when

monitoring is assumed to be performed and thus the state-changes in the model can be observed.

According to Figure 4.14, two important cases may occur during estimation:

- Unnecessary adaptations: False positive estimations may trigger the self-adaptation of the

component connector although the connector would have in fact worked as expected. Such

unnecessary (Metzger et al., 2013) or unrequired (Amin, Colman, & Grunske, 2012) adaptations

can have the following consequences: Firstly, the adaptation execution takes time and would

leave less time to address the actual violations. Secondly, the replaced connector mode might be

unreliable (e.g., if the new channels have bugs) leading to an ultimate failure of the connector.

- Missed adaptations: False negative estimations will not trigger a self-adaptation, although the

connector will actually violate some requirements and this violation could have been

compensated. In this case, where an adaptation opportunity is missed due to an inaccurate

parameter estimation of the runtime models, or the need for adaptation is detected very late, it

can lead to costly repair strategies or the restart of the connector. This implies that inaccurate

estimations would reduce the overall efficiency of the self-adaptation mechanism.

65

4.4.2. Estimation of transition matrix of a DTMC

Estimating a transition probability matrix of a DTMC with discrete observation data for each model 𝑋 =

{𝑋𝑡|𝑡 = 1,… , 𝑇} is simple. Let us assume that each model has 𝐾 states and we have a time series of 𝑚

observations of the model.

4.4.2.1. Parameter estimation with complete data

Let us assume that we want to estimate a two-step transition matrix and the data is from a collection that

was followed for four steps with two two-step observation intervals. In this case, the observed two-step

intervals coincide with the desired two-step transition matrix. Because the DTMC models are

homogeneous, the observed transitions between the first two steps can be summed up with the transition

between the second two steps to form an observed two-step transition count matrix as follows.

 𝑁 = [

𝑛11 ⋯ 𝑛1𝐾
⋮ ⋱ ⋮
𝑛𝐾1 ⋯ 𝑛𝐾𝐾

] (4.7)

Given the observed count matrix, the maximum likelihood estimate of the transition matrix is the row

proportions of 𝑁,

 �̂� = {�̂�𝑖,𝑗}, 𝑤ℎ𝑒𝑟𝑒 �̂�𝑖,𝑗 = 𝑛𝑖,𝑗/∑𝑛𝑖,𝑘

𝐾

𝑘=1

 (4.8)

Unfortunately, assuming complete runtime data is far from reality. Usually, we can only obtain noisy

measurement of a small fraction of the runtime status of connectors, captured at discrete time points.

4.4.2.2. Parameter estimation with incomplete data

In this section, we develop a relationship between the observed data 𝐷 of size 𝑑, the DTMC model 𝑋 of

size 𝐾 and model parameters 𝑃. The objective in estimation (learning) of model parameters (transition

probabilities) is to compute the posterior probability density ℙ(𝑃|𝐷, 𝑋). This is the probability of the

model parameters, treated as a random variable, given the monitored (observed) data and the model

structure. In order to find the posterior distribution, a common approach in statistic is to consider the

joint distribution ℙ(𝑃, 𝐷|𝑋) given a certain model structure. This joint distribution can be computed in

two ways: ℙ(𝑃|𝐷, 𝑋)ℙ(𝐷|𝑋) or ℙ(𝐷|𝑃, 𝑋)ℙ(𝑃|𝑋). This results in the Bayes’ theorem as follows:

 ℙ(𝑃|𝐷, 𝑋) =
 ℙ(𝐷|𝑃, 𝑋)ℙ(𝑃|𝑋)

ℙ(𝐷|𝑋)
 (4.9)

It consists of three components. The prior probability ℙ(𝑃|𝑋) indicates our assumptions at design-time

regarding the model parameters. These assumptions regarding design-time estimations are based on for

example previous experience of the designer or empirical data about the connector collected in previous

runs. The likelihood ℙ(𝐷|𝑃, 𝑋) specifies the probability of the observations given the model and its

parameters. Finally, the evidence or marginal likelihood ℙ(𝐷|𝑋) is the probability of the observation given

the model.

66

For computing the likelihood, we make a simplifying assumption that the first observation is given. Then

the probability of observations is the probability of the second data given the first, times the probability

of the third given the second and so on:

 ℙ(𝐷|𝑃, 𝑋) =∏𝑝𝑘,𝑘+1

𝑑

𝑘=1

=∏∏𝑝𝑖,𝑗
𝑁𝑖,𝑗

𝐾

𝑗=1

𝐾

𝑖=1

 (4.10)

The prior ℙ(𝑃|𝑋) is utilized to specify assumptions about the model. We use conjugate distributions in

order to make posterior tractable with respect to the prior. It means that the posterior distribution has

the same functional form as the prior. We model each row of 𝑃 with a Dirichlet distribution. This choice

is justified in (Diaconis & Ylvisaker, 1979).

 (𝑝𝑖,1, 𝑝𝑖,2, … , 𝑝𝑖,𝐾)~𝐷𝑖𝑟(𝛼𝑖
(0)
𝑝𝑖,1
(0)
, 𝛼𝑖
(0)
𝑝𝑖,2
(0)
, … , 𝛼𝑖

(0)
𝑝𝑖,𝐾
(0)
) (4.11)

Generally, a Dirichlet distribution 𝐷𝑖𝑟(𝑎1, 𝑎2, … , 𝑎𝐾) with positive parameters is a joint distribution for a

vector 𝑋𝐾 = 1 − 𝑋1 −⋯− 𝑋𝐾−1 with density evaluated in 𝑋1 = 𝑥1, … , 𝑋𝐾 = 𝑥𝐾

Γ(𝑎)

∏ Γ(𝑎𝑖)
𝐾
𝑖=1

∏𝑥𝑖
𝑎𝑖−1

𝐾

𝑖=1

𝑎 =∑𝑎𝑖

𝐾

𝑖=1

(4.12)

With the following properties:

𝐸(𝑋𝑖) =
𝑎𝑖
𝑎

𝑉𝑎𝑟(𝑋𝑖) =
𝑎𝑖(𝑎 − 𝑎𝑖)

𝑎2(𝑎 + 1)

(4.13)

Given the likelihood and prior, the evidence 𝑃(𝐷|𝑋) is a simple normalization in Bayes’ theorem.

 ℙ(𝐷|𝑋) = ∫ℙ(𝐷|𝑃, 𝑋)ℙ(𝑃|𝑋)𝑑𝑃 (4.14)

Now, by using Bayes’ theorem, the estimation of parameters boils down to estimation of the posterior.

ℙ(𝑃|𝐷, 𝑋) =∏
Γ(𝑎 + 𝑁𝑖)

∏ Γ(𝑎𝑖 +𝑁𝑖,𝑗)
𝐾
𝑖=1

∏𝑥
𝑖

𝑎𝑖+𝑁𝑖,𝑗−1
𝐾

𝑖=1

𝐾

𝑗=1

𝑁𝑖 =∑𝑁𝑖,𝑗

𝐾

𝑗=1

(4.15)

67

Since the Dirichlet distribution is a conjugate distribution, the posterior of the transition matrix 𝑃 is a

product of independent Drichlets with the following properties:

 𝐸(𝑋𝑖) =
𝑎𝑖 +𝑁𝑖,𝑗

𝑎 + 𝑁𝑖
 (4.16)

This is the posterior mean estimate (PME) of the model parameter.

 𝐸(𝑋𝑖) =
1

𝑎 + 𝑁𝑖
(𝑎 ∗
𝑎𝑖
𝑎
+ 𝑁𝑖 ∗

𝑁𝑖,𝑗

𝑁𝑖
) (4.17)

Therefore, the PME is a weighted sum of prior expectation and maximum likelihood estimate (MLE). As a

result, we summarize the estimation as a more intuitive and computationally appealing form as follows:

 𝑝𝑖,𝑗
(𝑑)
=
𝑎

𝑎 + 𝑁𝑖
× 𝑝𝑖,𝑗
(0)
+
𝑁𝑖
𝑎 + 𝑁𝑖

×
∑ 𝑁𝑖,𝑗

(𝑜)𝑁𝑖
𝑜=1

𝑁𝑖
 (4.18)

Note that the full details of the mathematical reasoning above is given in (Strelioff, Crutchfield, & Hübler,

2007). Formula (4.18) is the Bayes rule, which yields the new estimates based on the weighted sum of two

terms. The former term is associated with design-time estimates 𝑝𝑖,𝑗
(0) and represents a priori knowledge

about the transition probabilities in the DTMC model. The latter term is related to runtime data, which

has been observed from a running system. More specifically, it provides monitoring data about the

occurrence of transitions among states of system. The variable 𝑎 is smoothing parameter, which

quantifies our belief in a-priori knowledge. A high value of the smoothing parameter means that we are

confident with our estimate at design-time and the runtime data produces a smaller contribution in

changing the parameter. The low value of the smoothing parameter highlights the runtime data and as a

result, the probability of ever changing the parameters will increase. In case of 𝑎 = 0, the estimator

reduce to the MLE estimator. Note that the smoothing parameters need to be treated differently for

highly dynamic environments than for fairly stable environments and we can estimate the model

parameters with high confidence at design-time. Therefore, in the case of the latter situation, it is better

to set a higher number for 𝛼.

It is important to mention that the Bayes rule, i.e., Formula (4.18), has been previously applied for

estimating unknown parameters of Markovian models in (Calinescu, Johnson, & Rafiq, 2011; Epifani et al.,

2009) and we do not claim this as a contribution of this thesis. A minor contribution that we made in this

regard is the comprehensive experimental qualitative and quantitative observations of applying this

estimation technique to the parameter estimation of component connectors in different settings as

reported respectively in Section 4.4.2.6 and Section 4.4.2.7.

4.4.2.3. Failure detection using the Bayes estimator

In the context of the analysis in the MAPE-K loop, a failure is detected if the system experiences a

nonconformity to the expected behavior described by a requirement. For instance, consider the system

described by the DTMC model in Figure 4.8 and a requirement as follows:

𝑅1: The probability 𝑃1 that messages are successfully delivered is greater than

0.89.
(4.19)

68

A failure of 𝑅1 may be detected by considering the number of successful message deliveries over time.

For instance, let us consider a runtime data of length 40 each representing the final state of the message

delivery/lost. Suppose that the following trace 〈𝑑1, 𝑑2, … , 𝑑40〉 represents runtime data with each 𝑑𝑖

showing a message delivery/lost. We assume that among these 40 observations, 5 of

them {𝑑3, 𝑑5, 𝑑10, 𝑑11, 𝑑35} represent messages lost. It means that the system that corresponds to the

DTMC in Figure 4.8, in these moments moves from state 𝑇 to 𝐿 and in the other moments goes from 𝑇

to 𝐷. By assuming 𝑎 = 20, after observing the runtime trace and by using Formula (4.18), we have the

following parameter update.

 𝑝𝑇,𝐷
(𝑑)
=
20

20 + 40
× 0.9 +

35

20 + 40
= 0.88 (4.20)

Having calculated the updated parameters associated with transitions from state 𝑇 to 𝐷, we can deduce

that based on the observed data, the probability associated with the successful delivery of messages was

overestimated at design-time. By using the new calibrated value 0.88 instead of 0.9, the probability of the

path from state 𝑆 to 𝑇 to 𝐷 would be 𝑃 = 1 ∗ 0.88 = 0.88, which is lower than 0.89, thus violating 𝑅1. In

this case, the violation of 𝑅1, which is interpreted as failure of the system, is detected. After detecting the

violation, the exception associated to the violated requirement will be fired. This will trigger the

adaptation reasoning module, which decides the appropriate mode for the connector. As a result, the

current architectural configuration of the connector would be changed and new configuration will be

enacted. The details of the adaptation reasoning are given in Chapter 5.

4.4.2.4. Bayes estimator with exponential smoothing

Exponential smoothing is a mathematical technique that can be applied to time series data to produce

smoothed data (Kalekar, 2004). Time series data are a sequence of observations. For instance, here we

can see the runtime data as a time series of random noisy data collected based on monitoring the

observed system. In Formula (4.18), the past observations are weighted equally, while exponential

smoothing assigns smoothed exponentially decreasing weights over time. More specifically and in a

simple way, we want to assign rather different weights to the older observations in a way to differentiate

between them by putting more importance on recent observations. This is a logical extension, because as

each observation after a while becomes less important compared with more recent runtime data.

In general, the data sequence is represented by {𝑥𝑡} and the smoothed data is written as {𝑦𝑡} which is

regarded as an estimate of what the next value of 𝑥 would be 𝑦𝑛~𝑥𝑛+1.

4.4.2.4.1. The simple moving average

A simple way to smooth a set of sequential observations is to ignore the old ones and consider the latest

𝑘 observations.

 𝑦𝑡 =
1

𝑘
∑𝑥𝑡−𝑖

𝑘−1

𝑖=0

= 𝑦𝑡−1 +
𝑥𝑡 − 𝑥𝑡−𝑘
𝑘
, 𝑘 > 1 (4.21)

, where 𝑘 is an arbitrary integer higher than one. A small value of 𝑘 leads to more sudden changes because

of recent changes in the data. On the other hand, a larger 𝑘 will result in a greater smoothing effect. This

method cannot be used until the first 𝑘 observations have been produced.

69

4.4.2.4.2. The weighted moving average

A more sophisticated method for smoothing the time-series data is to calculate a moving average by

choosing a set of weighted factors.

 𝑦𝑡 =
1

𝑘
∑𝑤𝑖𝑥𝑡−𝑖+1

𝑘

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒∑𝑤𝑖

𝑘

𝑖=1

= 1 (4.22)

In general, the weights are often chosen in a way to give more weight to the more recent observations

and less weight to the older ones.

4.4.2.4.3. Single exponential smoothing

Both the exponential smoothing techniques weight the history of the workload data by a series of

exponentially decreasing factors. An exponential factor close to one gives a large weight to the first

samples and rapidly makes old samples negligible. Exponential smoothing is commonly applied in finance,

however, it can be applied to any discrete set of sequential observations. Let the sequence of observations

begin at time 𝑡 = 0, the simplest form of exponential smoothing is:

𝑦0 = 𝑥0

𝑦𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑦𝑡−1, 𝑡 > 0, 0 < 𝛼 < 1
(4.23)

The choice of 𝛼 is quite important. If it is too close to 1, it has less of a smoothing effect and gives a higher

weight to recent changes in the observations and as a result the estimate may fluctuate dramatically.

While values of 𝛼 closer to zero have a better smoothing effect and as a result, the estimate is less

responsive to very recent changes.

4.4.2.4.4. Double exponential smoothing

Double exponential smoothing is an extension of the simple version. The output of estimation is now 𝐹𝑡+𝑚

an estimate of the value of 𝑥 at time 𝑡 + 𝑚.

𝑦1 = 𝑥0

𝑏1 = 𝑥1 − 𝑥0

𝑦𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)(𝑦𝑡−1 + 𝑏𝑡−1)

𝑏𝑡 = 𝛽(𝑦𝑡 − 𝑦𝑡−1) + (1 − 𝛽)𝑏𝑡−1

𝐹𝑡+𝑚 = 𝑠𝑡 +𝑚𝑏𝑡

(4.24)

4.4.2.5. An extended DTMC estimation algorithm

The Bayes rule as derived in (4.18), as we will show in the experimental evaluations, and is also

demonstrated in (Epifani et al., 2009) is effective in scenarios where the runtime estimate 𝑝𝑖,𝑗
(𝑑)

 differs

from the design-time estimate 𝑝𝑖,𝑗
(0)

, but is not changing rapidly after the first estimations and tends to be

constant at runtime. However, in real scenarios involving component connectors, 𝑝𝑖,𝑗
(𝑑)

 is likely to change

dynamically. For such circumstances, Equation (4.18) is not be able to detect requirement violations

quickly. This is logical because even the oldest observation is as important as the most recent one. In some

situations, this become even more problematic. It cannot detect violations at all specifically when the

violation period is quite short. We demonstrate some of these scenarios in Section 4.4.2.6.3. In order to

70

avoid such situations and provide a better estimation mechanism, we can use the idea behind exponential

smoothing (see Section 4.4.2.4) as first has been proposed in (Calinescu, Johnson, et al., 2011). In the

extended Bayes approach, appropriate weights are assigned to the observations. In order to derive an

updated equation for the extended Bayes rule, we first define weights for each observation as:

 𝑤𝑜 =
1

𝑎(𝑡𝑜−𝑡𝑠)
 (4.25)

, where 𝑎 ≥ 1, 𝑡𝑜 is the time that 𝑜th observation is made and 𝑡𝑠 is the time of the observation that

requires to be weighted according to its distance to the latest observations.

Now we can obtain the extended updating rule by multiplying each observations 𝑁𝑖,𝑗
(𝑜)

 by its associated

weight as defined in Equation (4.25):

 𝑝𝑖,𝑗
(𝑑)
=
𝑎

𝑎 + 𝑁𝑖
× 𝑝𝑖,𝑗
(0)
+
𝑁𝑖
𝑎 + 𝑁𝑖

×
∑ 𝑤𝑜𝑁𝑖,𝑗

(𝑜)𝑁𝑖
𝑜=1

∑ 𝑤𝑜
𝑁𝑖
𝑜=1

 (4.26)

Note that if we set 𝑎 = 1, then the Equation (4.26) is then turned back to its original Bayes rule as in

Equation (4.18).

4.4.2.6. Experimental evaluation

In order to evaluate the appropriateness of the proposed parameter estimator as a calibration method

for DTMC models in the context of reconfigurable component connectors, we decided to perform

controlled experiments (Pfleeger, 1995). The central factor was the good level of control that we have

over the variables, which we describe in Section 4.4.2.6.2. In addition, we need to change the values of

controlled variables easily. The other key factor was the high degree to which we needed to replicate the

situations we want to investigate. Table 4.2 summarizes the key concerns we consider in choosing the

right approach for evaluation.

Table 4.2. Factors related to the choice of evaluation approach.

Empirical concerns Controlled experiment Case study

Level of control High Low

Difficulty of control Low High

Level of replication High Low

Generalization Statistical Analytic

Place to conduct In the lab In context

This section discusses some experimental results and their evaluations through a number of controlled

experiments. To be more specific, we simulate the runtime data by using statistical distribution and we

apply our estimation algorithm to estimate the parameters of the runtime models.

4.4.2.6.1. Experimental conception

This section contains a subset of the scenarios that involve estimating the probability of successful

message delivery in a number of component connectors based on initial design-time estimates and on

runtime data obtained through monitoring the connectors. Message delivery was selected because it is a

critical semantic in each channel of connectors and influences the performance and reliability of each

71

connector. For instance, in the task queue connector in Figure 4.15, the DTMC model in Figure 4.8

represents the semantics of the channel between nodes 𝐴 𝑡𝑜 𝐵.

The objectives of the controlled experiment are:

 𝑂1: To show that the Bayesian estimator is an appropriate estimator for model calibration of

DTMC models as runtime models for enabling self-adaptive component connectors.

 𝑂2: To show that the extended version of Bayes estimator based on exponential smoothing is a

superior estimator in terms of identifying the violation of requirements.

Then the objectives are translated into the following hypotheses:

 Null hypothesis (𝐻0): There is no difference in parameter estimation between the estimation

derived from the base Bayesian estimator and an extended version.

 Alternative hypothesis (𝐻1): The estimates of the DTMC parameters of the component connectors

based on extended version of Bayes estimator is more accurate in terms of detecting the

violations and with less errors in terms of point estimations than the base version of it.

The experimental design is a complete plan for applying different experimental conditions to experimental

subjects so that one can determine how the conditions affect the result. In particular, the experiment

design is to plan how the application of these conditions will help to test hypotheses and answer objective

questions.

Figure 4.15. Task queue connector.

4.4.2.6.2. Experimental setup

In empirical software engineering, the key discriminator between experiments and case studies is the

degree of control over the experimental variables (Pfleeger, 1995). The difference between these two

types of evaluation approaches can be stated more rigorously by considering the notion of experimental

variables. There are in general three types of variables in the context of controlled experiments:

Independent variables, control variables and dependent variables. The independent variables influence

the application of a treatment and thus results of an experiment. The dependent variables are the factors

that we expect to change as a result of applying the treatment. The control variables (controlled variable

or extraneous variable) are specific independent variables, which are kept constant and unchanged in an

experiment.

By assuming that the probabilities assigned to the other state transition in the model represented in

Figure 4.8 are fixed, it is straightforward to check that the connector satisfies the requirement 𝑅1 (cf.

Statement (4.19)) if and only if the message delivery has a probability of success greater

than 𝑝_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.89. We assume that, at design-time, the model is specified by an estimation of

72

the successful message delivery. This estimation at design-time determines the starting point of the

estimation algorithm and is one of the controlled variable in our experiments. Let us assume that the

actual probability is also one of our controlled variables, which might change over time. More specifically,

by controlled we mean that it may take different patterns from constant value to a sophisticated change

pattern over time. At some times, the actual probability may be above the threshold 𝑝_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.89

and satisfies the requirement 𝑅1 and sometimes it may below the threshold, which leads to a

requirement violation. The variance of runtime data is also one of our controlled variables. The variance

determines how the runtime observations may vary and fluctuate over time. The smoothing factor is also

a controllable variable, which determines the level of confidence with respect to the design-time estimate.

The number of simulations for generating the observations in each scenario of experimentation is also a

controlled variable. More simulation rounds increase the time for each experiment, but also increase the

accuracy of the estimates. For generating runtime observations, we use Bernoulli distributions and their

timestamps are generated by exponential distribution with specific parameter 𝜆, which is also one of our

controlled variables. In most of the experiments, we put it by default to 𝜆 = 1. However, we consider one

medium and one large value for this parameter as well. The reason behind this is that we should have

enough samples to represent different environmental conditions. The exponential smoothing

coefficient 𝛼 is also one of our controlled variables, which directly determines the weight of the

observations. Finally, the variance in the threshold of acceptance/rejection of requirements is also a

controlled variable, which determines the accuracy of estimation by identifying the false positives

estimates.

Figure 4.16. Experimental setup overview.

n

XXX ,...,
2

,
1

)(ˆ
,

kP ji

)0(
, jiP

1}"_{":1 lostmessageRNFR

73

The controlled variables that we use in our experiments are summarized in Table 4.3.

Table 4.3. List of controlled variables and their purpose in our experiments.

Controlled variable Purpose

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Threshold of violation/satisfaction of requirement

𝒑𝒊,𝒋
(𝟎)

 Design-time estimate

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 Actual probability of the simulated parameter

𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 Variance in the actual probability of the parameter

𝒂 Smoothing parameter

𝑴 Number of simulation rounds

𝝀 Exponential distribution parameter

𝜶 Exponential smoothing coefficient

𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Variance in the threshold of violation/satisfaction

𝑵 Number of runtime observation (time interval of simulation)

4.4.2.6.3. Running the experiments

The goal of experiments is to assess how the Bayes estimator of the probability of the transition evolves

over time, as runtime observations are collected from the running connector by simulation. We generate

runtime data that follows Bernoulli distribution representing the observation of state transitions between

states 𝑇 to 𝐷, which means successful message delivery. We run different experiments to evaluate the

Bayes estimator and its extended version. In each experiment, we use the average estimate of the

probability of the transition over 𝑀 number of simulation rounds. In order to have enough statistically

sound data we should consider the value of 𝑀 to be large enough. The result of each experiment is

represented by a figure. The horizontal axis of each figure represents the runtime data and the vertical

axis represents the estimation value, which starts from a prior value and steadily converge to the actual

probability. In each figure, the straight black line represents 𝑝_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . The red line

represents 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙 and its changes over time determine the variance of runtime data. The blue line

shows the estimated value by the basic Bayes estimator and the purple line is associated with the

extended version of Bayes estimator.

In order to have the results of all the combinations of the variables summarized in Table 4.3, we take into

account some representative values for each variable. For each experiment, we fix the value of some

variables and change a couple of them in comparison with the previous experiment, which are highlighted

in each of their settings. In this way, we have a sufficient number of representative experiments that could

be interpreted as a sample of all the hypothetical experiments, which could have been otherwise

determined by all the combinations of variables, which would have been unfeasible for the purpose of

this chapter. Note that all the experiments in this chapter were run on a desktop machine with the

specifications as in Table 4.4.

Table 4.4. The platforms used in the controlled experiments.

Platform category The adopted platform

Hardware Intel Core i7 CPU, 2.80 GHz, 12 GB memory

Operating system 64-bit Windows 7 Professional OS

Application MATLAB R2012a

74

4.4.2.6.4. Experimental results and interpretations

In this section, we present comprehensive experimental results that we have observed by investigating

the impact of different settings to the characteristics of the model calibration method. In order to evaluate

the effectiveness of the extended model calibration (see Section 4.4.2.5), we carried out a broad range of

experiments in which we compared results with those produced by the basic Bayes method. We designed

the experiments in a way that covers most of the situations that may happen at runtime in order to make

sure that the proposed model calibration performs well in different occasions. For designing the

experiments, we considered different degradations in connector reliability at different time points with

different change patterns (cf. Table 4.5). We cannot claim that the change patterns that we embed in the

experiments cover all possible scenarios at runtime, but it provides sufficient evidence that they cover

most of the potential scenarios. These experimental evaluations enable us to claim that the estimation

accuracy of the proposed approach is not by chance, under restricted circumstances that may not happen

in reality.

Table 4.5. Change pattern in the performed experiments.

Index Change pattern Experiment number

1 Normal behavior 1

2 Short degradation 2

3 Early degradation 3

4 Late degradation 4

5 Shallow degradation 5,6

6 Far starting 7

7 Deep degradation 8

8 Irregular degradations 9,10

9 Constant with no degradation 11

10 Balanced degradations 12,13,14

The aim of these relatively comprehensive scenarios was to simulate a degradation in the reliability with

which a connector channel that passes a given message within a predefined amount of time, and to test

the ability of the two estimation methods to identify this degradation. The 14 designed scenarios

considered different types of reliability degradation a shorter (i.e., scenario 2), shallow (i.e., scenarios 5,

6), more significant (i.e., scenario 8), very early (i.e., scenario 3), very late (i.e., scenario 4), uneven,

unequal, asymmetrical, and unbalanced (i.e., scenarios 9, 10), balanced degradation (i.e., scenario 12, 13,

14), no degradation (i.e., scenario 11). We also considered a scenario where the design-time estimation

is very far from the actual reliability (i.e., scenario 7). Note that in each experimental setting (i.e., Table 4.6

to Table 4.19), we highlighted the change in the controlled variables (corresponding rows in the tables)

from the previous setting to the current setting. For each experiment, we also report experimental

observations and the interpretation of the results. This helps us to better understand the implications of

such stochastic approach for parameter estimations on connectors. Such implications are also part of the

contributions that we made in this research.

In other words, we consider different situations in which the target environment changes in its operating

conditions and therefore the probability of successful message passing in connector channels evolves over

time. In particular, we consider scenarios where initially the probability of successful message passing is

varying according to the red lines and the prior guess is equal to 𝒑𝒊,𝒋
(𝟎). We assume that a sudden change

75

in the running environment shifts the value of the probability according to the changes in the red lines

(we embed different patterns of change in different scenarios). The graphs (Figure 4.17 to Figure 4.30)

show the results obtained with the two estimation approaches. The figure in each scenario shows how

the accuracy of estimation constantly improves until there is sudden change in the red line and after that

our simulation starts generating data from the new value. As soon as enough new runtime data are

collected, the estimation accuracy of estimation improves again since the estimated parameter begins to

converge to the new probability characterizing the new situation.

In the following, we first figuratively illustrate the performance of the two approaches, the setting of the

experiment and then discuss the observations and interpretations of the results for each experiment

separately.

76

Experiment number: 1 (Normal behavior)

Figure 4.17. Experiment 1’s result.

Table 4.6. Setting of the experiment 1 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.893,0.887,0.893〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,500,1500]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

In the experiment, ℎ1 < ℎ2 are time intervals during which the violation of requirements is undetected

(erroneous estimation). Both estimations approach quite fast towards 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙, but the blue line is more

close to the red line before the value of 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙 drops and a violation happens as a result. Additionally,

during the violation and after the actual probability goes to a satisfactory area, the purple line is more

close to the actual probability than the blue line.

Bayes

Extended Bayes

77

Experiment number: 2 (Short degradation)

Figure 4.18. Experiment 2’s result.

Table 4.7. Setting of the experiment 2 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.893,0.887,0.893〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,500,800]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

Although the blue line approaches the actual probability quite fast in the beginning, it could not detect

the violation that happens during 300 interval time of simulation.

0 500 1000 1500 2000 2500 3000 3500
0.886

0.887

0.888

0.889

0.89

0.891

0.892

0.893

0.894

0.895

0.896

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

78

Experiment number: 3 (Early degradation)

Figure 4.19. Experiment 3’s result.

Table 4.8. Setting of the experiment 3 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎)

 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.893,0.887,0.893〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,100,800]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

Although the blue line detects the violation of requirements when the red line drops below the threshold

quite close to the purple line, but close to 800 simulation time, the blue line incorrectly classified the

observations as violation.

0 500 1000 1500 2000 2500 3000
0.886

0.887

0.888

0.889

0.89

0.891

0.892

0.893

0.894

0.895

0.896

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

79

Experiment number: 4 (Late degradation)

Figure 4.20. Experiment 4’s result.

Table 4.9. Setting of the experiment 4 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎)

 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.893,0.887,0.893〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,2500,2800]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

Even though the violation has happened when there are enough observations, the blue line again could

not detect the violation.

0 500 1000 1500 2000 2500 3000
0.886

0.887

0.888

0.889

0.89

0.891

0.892

0.893

0.894

0.895

0.896

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

80

Experiment number: 5 (Shallow degradation)

Figure 4.21. Experiment 5’s result.

Table 4.10. Setting of the experiment 5 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.891,0.889,0.891〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,2500,2800]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

Even though the actual probability is very close to the threshold, but again the blue line could not identify

the violation.

The purple line has some false positives (cf. Figure 4.14) when it crosses the black line both when the

requirement is satisfied and when it detects the violation.

0 500 1000 1500 2000 2500 3000
0.887

0.888

0.889

0.89

0.891

0.892

0.893

0.894

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

81

Experiment number: 6 (Shallow degradation)

Figure 4.22. Experiment 6’s result.

Table 4.11. Setting of the experiment 6 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎)

 0.893

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.891,0.889,0.891〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,100,800]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

Even when we change the starting point based on estimations at design-time, it did not change the

previous observations. We still have unidentified violations and false positives.

0 500 1000 1500 2000 2500 3000
0.887

0.888

0.889

0.89

0.891

0.892

0.893

0.894

0.895

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

82

Experiment number: 7 (Far starting)

Figure 4.23. Experiment 7’s result.

Table 4.12. Setting of the experiment 7 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎)

 0.884

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.893,0.887,0.893〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,100,800]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

In this setting we chose a faraway starting point, but still the same observations of the previous

experiments remained.

0 500 1000 1500 2000 2500 3000 3500
0.882

0.884

0.886

0.888

0.89

0.892

0.894

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

83

Experiment number: 8 (Deep degradation)

Figure 4.24. Experiment 8’s result.

Table 4.13. Setting of the experiment 8 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.893,0.87,0.893〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,1000,1200]
𝒂 50

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

In this setting, we chose a deep drop in actual probability and the blue line could successfully detect the

violation, but in a very slow manner after half of the violation interval is gone.

0 500 1000 1500 2000 2500 3000
0.87

0.875

0.88

0.885

0.89

0.895

0.9

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

84

Experiment number: 9 (Irregular degradations)

Figure 4.25. Experiment 9’s result.

Table 4.14. Setting of the experiment 9 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.893,0.892,0.895,0.891,0.897,0.885,0.891〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,200,500,700,1200,1600,2000]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

In this setting, we put a variance into the actual probability which represents one of the features of

dynamic environments. The estimation which corresponds to the purple line followed the variation quite

well, but most of the time the blue line was insensitive to the variation with a very slow and inefficient

approach. Even in this setting the blue line could not detect the violation which injected for 400 simulation

time.

0 500 1000 1500 2000 2500 3000
0.884

0.886

0.888

0.89

0.892

0.894

0.896

0.898

0.9

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

85

Experiment number: 10 (Irregular degradations)

Figure 4.26. Experiment 10’s result.

Table 4.15. Setting of the experiment 10 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.893,0.892,0.895,0.891,0.897,0.885,0.891〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0,200,500,700,1200,1600,2500]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

In this setting, we have the same variance in the runtime data, but we injected a much longer violation

time around 900. Still the blue line could not identify the violation.

0 500 1000 1500 2000 2500 3000
0.882

0.884

0.886

0.888

0.89

0.892

0.894

0.896

0.898

0.9

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

86

Experiment number: 11 (Constant with no degradation)

Figure 4.27. Experiment 11’s result.

Table 4.16. Setting of the experiment 11 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈0.891〉
𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [0]
𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

In this setting we consider a constant actual probability quite near to the threshold. The purple line

produced a significant number of false positives in this setting. On the other hand, the blue line had a

constant estimation close to the actual probability.

0 500 1000 1500 2000 2500 3000 3500
0.8885

0.889

0.8895

0.89

0.8905

0.891

0.8915

0.892

0.8925

0.893

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

87

Experiment number: 12 (Balanced degradations)

Figure 4.28. Experiment 12’s result.

Table 4.17. Setting of the experiment 12 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈
0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887,

0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887
〉

𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [
0,200,400,600,800,1000,1200,1400,1600
, 1800,2000,2200,2400,2600,2800,3000

]

𝒂 25

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

In this setting, we put an equivalent satisfaction/violation change pattern in the actual probability and we

observed that the purple line could track the changes quite well, but the blue line could identify none of

the violations and stayed in the satisfactory area.

0 500 1000 1500 2000 2500 3000
0.886

0.887

0.888

0.889

0.89

0.891

0.892

0.893

0.894

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

88

Experiment number: 13 (Balanced degradations)

Figure 4.29. Experiment 13’s result.

Table 4.18. Setting of the experiment 13 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈
0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887,

0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887
〉

𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [
0,200,400,600,800,1000,1200,1400,1600
, 1800,2000,2200,2400,2600,2800,3000

]

𝒂 1

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

We kept the same setting as in Experiment 12, but we considered a very low smoothing parameter and

we observed that the blue line could identify the violations, but it could not track the actual probability

change pattern very well.

0 500 1000 1500 2000 2500 3000 3500
0.884

0.886

0.888

0.89

0.892

0.894

0.896

0.898

0.9

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

89

Experiment number: 14 (Balanced degradations)

Figure 4.30. Experiment 14’s result.

Table 4.19. Setting of the experiment 14 (cf. Table 4.3).

Controlled variable Value(s)

𝒑_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 0.89

𝒑𝒊,𝒋
(𝟎) 0.89

𝒑_𝑨𝒄𝒕𝒖𝒂𝒍 〈
0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887,

0.893,0.887,0.893,0.887,0.893,0.887,0.893,0.887
〉

𝒗𝒂𝒓_𝑨𝒄𝒕𝒖𝒂𝒍 [
0,200,400,600,800,1000,1200,1400,1600
, 1800,2000,2200,2400,2600,2800,3000

]

𝒂 200

𝑴 1000

𝝀 1

𝜶 (1,1.01)
𝒗𝒂𝒓_𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Constant

𝑵 3000

Experiment observations and interpretations of the results:

In this setting, we considered a high smoothing parameter and we observed that the blue line could still

not identify the violations.

0 500 1000 1500 2000 2500 3000
0.886

0.887

0.888

0.889

0.89

0.891

0.892

0.893

0.894

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Bayes

Extended Bayes

90

4.4.2.6.5. A qualitative summary of the results

A qualitative analysis of the experimental results in 4.4.2.6.4 shows that the extended Bayes estimation

method outperforms the basic Bayes method as summarized in Table 4.20:

 In the experiments, the estimated probability for the extended Bayes approaches the actual

probability faster than the basic Bayes. Accordingly, the extended Bayes performs better in detecting

the violations.

 In half of the experiments, the basic Bayes method does not produce false positives and even in two

experiments (i.e., 4, 5) that produced false positives instances, it performs better than extended

Bayes. Both experiments 4 and 5 have one common characteristic. We hypothesize that this

outperformance of extended Bayes by its basic counterpart can be attributed to this feature: the lack

of change in the actual probability of the parameter, i.e., 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙. The only change in the actual

probability happens at 300 simulation time between [2500,2800].

 In most of the experiments except 4, 5, 6, 11, the extended Bayes estimates are far more close to the

actual probability.

 Although some of the estimates produced by a higher 𝛼 in the extended Bayes approach much faster

than the basic Bayes when a degradation happens, this is achieved at the expense of significant

oscillation. Such oscillation is likely to trigger false positives in a real-world scenario, which has the

consequences that we described in 4.4.1.

Table 4.20. Overview of the experimental observations; first column: N: could not detect, Y: could detect, Y<: could detect sooner
than the other method, Second column: Y: has false positives, Y<: has less false positives than the other method, Third column: Y:

is more close to the actual probability.

Experiment

Detection of
violations

Appearance of
false positives

Closeness to
actual values

Base Ext. Base Ext. Base Ext.

1 Y Y< Y Y< - Y

2 N Y - Y - Y

3 Y Y< Y Y< - Y

4 N Y Y< Y Y -

5 N Y Y< Y Y -

6 N Y - Y Y -

7 N Y Y Y< - Y

8 Y Y Y Y< - Y

9 N Y - Y - Y

10 N Y - Y - Y

11 - - - Y Y -

12 N Y - Y - Y

13 Y Y Y Y< - Y

14 N Y - Y - Y

Until this point, we reported some observations regarding qualitative evaluation of the proposed

estimation approach. In order to claim that the approach provides an accurate parameter estimations for

requirement verification, as we claimed in Chapter 1 (see RQ1 and research claim 3), we need to

objectively show some evidence of such accuracy. In the following section (i.e., Section 4.4.2.7), we

provide quantitative evaluations to assess the accuracy of the proposed approach.

91

4.4.2.7. Quantitative evaluations: measuring estimation accuracy

For evaluating the accuracy of the quantitative estimation technique, in the literature, various

quantitative metrics have been utilized. In Section 4.4.2.6.3, we described a number of experiments; we

also reported the observations and interpreted the results. In this section, we use some metrics for

assessing the estimation methods (basic Bayes and the extended version) that we described in previous

sections. More specifically, the effect of different settings for the experiments in estimating the model

parameter can be measured more objectively through the error metrics. The estimation of parameters

are numerical, but each estimation point have also binary interpretations (satisfaction/violation) as well.

This enables us to compare the results through both numerical and binary metrics. An overview of the

measurement process is depicted in Figure 4.31.

Figure 4.31. Estimation analysis in the context of experimental setup.

4.4.2.7.1. Assessing numeric estimation

Metrics for assessing quantitative estimation measure the size of the error when estimating the value of

parameters alongside the runtime data. Table 4.21 lists typical metrics from the literature, which are

mostly used in prediction and the data mining domain. Here, we use them for assessing our estimation

accuracy. These metrics are meant to quantify the difference between values implied by an estimator and

the actual values of the parameter to be estimated.

In statistics, Mean Squared Error (MSE) is the most basic metric, which incorporate both the variance of

the estimator and its bias. In an analogy to standard deviation, taking the square root of MSE yields the

Root Mean Squared Error (RMSE), which has the same units as the parameter being estimated. Mean

Absolute Error (MAE) takes the average of the absolute errors and is known to be more robust against

data points that are very much higher or smaller than the next nearest data points. Relative errors

including RSE, RRSE and RAE, which are normalized by the error of a naïve estimator (average of the past

actual probabilities) to ease comparison. For the above metrics, smaller values indicate a more accurate

estimation.

n

XXX ,...,
2

,
1

)(ˆ
,

kP ji

)0(
, jiP

1}"_{":1 lostmessageRNFR

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7
x 10

-3

92

Table 4.21. Estimation error metrics (Witten & Frank, 2005). �̂� estimated, 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙 actual probability, 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ average
of actual probability.

Metric Formula

Mean Squared Error (MSE)
(�̂�(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1))2 +⋯+ (�̂�(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑))2

𝑑

Root Mean Squared Error (RMSE) √
(�̂�(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1))2 +⋯+ (�̂�(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑))2

𝑑

Mean Absolute Error (MAE)
|𝑝(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1)| + ⋯+ |𝑝(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑)|

𝑑

Relative Squared Error (RSE)
(�̂�(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1))2 +⋯+ (�̂�(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑))2

(𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)
2
+⋯+ (𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

2

Root Relative Squared Error (RRSE) √
(�̂�(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1))2 +⋯+ (�̂�(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑))2

(𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)
2
+⋯+ (𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

2

Relative Absolute Error (RAE)
|𝑝(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1)| + ⋯+ |𝑝(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑)|

|𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(1) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | + ⋯+ |𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑) − 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

It is evident that it is not feasible, and no specific value will be added, if we measure and compare the

performance of the method quantitatively for all the performed experiments. We, therefore, chose

experiment number 14 to investigate more carefully the two estimation approaches through the error

metrics. We had one specific reason for this choice: the number of variations in 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙 is quite high in

this experiment and this makes it appropriate for quantitative evaluation of the estimation approach.

Note that the quantitative results that we report in this section are specific to this experiment. However,

all conclusive remarks and interpretations of the results are backed up with the other experiments as well.

As we mentioned earlier, it is not practical in terms of space to report them all here in this document.

Figure 4.32 shows the point estimate errors of the basic Bayes (blue line) and the extended Bayes (purple

line). The point estimate errors are summarized by boxplot in Figure 4.33. Two observations can be made.

First, the mean error for the extended Bayes is smaller than the basic version. Second, there are some

estimates (those as outliers and in the third quintiles) that produced higher errors than the highest error

produced by a basic Bayes.

93

Figure 4.32. Point estimation error for the experiment number 14.

Figure 4.33. Comparison of point estimation errors for the experiment number 14.

We measured the metrics defined in Table 4.21 for experiment number 14 and the results are shown in

Table 4.22. Based on this comparison, some observations can be made. Since MSE incorporates both the

variance of the estimator and its bias and, as it is evident in Figure 4.33 that there are some noticeable

outliers, the basic Bayes rule, according to the MSE metric, performs better than the extended version.

However, the values of the other 5 metrics reveal that the extended Bayes performs better than the basic

version especially according to RMSE that has the same units as the parameter being estimated.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7
x 10

-3

0

1

2

3

4

5

6

x 10
-3

1 2

Base Bayes Extended Bayes

P
o

in
t

es
ti

m
at

io
n

 e
rr

o
r

Bayes

Extended Bayes

P
o

in
t

es
ti

m
at

io
n

 e
rr

o
r

94

Table 4.22. Estimation error measurements for the experiment number 14.

Metric Value (𝜶 = 𝟏) Value (𝜶 = 𝟏. 𝟎𝟏)

MSE 9.6745e-06 6.9190e-06

RMSE 0.0031 0.0026

MAE 0.0030 0.0024

RSE 1.0780 0.7710

RRSE 1.0383 0.8781

RAE 0.9866 0.8052

4.4.2.7.2. Deficiencies of the error metrics

The estimation error metrics have been utilized for SLA violation prediction in service-oriented systems

(Cavallo, Di Penta, & Canfora, 2010; Leitner, Michlmayr, Rosenberg, & Dustdar, 2010). Although the

metrics show the accuracy in terms of difference between the estimated value and the actual value, they

are not be able to reveal that the violation of requirements actually occurred. More specifically, let us

consider the following two scenarios:

1. The difference between the estimated and the actual value is small, but the actual value is just below

the threshold and the estimated value is just above as depicted in Figure 4.34 (Experiment number

8). In this scenario, the metrics show relatively low values, but actually, the estimation is incorrect.

2. The difference is quite large, but both the actual and estimated value are above or below the

threshold as depicted in Figure 4.34 (Experiment number 8). In this scenario, the metrics show a

relatively high value, but the estimation on the other hand is correct.

This shows that the metrics are not comprehensive for evaluating the accuracy of estimation approach.

Therefore, we should also consider accuracy metrics that consider violations, not only the numerical

values. They are introduced in the next section.

Figure 4.34. Shortcomings of estimation error numerical metrics.

0 500 1000 1500 2000 2500 3000
0.87

0.875

0.88

0.885

0.89

0.895

0.9

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Large difference but

correct estimation

Small difference but

incorrect estimation

95

4.4.2.7.3. Assessing binary estimation

The decision to perform adaptation not only depends on the estimated value of interest, but also depends

whether or not it actually is a violation of requirements. Therefore, in order to examine how accurately

we can estimate the necessity for adaptation, we need to take into account how accurately those

violations can be detected.

In this section, we discuss metrics that can be utilized to evaluate the accuracy of such estimation, i.e.,

estimation of violation or non-violation. These metrics are derived from the well-known contingency table

(Table 4.23), which characterizes the four cases, which can result from a binary estimation of violation.

Table 4.23. Contingency table.

 Estimation

 Violation Non-violation

Actual
Violation True Positive (TP) False Negative (FN)

Non-violation False Positive (FP) True Negative (TN)

A number of metrics derived from the contingency table have been proposed in the literature, e.g.,

(Salfner, Lenk, & Malek, 2010). Table 4.24 lists a selection of the most commonly used metrics. Precision

(P) can be used to evaluate incorrectly detected violations, i.e., unnecessary adaptations. Higher precision

means less unnecessary adaptations. On the other hand, recall (R) can be associated with missed

adaptations. Higher recall means more actual violations being estimated and therefore less missed ones.

Generally, in order to perform well, an estimation algorithm should attain both high precision and recall.

However, improving precision may result in worse recall. For instance, if an estimation algorithm detects

only 1 true violation, its precision becomes 1. In addition, if an algorithm reaches recall 1 by always

detecting violations, its precision becomes low. Therefore, there should be a tradeoff between these two

metrics, which is reflected by the F-measure (𝑭𝜷). The false positive rate (FPR) is defined as a ratio of

incorrectly estimated violations to the number of all non-violations. The smaller it is, the better. On the

other hand, the negative predictive value (NPV) is defined as the ratio of incorrectly predicted violations

to the number of all non-violations. The higher it is, the better it reflects prediction accuracy. Similarly to

precision, specificity (S) can be utilized to evaluate incorrect adaptation needs. Higher specificity implies

fewer unnecessary adaptations. Accuracy (A) is the ratio of correct estimation to all estimations

performed. In order to have a comprehensive picture of prediction accuracy, we use all of the metrics to

measure the accuracy of the estimations in our controlled experiments.

96

Table 4.24. Contingency table metrics (Salfner et al., 2010).

Metric Formula Meaning

Precision (P)
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

How many detected violations
were actually a violation?

Recall (R)
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

How many actual violations were
correctly detected as violations?

Specificity (SP)
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

How many actual non-violations
were correctly detected as non-
violations?

False Positive Rate (FPR)
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

How many detected violations
were actual non-violations?

Negative Predictive Value (NPV)
𝑇𝑁

𝑇𝑁 + 𝑇𝑃

How many predicted non-violations
were actual non-violations?

Accuracy (A)
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

How many detections were
correct?

F-measure (𝑭𝜷)
(1 + 𝛽2)𝑃 ∗ 𝑅

𝛽2𝑃 + 𝑅
 Harmonic mean of P and R

Let us now consider a situation in which a violation is detected if the estimated probability �̂�(𝑑)

(representing the reliability of a system connector channel, as explained above) drops below a threshold

value 𝑝_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The threshold value is shown as a horizontal black solid line in all graphs representing

the experiments in Section 4.4.2.6.4. Assuming that the estimation methods are used to detect such

violations of a reliability threshold, we measured the following properties of the estimated �̂�(𝑑) values

from Experiment number 14:

 The number of false positives (FP), i.e., instances when �̂�(𝑑) drops below 𝑝_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 although

𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑) has its normal value.

 The number of false negatives (FN), i.e., instances when �̂�(𝑑) has its normal value while 𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑)

were below 𝑝_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

 The number of true positives (TP) and true negatives (TN), i.e., instances when both �̂�(𝑑) and

𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑) drop below 𝑝_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 or both have their normal values.

We then measured the metrics defined in Table 4.24 for experiment number 14 and the results are shown

in Table 4.25. Based on this comparison, some observations can be made. Since all the estimations by the

basic Bayes were above the threshold in the non-violation area, the precision and F-measure are not

defined for this case. Nonetheless, these two measures are quite promising for the extended Bayes

approach. In terms of recall and accuracy, the extended version shows its superiority over the basic one.

97

Table 4.25. Contingency metrics measurement for the experiment number 14.

Metric Value (𝜶 = 𝟏) Value (𝜶 = 𝟏. 𝟎𝟏)

P -- 0.7155

R 0 0.3615

S 1 0.8673

FPR 0 0.1327

NPV 1 0.7222

A 0.52 0.6245

F -- 0.4803

4.4.2.7.4. Deficiencies of the contingency table metrics

Although the contingency table metrics enable us to evaluate the accuracy of the need for adaptations,

they are heavily sensitive to the threshold values used by the system for determining violations during

estimation. Figure 4.35 shows the experiment in the previous section with an additional threshold value

with a slight increase. It is apparent that many false negatives now become true positives and a number

of true negatives become false positives. The metrics are reevaluated and shown in Table 4.26. Although

the difference in threshold values is just 0.04, the differences in the binary metrics are significant.

Table 4.26 shows the value of these binary metrics, separately for the basic and extended Bayes. These

results indicate that the extended Bayes is suited for identifying the change in the actual probability

𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑), whereas the basic Bayes method yields probability estimates that follow the changes in

𝑝_𝐴𝑐𝑡𝑢𝑎𝑙(𝑑) with far less accuracy. As a result, it does not perform as well as the extended version in

terms of the binary metrics.

In order to have more informed decisions and to avoid missed or unnecessary adaptations, the estimation

error metrics should be employed along with the contingency table metrics. In this way, we are able to

better understand how reliable the estimation algorithm is in terms of accuracy.

98

Figure 4.35. Sensitivity of contingency table metrics to the threshold.

Table 4.26. Evaluated contingency metrics for the experiment 14 after changing the threshold value.

Metric Value (𝜶 = 𝟏) Value (𝜶 = 𝟏. 𝟎𝟏)

P 0.5430 0.5935

R 0.7117 0.7394

S 0.4290 0.5173

FPR 0.5710 0.4827

NPV 0.3874 0.4233

A 0.5670 0.6257

F 0.6160 0.6585

4.4.2.8. Limitations and Threats to validity

The experiments in Section 4.4.2.6.4 indicate that the effectiveness of the DTMC parameter estimation

methods depends on the choice of the smoothing parameter, which is the confidence with initial design-

time estimation, and 𝛼, which is used in Equation (4.25). Additionally, no combination of values for these

two parameters is actually suitable for all potentially infinite runtime scenarios. To address this limitation,

one may actually select suitable parameters for these two values depending on the runtime condition.

In Section 4.4.2.6.4, we only showed 14 experiments by combining different values for the controlled

variables and the objective was to design enough experiments to demonstrate the effectiveness of the

extended Bayes method for estimating the unknown parameters of the runtime models in different

situations. We also compared their effectiveness for detecting requirement violations at runtime.

However, the comparison is only limited to these 14 settings, but the runtime situations are potentially

infinite. Although we reported both qualitative observations in Section 4.4.2.6.5 and quantitative

0 500 1000 1500 2000 2500 3000 3500
0.886

0.887

0.888

0.889

0.89

0.891

0.892

0.893

0.894

0.895

Time

E
s
ti
m

a
te

 (
P

ro
b
a
b
ili

ty
)

Threshold 2:=0.8904

99

comparison in Section 4.4.2.7, the limitations of the controlled experiments is one of the threats to the

validity of this work. The only strategy for mitigating this threat was to extend the experimental setting

and perform a case study evaluation. We will report the results regarding this in the evaluation chapter,

i.e., Chapter 7.

4.4.3. Estimation of transition matrix of a CTMC

In Section 4.4.2, we proposed an approach based on the principles of Bayes theory to estimate the

unknown parameters of DTMC models based on runtime measurements. We experimentally evaluated

the performance and effectiveness of the approach for verifying a reliability requirement 𝑅1 as specified

in Statement (4.19). DTMC models are suitable for specifying reliability properties as in the case of 𝑅1,

see Section 4.2.2 and background Chapter 2. However, some other non-functional properties are required

to be verified at runtime to trigger an adaptation. For example, performance properties within which we

can specify an end-to-end delay of message transmission (i.e., the time that it takes to transmit a message

when it enters to the connector from one of its source ends to the time that it leaves the connector from

one of its sink ends) are typically used for specifying service level agreements. As a result, such

performance properties need to be considered for enabling a self-adaptation of connectors. CTMC models

as we discussed earlier in Section 4.2.2 are appropriate models that we can adopt to specify such non-

functional properties. In this section, a similar flow of content as in Section 4.4.2 is followed, but we

propose an approach to estimate the unknown parameters of CTMC models.

For estimating the parameters of a CTMC model (in statistics, the inference of generator matrix is a more

popular term), given continuously observed sample paths of the model is straightforward. In our context,

the interpretation of continuously observed sample path refers to fully time-stamped runtime data, which

in most cases improbable or infeasible.

In this case, the maximum likelihood estimation is fully tractable if continuous observations for the

stochastic process {𝑋(𝑡)|0 ≤ 𝑡 ≤ 𝑇} are available. Let us consider the likelihood of observations with a

transition from state 𝑖 to state 𝑗 at time 𝜏1, followed by a subsequent transition from 𝑗 to 𝑘 at time 𝜏2 and

so on. Supposing that an initial state probability is known, the likelihood will be:

 𝐿(𝑄) = 𝑒−𝑞𝑖(𝜏2−𝜏1)𝑞𝑖,𝑗 ∗ 𝑒
−𝑞𝑗(𝜏3−𝜏2)𝑞𝑗,𝑘 ∗ … =∏∏𝑒

−𝑞𝑖𝑅𝑖(𝑇) ∗

𝑖≠𝑗

𝐾

𝑖=1

𝑞
𝑖,𝑗

𝑁𝑖,𝑗(𝑇) (4.27)

, where 𝑅𝑖(𝑡) is the total time during which the model is in state 𝑖 by time 𝑡 and 𝑁𝑖,𝑗(𝑡) is the number of

transitions between state 𝑖 to state 𝑗 by time 𝑡. The log-likelihood is:

 𝐿𝑜𝑔 𝐿(𝑄) =∑∑log(𝑞𝑖,𝑗)

𝑖≠𝑗

𝐾

𝑖=1

𝑁𝑖,𝑗(𝑇) −∑∑q𝑖,𝑗
𝑖≠𝑗

𝐾

𝑖=1

𝑅𝑖(𝑇) (4.28)

Therefore, the maximum-likelihood estimator for the parameters of CTMC (elements of a generator

matrix) is:

 �̂�𝑖,𝑗 =
𝑁𝑖,𝑗(𝑇)

𝑅𝑖(𝑇)
 (4.29)

100

In this ideal case, given continuously observed sample paths, the sufficient statistics are simply the

number of transitions between any two states and the total time spent in each state. In a real-world

context and especially in our application domain of component connectors, however, a complete runtime

observation is not given, but only an incomplete and noisy observation of the runtime data is available.

This level of uncertainty concerning the running system and its environment is due to a number of reasons

(Esfahani & Malek, 2013). The reasons may include:

 Different levels of abstractions between the system and runtime models

 Adaptive and not continuous monitoring

 Unobservable phenomena

 Measurement error

We deal with incomplete observations at runtime, which is a realistic approach for continuous-time

models in this section. More specifically, the stochastic process {𝑋(𝑡)|0 ≤ 𝑡 ≤ 𝑇} serves as a continuous-

time model for data sampled at discrete time points: 𝑡0 = 0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 . In this work, we

estimate the parameters based on simulation of continuous sample paths from the CTMC conditional on

𝑋(𝑡0), … , 𝑋(𝑡𝑁). By considering the Markov property, knowledge of the runtime data 𝑋(𝑡0),… , 𝑋(𝑡𝑁)

partitions the model into independent models {𝑋(𝑡)|𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1} whose endpoints (i.e.,

𝑋(𝑡𝑖) 𝑎𝑛𝑑 𝑋(𝑡𝑖+1)) are known. Therefore, sampling a realization from the stochastic process {𝑋(𝑡)|0 ≤

𝑡 ≤ 𝑇} given the observed data is equal to sampling from 𝑁 independent and identical (i.i.d.) models each

conditioned on their endpoints 𝑋(𝑡𝑖) 𝑎𝑛𝑑 𝑋(𝑡𝑖+1) between two time points [𝑡𝑖, 𝑡𝑖+1]. In the next section,

a number of well-known sampling strategies are reviewed.

4.4.3.1. Sampling strategies for endpoint-conditioned CTMC

In this section, we review the strategies for constructing a realization of a finite-state CTMC {𝑋(𝑡)|0 ≤

𝑡 ≤ 𝑇} conditional on its beginning state 𝑋(𝑡0) = 𝑎 and ending state 𝑋(𝑡𝑁) = 𝑏. Sampling is the heart of

the estimation approach we propose for estimating the parameters of CTMC models. A CTMC is

characterized by its generator matrix 𝑄 consisting of transition rates, which are specified at design-time

based on the available data.

Simulating a sample path of the CTMC model {𝑋(𝑡)|0 ≤ 𝑡 ≤ 𝑇} is a simple iterative loop. The key point is

that the waiting time for the first move (state transition) is exponentially distributed with the mean
1

𝑞𝑎,𝑎
.

If 𝜏1 > 𝑇, then there is no move in the interval time [0, 𝑇] and the corresponging sample path is constant

𝑋(𝑡) = 𝑎. Otherwise, a new state 𝑠1 is drawn from the discrete random variable with mass
𝑞𝑎𝑠1
𝑞𝑎𝑎

 and the

loop is iterated for the time interval of [𝜏1, 𝑇].

101

4.4.3.1.1. Forward sampling

Algorithm 1. Forward Sampling (adapted from (Inamura, 2006))

1. Sample 𝝉~𝑬𝒙𝒑 (𝒒𝒂,𝒂).

a. If 𝝉 ≥ 𝑻, the algorithm terminates and 𝑿(𝒕) = 𝒂 for all 𝝉 ∈ [𝟎, 𝑻].

b. If 𝝉 < 𝑻, choose a new state 𝒔𝟏 ≠ 𝒂 from the discrete random variable with mass
𝒒𝒂𝒔𝟏
𝒒𝒂𝒂

.

2. Repeat the procedure with the new start state 𝒔𝟏 and new time interval [𝝉, 𝑻]

Forward sampling proceeds under the assumption that the ending state 𝑋(𝑇) is unobserved. However,

under the assumption that the end state 𝑋(𝑇) = 𝑏 is observed, conditioning excludes all the paths

sampled from the forward sampling that fail to reach the state 𝑏 at the end.

4.4.3.1.2. Rejection sampling

Naïve rejection sampling uses forward sampling to produce candidate sample paths of the CTMC model

and then rejects those paths that cannot end in the observed end state. In particular, when sampling

forward the probability of hitting the observed end state 𝑋(𝑇) = 𝑏 is 𝑃𝑎,𝑏(𝑇) = 𝑒
𝑞𝑎𝑏𝑇. In the case where

𝑏 ≠ 𝑎, the time 𝜏 to the first move given 𝜏 < 𝑇 is drawn from:

 𝑓(𝜏, 𝜏 ≤ 𝑇) =
𝑞𝑎𝑎𝑒

−𝑞𝑎𝑎𝜏

1 − 𝑒−𝑞𝑎𝑎𝑇
, 0 ≤ 𝜏 ≤ 𝑇 (4.30)

The corresponding cumulative distribution function (CDF) is:

 𝐹(𝜏, 𝜏 ≤ 𝑇) =
1 − 𝑞𝑎𝑎𝑒

−𝑞𝑎𝑎𝜏

1 − 𝑒−𝑞𝑎𝑎𝑇
, 0 ≤ 𝜏 ≤ 𝑇 (4.31)

Therefore the inverse of 𝐹 is:

 𝐹−1(𝑢) = −log (1 − 𝑢(1 − 𝑒−𝑞𝑎𝑎𝑇))/𝑞𝑎𝑎 (4.32)

Therefore, sampling from uniform distribution 𝑈(0,1) the 𝐹−1(𝑢) yields the waiting time to the first

move in CTMC model.

102

Algorithm 2. Modified Rejection Sampling (adapted from (Inamura, 2006))

If 𝒂 = 𝒃:

1. Simulate the CTMC model {𝑿(𝒕)|𝟎 ≤ 𝒕 ≤ 𝑻} using the forward sampling in Algorithm 1.

2. Accept the path if 𝑿(𝑻) = 𝒂; otherwise return to step 1.

If 𝒂 ≠ 𝒃:

1. Sample 𝝉 from the (4.30) and choose a new state with the probability ℙ (𝒔𝟏 ≠ 𝒂) =
𝒒𝒂𝒔𝟏
𝒒𝒂

.

2. Simulate the rest {𝑿(𝒕)|𝝉 ≤ 𝒕 ≤ 𝑻} using forwards sampling from the beginning state 𝑿(𝝉) = 𝒔𝟏

3. Accept the simulated path if 𝑿(𝑻) = 𝒃 otherwise return to step 1.

The modified rejection sampling, simply avoids simulating constant paths when we know that there will

be a move in between. This is particularly beneficial when 𝑇 is small and the naïve approach in Algorithm

1 will waste time by sampling constant paths.

4.4.3.1.3. Uniformization

This strategy samples from 𝑋(𝑡) through the construction of an auxiliary DTMC model 𝑌(𝑡) with the

transition probabilities 𝑝𝑖,𝑗 as follows:

 𝑝𝑖,𝑗 =

{

𝑞𝑖,𝑗

𝛾
, 𝑖𝑓 𝑖 ≠ 𝑗

1 −∑
𝑞𝑖,𝑗

𝛾
𝑖≠𝑗

 𝑖𝑓 𝑖 = 𝑗
𝛾 ≥ max

𝑖
|𝑞𝑖𝑖| (4.33)

On the other hand, the matrix representation of the transition probabilities of the auxiliary DTMC is:

 𝑃 = 𝐼 +
1

𝛾
𝑄 (4.34)

The following calculation of ℙ(𝑡) shows that a CTMC can be described by a DTMC with a transition

probability matrix 𝑃 where moves can occur according to a Poisson distribution with rate 𝛾𝑡.

 ℙ(𝑡) = 𝑒𝑄𝑡 = 𝑒𝛾(𝑅−𝐼)𝑡 = 𝑒−𝛾𝑡∑
(𝛾𝑡𝑃)𝑛

𝑛!

∞

𝑛=0

= ∑𝑒−𝛾𝑡
(𝛾𝑡)𝑛

𝑛!
𝑃𝑛

∞

𝑛=0

 (4.35)

This approach is usually called uniformization. The transition matrix of the CTMC in this approach is

given by:

 ℙ𝑖𝑗(𝑡) = ℙ(𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖) = 𝑒
−𝛾𝑡𝐼𝑖=𝑗 +∑𝑒

−𝛾𝑡
(𝛾𝑡)𝑛

𝑛!
𝑃𝑖𝑗
𝑛

∞

𝑛=1

 (4.36)

Therefore, the number of state changes 𝑁 including the virtual moves for the conditioned process start

at 𝑋(0) = 𝑖 and ends at 𝑋(𝑡) = 𝑗 is given by:

103

 ℙ(𝑁 = 𝑛|𝑋(0) = 𝑖, 𝑋(𝑇) = 𝑗) =
𝑒−𝛾𝑇
(𝛾𝑇)𝑛

𝑛!
𝑃𝑖𝑗
𝑛

ℙ𝑖𝑗(𝑇)
 (4.37)

Given the number of moves 𝑁 = 𝑛, the times 𝑡1, … , 𝑡𝑛 at which the moves occur are uniformly distributed

in [0, 𝑇]. Moreover, the moves 𝑋(𝑡0) = 𝑎,… , 𝑋(𝑡𝑛) = 𝑏 are determined by a DTMC with transition matrix

𝑅.

Algorithm 3. Uniformization Sampling (adapted from (Inamura, 2006))

1. Simulate the number of state changes 𝒏 from the distribution (4.37)

2. If 𝒏 = 𝟎, then 𝑿(𝒕) = 𝒂, 𝟎 ≤ 𝒕 ≤ 𝑻

3. If 𝒏 = 𝟏 and 𝒂 = 𝒃, then 𝑿(𝒕) = 𝒂, 𝟎 ≤ 𝒕 ≤ 𝑻

4. If 𝒏 = 𝟏 and 𝒂 ≠ 𝒃, then simulate 𝒕𝟏 from uniform distribution between [𝟎, 𝑻] and 𝑿(𝒕) = 𝒂, 𝟎 ≤

𝒕 ≤ 𝒕𝟏; 𝑿(𝒕) = 𝒃, 𝒕𝟏 ≤ 𝒕 ≤ 𝑻

5. If n>=2, simulate 𝟎 < 𝒕𝟏 < ⋯ < 𝒕𝒏 < 𝑻 and 𝑿(𝒕𝟏), … , 𝑿(𝒕𝒏) from a DTMC with transition matrix

𝑷 and conditional on starting point 𝒂 and ending point 𝒃. Determine which changes are virtual and

return the rest.

4.4.3.2. The proposed estimation algorithm

The estimation method that we adopted here approximates the posterior distribution for model

parameters �̂�, given runtime observations 𝑋 = 𝑥 and design-time estimations of the parameters 𝑄(0),

through samples obtained by generating a sequence of Markov chains {𝑄(𝑖), 𝑋(𝑖)} from the posterior

distribution ℙ(𝑄|𝑋) . As a result, this provides the opportunity to estimate model parameters by

summarizing the statistics of these simulated samples. Figure 4.36 illustrates a high-level overview of the

proposed approach.

Figure 4.36. Overview of our estimation approach.

)0(R xX

),|()(xXRP i

),|()1(xRXP i

))(ˆ,
))(ˆ(

1
(ijij

ii

TN
TR

)(ˆ kR

104

Note that by applying the Bayes rule, we can factorize the posterior distribution into the components as:

 ℙ(𝑄|𝑋) = ℙ(𝑋|𝑄) × ℙ(𝑄) (4.38)

, where ℙ(𝑄) is the prior distribution of model parameters.

Here, we assume the presence of a prior distribution. The prior distribution allows us to impose statistical

constraints on the parameters estimation. For example, for estimating the unknown parameters of

CTMCs, we can choose appropriate ℙ(𝑄), in order to have positive rates 𝑞𝑖,𝑗.

Therefore, one of the key issues in parameter estimation is the choice of a prior distribution ℙ(𝑄) and the

method used to generate the sequence {𝑄(𝑖), 𝑋(𝑖)}𝑖=1
𝑁 , from the joint posterior distribution on partial

observations 𝑋 = 𝑥. Here we use Gibbs sampling (Bladt & Sorensen, 2005) for generating the sequence.

This sampler, given an initial 𝑄(0), generates sequences as:

1. Draw 𝑋(1) ∼ ℙ(𝑋|𝑄(0), 𝑥)

2. Draw 𝑄(1) ∼ ℙ(𝑄|𝑋(1), 𝑥)

3. Draw 𝑋(2) ∼ ℙ(𝑋|𝑄(1), 𝑥)

4. …

This sampling process generates a sequence {𝑄(𝑖), 𝑋(𝑖)}𝑖=1
𝑁 , which converges to ℙ(𝑄, 𝑋|𝑥). The choice of

the prior distribution for the unknown parameter 𝑞𝑖𝑗 ∈ 𝑄 is of crucial importance in a Bayesian framework

that we follow here. The selected prior distribution for 𝑄 must be a reasonable approximation to the true

beliefs about 𝑄. In addition, the prior distribution must be such that the posterior distribution is tractable.

For the choice of prior distribution of 𝑄, Bladt and Sørensen (Bladt & Sorensen, 2005) prescribe the

Gamma distribution:

 ℙ(𝑄) ∝∏∏𝑒−𝑞𝑖𝑗𝛽𝑖 ∗

𝑖≠𝑗

𝐾

𝑖=1

𝑞
𝑖,𝑗

𝛼𝑖𝑗−1 (4.39)

, where 𝛼𝑖𝑗 , 𝛽𝑖 > 0 are constant given values. Here and below, ∝ means proportional. By comparing this

equation with the likelihood function for complete observations in (4.27), the posterior distribution for 𝑄

can be derived as:

ℙ(𝑄|𝑋, 𝑥) = ℙ(𝑄|𝑋) ∝ ℙ(𝑋|𝑄) × ℙ(𝑄)

=∏∏𝑒−𝑞𝑖𝑗(𝑅𝑖(𝑇)+𝛽𝑖) ∗

𝑖≠𝑗

𝐾

𝑖=1

𝑞
𝑖,𝑗

𝑁𝑖,𝑗(𝑇)+𝛼𝑖𝑗−1
(4.40)

Equation (4.40) shows that the posterior distribution of 𝑄 also follows the same distribution as its prior

one that is a Gamma distribution. This makes the drawing 𝑄(𝑖) ∼ ℙ(𝑄|𝑋(𝑖), 𝑥) tractable. Bladt and

Sørensen (Bladt & Sorensen, 2005) suggest that a simple rejection sampling (cf. Section 4.4.3.1.2) for

drawing of the Markov process 𝑋(𝑖+1) ∼ ℙ(𝑋|𝑄(𝑖), 𝑥) is an appropriate sampling strategy. In the

estimation algorithm that is proposed in (Inamura, 2006), they have used a similar process.

The estimation mechanism comprising the sampling process is given in Algorithm 4.

http://www.answers.com/topic/tractable

105

Algorithm 4. Parameter estimation algorithm (adapted from (Inamura, 2006))

1. A sample of holding time 𝑺𝒌 , at each observation points 𝒕𝒏 , is simulated by drawing from

𝒒𝒌𝒆
−𝒒𝒌(𝒕𝒏−𝒕𝒏−𝟏).

2. If 𝒕𝒏−𝟏 + 𝑺𝒌 < 𝒕𝒏 , then the algorithm lets the CTMC make a transition from current state 𝒌 to
another state 𝒋 with the probability of 𝒒𝒌𝒋 𝒒𝒌⁄ . This process will be continued if the CTMC reaches

an observed state by 𝒕𝒏 . If the sample is accepted, the holding times at each state and the
transitions between states of the CTMC model are recorded to be added up later for updating the
posterior distribution (cf. Figure 4.36). This process will be continued until all the other transitions
in the period [𝒕𝒏−𝟏, 𝒕𝒏] are realized.

3. Repeat steps 1, 2 for the next period, i.e., [𝒕𝒏, 𝒕𝒏+𝟏] again and again until the time associated to the
last observation that is 𝑻.

4. The statistics �̂�𝒊𝒋(𝑻), �̂�𝒊(𝑻) regarding the number of transitions from state 𝒊 to state 𝒋 in the CTMC

model recorded until time 𝑻 and the time that the model was in state 𝒊 until 𝑻 respectively. Note
that only accepted samples were recorded in Step 2.

5. A new 𝑸 is estimated by drawing the parameters 𝒒𝒊𝒋 from the Gamma distribution as delineated in

Equation (4.40).
6. Steps 1 to 5 are repeated until we derive good enough estimation of the unknown parameters of

the CTMC or statistically speaking until the posterior distribution sampling becomes stable. Then

we have a number of estimations. Let us assume we iterated 𝑵 times, {𝒒𝒊𝒋
(𝒏)
}𝒏=𝟏
𝑵 . We can then

calculate different statistics from these estimations. The most notable one is the average of these

estimations as the final estimation for each parameter.

The estimation mechanism that we proposed in this section is categorized as a class of algorithm that

samples from a probability distribution (here we use Gamma distribution for the purpose of tractability)

based on constructing a Markov chain that has the desired distribution as the stationary distribution. In

this statistics, this class of algorithm is called Markov Chain Monte Carlo (MCMC) (Bolstad, 2011). Note

that the method is implemented in MATLAB.

Note that the MCMC algorithm that we presented in this section has been previously applied in different

application domains for example in stock price estimation as in (Inamura, 2006) or segmentation of

strands in genetics. However, for applying such estimation algorithm for model calibration in self-adaptive

software, we need to have a runtime efficient mechanism. We report the runtime overhead of our

implementation in Section 4.4.3.3.7.

4.4.3.3. Experimental evaluation

This section discusses some preliminary results regarding CTMC model parameter estimation and its

evaluation through a controlled experiment. To be more specific, we simulate the runtime data by using

statistical distribution and we apply our estimation algorithm to estimate the parameters of the runtime

models. Note that, for the experimental evaluation of the proposed estimation algorithm, i.e., Algorithm

4, we do not assume that the runtime data are complete and this is one of the benefits of our estimation

algorithm over existing model estimation approaches in self-adaptive software, such as (Epifani et al.,

2009). The main contribution of this work is that the proposed approach can estimate unknown

parameters of CTMC models for enabling requirements verification at runtime, even though the runtime

measurements may not be perfect and contain uncertainties.

106

4.4.3.3.1. Experimental conception

This section contains a subset of the scenarios that involve estimating the rate of transitions between the

states of a CTMC model corresponding to a component connector based on initial design-time estimates

and on runtime data obtained through monitoring the connectors. Here, we use the same case as we

selected for the DTMC model calibration in Section 4.4.2.6.1.

4.4.3.3.2. Experimental setup

For the estimation algorithm, 2000 intensity matrices, including a burn-in period of 500 iterations, are

drawn for each estimation. Note that the data regarding the burn-in period will be discarded for

quantitative analyses. In this experiment, we set both 𝛼𝑖𝑗 and 𝛽𝑖 to 1. We generally use the posterior

mean of the distribution from the samples of �̂�𝑖𝑗 as the point estimate of the unknown model parameters.

However, in some circumstances when the values of the parameters are skewed as recommended in

(Inamura, 2006), we choose the posterior mode estimate from the samples of �̂�𝑖𝑗 instead of the mean

estimate. The controlled variables regarding this experiment are specified in Table 4.29.

Figure 4.37. Experimental setup overview.

)(ˆ
,

kQ ji

mssponseTimeRNFR 600}"Re{":1

)0(
, jiQ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

350

0 200 400 600 800 1000
-0.2

0

0.2

0.4

0.6

0.8

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample Autocorrelation Function

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

)0(Q xX

),|()(xXQP i

),|()1(xQXP i

))(ˆ,
))(ˆ(

1
(ijij

ii

TN
TQ

)(ˆ kQ

107

The controlled variables that we use in our experiments are summarized in Table 4.27.

Table 4.27. List of controlled variables and their purpose in our experiments.

Controlled variable Purpose

𝒒_𝑨𝒄𝒕𝒖𝒂𝒍 Actual transition rates matrix

𝑺𝒕𝒂𝒕𝒆𝒔 Number of non-absorbing states of 𝑞_𝐴𝑐𝑡𝑢𝑎𝑙

𝑨𝒃𝒔 Number of absorbing states of 𝑞_𝐴𝑐𝑡𝑢𝑎𝑙

𝑻 Determine the whole observation time period [0, 𝑇]

𝚫𝒕 The observation times (sampling frequencies) in [0, 𝑇]

𝑶𝒃𝒔 The observation size for each parameters in the period [𝑡𝑛, 𝑡𝑛+1]

𝜶 Shape parameter of Gamma distribution Γ(𝛼, 1 𝛽⁄)

𝜷 Scale parameter of Gamma distribution Γ(𝛼, 1 𝛽⁄)

𝑴 Number of simulation rounds

𝒃 Number of burn-in rounds

4.4.3.3.3. Running the experiments

In this experiment, we assume that an actual transition rates of a CTMC model with 7 states is given to us

as 𝒒_𝑨𝒄𝒕𝒖𝒂𝒍 in Table 4.28. The setting of the experiments in terms of the defined controlled variables is

given in Table 4.29.

Table 4.28. The 𝑞_𝐴𝑐𝑡𝑢𝑎𝑙 matrix in the experiment.

-0.0804761 0.074790 0.00640 0 0 0 0 0

0.007695 -0.012246 0.200742 0 0 0 0 0

0.00130 0.040003 -0.095042 0.10010 0.010093 0 0 0

0.000999 0.000734 0.077212 -0.091115 0.058184 0.005551 0.000621 0

0 0 0.008226 0.200345 -0.199912 0.100043 0.002223 0

0 0 0.00301 0.009131 0.100037 -0.300028 0.200148 0.009954

0 0 0 0 0 0.131351 -0.600318 0.39992

0 0 0 0 0 0 0 0

Table 4.29. Controlled variables in the experiment (cf. Table 4.27).

Controlled variable Value(s)

𝑺𝒕𝒂𝒕𝒆𝒔 8

𝑨𝒃𝒔 1

𝑻 7

𝚫𝒕 1

𝑶𝒃𝒔 100

𝜶 1

𝜷 1

𝑴 2000

𝒃 500

108

4.4.3.3.4. Experimental results and interpretations

In the following, we provide for each experiment some graphs for the estimated posterior density,

autocorrelation plot and sample path by the estimation algorithm. Figure 4.38, Figure 4.39, and

Figure 4.40 illustrate the plots of �̂�12, �̂�13, �̂�24 with respect to the same 2000th estimated 𝑄 matrix after

putting aside the data items regarding the first 500 burn-in rounds.

Figure 4.38. Posterior distribution, autocorrelation plot and sample paths of Q(1,2).

Figure 4.39. Posterior distribution, autocorrelation plot and sample paths of Q(1,3).

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500
-0.2

0

0.2

0.4

0.6

0.8

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample Autocorrelation Function

0 500 1000 1500
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500
-0.2

0

0.2

0.4

0.6

0.8

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample Autocorrelation Function

0 500 1000 1500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

109

Figure 4.40. Posterior distribution, autocorrelation plot and sample paths of Q(2,4).

Note that none of the figures of autocorrelation plots and sample paths shows any problematic issue in

the sampling.

Table 4.30. Mean estimates of default probabilities and their differences with default probabilities of actual matrix.

States Default probability
of mean estimate

Default probability of
actual matrix

Difference Error

1 1.4871e-07 1.1294e-08 -1.3742e-07 12.1675

2 2.5178e-06 1.8460e-07 -2.3332e-06 12.6394

3 3.6433e-05 6.7224e-06 -2.9710e-05 4.4196

4 0.0011 2.0873e-04 -9.3313e-04 4.4705

5 0.0069 0.0016 -0.0053 3.3175

6 0.0461 0.0304 -0.0156 0.5135

7 0.3249 0.3262 0.0013 0.0041
|𝑺𝒖𝒎| 0.0206 37.5239

To make a more clear evaluation of these estimated default probabilities, we run a bootstrapping

algorithm to derive the distribution of the default probabilities. In the bootstrapping, 100,000 rounds of

simulations were carried out. The procedures for bootstrapping are summarized as follows:

1. Generate the history of observations according to the CTMC model.

2. Calculate �̂�𝑖𝑗(𝑇), �̂�𝑖(𝑇) and estimate �̅� from the equation (4.29).

3. Compute 𝑃(𝑄).

4. Iterate 1 to 3 up to the simulation rounds.

-5 0 5 10 15 20

x 10
-3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500
-0.2

0

0.2

0.4

0.6

0.8

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample Autocorrelation Function

0 500 1000 1500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

110

Figure 4.41 shows the bootstrapped distribution of default probabilities for 7 states of the CTMC model

of Experiment 1. Figure 4.42 and Figure 4.43 provide the resulting boxplot of default probabilities from

the bootstrapped distributions. The data demonstrates that the mean default probabilities of the model

parameters are all within the confidence intervals of the bootstrapped distribution. This means that the

estimation method performs well for estimating the unknown parameters of the analytical model in the

given the finite and incomplete noisy observations. To further investigate the performance of the

estimation method, we employed quantitative measures for evaluating the estimation accuracy.

Figure 4.41. Bootstrapped distribution of default probabilities.

Figure 4.42. Box plot of default probabilities in different scales.

0 1 2 3

x 10
-7

0

100

200

300

400

500

600

700

0 2 4 6

x 10
-6

0

50

100

150

200

250

300

350

400

450

500

0 0.5 1

x 10
-4

0

100

200

300

400

500

600

0 1 2 3

x 10
-3

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6

x 10
-3

0

50

100

150

200

250

300

350

400

450

0 0.05 0.1
0

50

100

150

200

250

300

350

400

0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

400

0

0.5

1

1.5

2

2.5

x 10
-7

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
-6

2

0

1

2

3

4

5

6

7

8

x 10
-5

3

0

0.5

1

1.5

2

2.5
x 10

-3

4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
-3

5

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

6

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

7

111

Figure 4.43. Box plots of default probabilities in one scale.

Independency of estimates. To get an idea of how independent the estimates are, we generate scatter

plots of the posterior values of (𝑞𝑖1𝑗1, 𝑞𝑖2𝑗2) for all 1500 matrices we have generated for each of the 136

combinations of (𝑖1, 𝑗1), (𝑖2, 𝑗2), 𝑖1 ≠ 𝑗1 & 𝑖2 ≠ 𝑗2 & 𝑞𝑖𝑗 ≠ 0. Most of the plots were similar, so we have

chosen 7 typical patterns in Figure 4.44. By analysis of the scatter plots, we can see that the estimates are

not very dependent on each other.

Figure 4.44. Scatter plots of the posterior distribution of estimates that show typical pattern.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7

112

4.4.3.3.5. Summary of observations and interpretations of the results

Regarding the proposed parameter estimation approach (see Section 4.4.3.2), a number of observations

can be made:

 Based on a visual inspection of the sample paths in Figure 4.38, Figure 4.39 and Figure 4.40, the series

settled into a stationary mode after an initial 20 iterations and this is certified with Figure 4.47 as well.

 The auto-correlation diagrams in Figure 4.38, Figure 4.39 and Figure 4.40 were seen to approach to

zero very quickly.

 Estimates of the parameters that are not too close to zero were not sensible to the choice of 𝛼 and 𝛽

as parameters of the Gamma distribution, while the parameters which are too close to zero will

depend on the choice of the prior because 𝑁𝑖,𝑗(𝑇) is small.

 The draws in Figure 4.38, Figure 4.39 and Figure 4.40 show that the posterior distribution of the

parameters deviate strongly from normal distribution for small parameters. This indicates that the

parameter estimates are non-normal.

 The drawings in Figure 4.41 show that the distribution of the default probabilities deviate from normal

distribution (for state 7 which is relatively far away from zero (Figure 4.43) were approximately

normal).

 According to Table 4.30, the relative errors for states 1 and 2 are too high and for state 7 are small.

4.4.3.3.6. Quantitative evaluations: measuring estimation accuracy

For evaluating the accuracy of the quantitative estimation technique, various quantitative metrics have

been utilized in the literature. In Section 4.4.3.3.3, we described a number of experiments; we also

reported the observations and interpret the results in Section 4.4.3.3.4. In this section, we use some

metrics for assessing the estimation method that we described in Section 4.4.3.2. An overview of the

measurement process is depicted in Figure 4.45.

Figure 4.45. Estimation analysis in the context of experimental setup.

)(ˆ
,

kQ ji

mssponseTimeRNFR 600"}Re{":1

)0(
, jiQ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

350

0 200 400 600 800 1000
-0.2

0

0.2

0.4

0.6

0.8

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample Autocorrelation Function

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

113

Metrics measure the size of the error when estimating the value of parameters alongside the runtime

data. Table 4.31 lists typical metrics from the literature and here we use them for assessing our estimation

accuracy. These metrics are meant to quantify the difference between values implied by the MCMC-based

estimator that we proposed in this chapter and the actual values of the parameter to be estimated.

Table 4.31. Estimation error metrics.

Metric Formula

𝑫𝑳𝟏(𝑷,𝑸)
∑ ∑ |𝑃𝑖,𝑗 − 𝑄𝑖,𝑗|

𝑁
𝑗=1

𝑁
𝑖=1

𝑁2

𝑫𝑳𝟐(𝑷,𝑸)
√∑ ∑ (𝑃𝑖,𝑗 − 𝑄𝑖,𝑗)

2𝑁
𝑗=1

𝑁
𝑖=1

𝑁2

‖𝑷 − 𝑸‖𝒑 √∑∑|𝑃𝑖,𝑗 − 𝑄𝑖,𝑗|
𝑝

𝑁

𝑗=1

𝑁

𝑖=1

𝑃

𝑫𝑺𝑽𝑫(𝑷,𝑸)

𝐷𝑆𝑉𝐷(𝑃, 𝑄) = 𝑀𝑆𝑉𝐷(𝑃) −𝑀𝑆𝑉𝐷(𝑄)

𝑀𝑆𝑉𝐷(𝑃) =
∑ √𝜆𝑖(𝑃′𝑃)
𝐾
𝑖=1

𝐾
, 𝑃 = 𝑃 − 𝐼

Although 𝐷𝐿1 , 𝐷𝐿𝟐 and 𝑁𝑜𝑟𝑚 are simple to compute, these methods offer no absolute measure for an

individual matrix. They only provide a relative comparison between two matrices. For example, if the 𝑳𝟐

distance between two matrices turns out to be, let us say, 0.01, it is not clear if this is a ‘‘large’’ or a ‘‘small’’

distance, nor is it possible to infer which matrix is the ‘‘larger’’ of the two. However, 𝑫𝑺𝑽𝑫 is more

appropriate in measuring the difference of the transition matrices than other ordinary metrics since it

captures the off-diagonal differences better (Jafry & Schuermann, 2004).

Table 4.32 provides the evaluation of the error metrics of the model parameter matrix 𝑄 and default

probabilities of 𝑄 based on the full set of 1500 estimates. As it is evident from the error measures, the

proposed estimation approach produces acceptable estimations.

Table 4.32. Estimation error measurements.

Metric
Experiment

𝑸 𝑷(𝑸)

𝑫𝑳𝟏 0.0060 0.0046

𝑫𝑳𝟐 0.0014 0.0010

‖�̂� − 𝑸‖
𝟐

 0.0615 0.0481

𝑫𝑺𝑽𝑫 0.0015 0.1840

114

Figure 4.46. Estimation error with different metrics over simulation rounds.

Figure 4.47. Estimation error with different metrics over burn-in rounds.

4.4.3.3.7. Runtime performance

Since the process of requirement verification integrated in a feedback control loop triggers the adaptation

of connectors, it needs to be runtime efficient to be applicable in such a setting. In other words, a lengthy

0 500 1000 1500
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L1

L2

Norm

SVD

0 50 100 150 200 250 300 350 400 450 500
-2

-1

0

1

2

3

4

5

6

7

L1

L2

Norm

SVD

Simulation round

Simulation round

Es
ti

m
at

io
n

 e
rr

o
r

Es
ti

m
at

io
n

 e
rr

o
r

115

requirements verification process hinders the usefulness and, as a result, the adoption of self-adaptive

software. Model calibration is an integral part of requirements verification and, consequently, needs to

be performant at runtime. In this section, we investigate the runtime overhead of the proposed MCMC-

based approach to estimate model parameters.

In order to assess the runtime overhead of the proposed model calibration mechanism (see

Section 4.4.3.2), we have conducted a set of experiments using simulations with different settings by

changing the controlled variables as listed in Table 4.27. One of the most critical parameters that influence

the runtime overhead of the estimation mechanism is the number of observations controlled via 𝑂𝑏𝑠 (cf.

Table 4.27). Therefore, for evaluating the scalability of our approach, we vary the number of observations

by changing the values of this variable in our experimental evaluations by an order of magnitude in the

range [1 − 500] (cf. Table 4.33). We kept the rest of the controlled variables exactly the same as the

previous experiment as in Table 4.29. We performed the experimental evaluations on a dedicated

machine for our experiments with the specification as in Table 4.4.

Table 4.33. Experimental settings for runtime performance evaluations (cf. Table 4.27).

variable Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10 Exp. 11 Exp. 12

𝑺𝒕𝒂𝒕𝒆𝒔 8 8 8 8 8 8 8 8 8 8 8 8

𝑨𝒃𝒔 1 1 1 1 1 1 1 1 1 1 1 1

𝑻 7 7 7 7 7 7 7 7 7 7 7 7

𝚫𝒕 1 1 1 1 1 1 1 1 1 1 1 1

𝑶𝒃𝒔 1 2 3 4 5 10 20 30 40 100 200 500

𝜶 1 1 1 1 1 1 1 1 1 1 1 1

𝜷 1 1 1 1 1 1 1 1 1 1 1 1

𝑴 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

𝒃 500 500 500 500 500 500 500 500 500 500 500 500

Based on the results that are reported in Table 4.34, Figure 4.48, Figure 4.49 and Figure 4.50 regarding

the comparison between estimation accuracy and runtime efficiency of a number of experiments, a

number of observations can be made:

 Increasing the number of observations (cf. Table 4.33), increases the estimation accuracy (cf.

Table 4.34 and visually in Figure 4.48). However, it also increases the runtime overhead of the model

calibration.

 Initially increasing the number of observations dramatically decreases the estimation errors and does

not cause a high runtime overhead (cf. Exp. 1 to Exp. 2 in Figure 4.48 and Figure 4.50).

 Increasing the number of observations from a certain point only decreases the estimation error up to

a certain point, but imposes a large runtime overhead instead (cf. Exp. 9 to Exp. 12 in Figure 4.48 and

Figure 4.49).

 The data in Figure 4.49 confirms “10× increase in the number of observations approximately results

in ~10× increase in runtime overhead”. The data indicate that the model calibration mechanism

performs well even when we obtain a large historical observation set (i.e., 40 × 7 in Exp. 9 for

example). It took approximately less than 500𝑚𝑠 to provide an acceptable estimation for all 32

unknown parameters of the model (see Table 4.28). In other words, the runtime overhead for each

parameter is around 15𝑚𝑠.

116

Table 4.34. Estimation error comparison between experiments (cf. Table 4.33).

Metric
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸)
𝑫𝑳𝟏 0.1053 0.0637 0.0399 0.0308 0.0238 0.0179 0.0331 0.0246 0.0261 0.0176

𝑫𝑳𝟐 0.0362 0.0191 0.0106 0.0079 0.0068 0.0048 0.0088 0.0061 0.0074 0.0048

‖�̂� − 𝑸‖
𝟐

 1.9969 1.0113 0.5197 0.3840 0.3524 0.2246 0.3691 0.2198 0.3624 0.2064

𝑫𝑺𝑽𝑫 -0.3370 0.1840 -0.0247 0.1840 -0.0144 0.1840 -0.0531 0.1840 -0.0861 0.1840

Metric
Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10

𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸)
𝑫𝑳𝟏 0.0137 0.0112 0.0124 0.0092 0.0126 0.0085 0.0080 0.0062 0.0078 0.0058

𝑫𝑳𝟐 0.0038 0.0031 0.0034 0.0024 0.0037 0.0024 0.0020 0.0014 0.0024 0.0016

‖�̂� − 𝑸‖
𝟐

 0.2057 0.1645 0.1516 0.1082 0.1930 0.1253 0.0911 0.0622 0.1330 0.0858

𝑫𝑺𝑽𝑫 -0.0232 0.1840 -0.0172 0.1840 -0.0118 0.1840 -0.0110 0.1840 0.0060 0.1840

Metric
Exp. 11 Exp. 12

𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸)
𝑫𝑳𝟏 0.0059 0.0044 0.0050 0.0034

𝑫𝑳𝟐 0.0019 0.0012 0.0022 0.0014

‖�̂� − 𝑸‖
𝟐

 0.1059 0.0654 0.1373 0.0857

𝑫𝑺𝑽𝑫 0.0096 0.1840 0.0124 0.1840

Figure 4.48. Visual comparison of estimation errors between experiments (cf. Table 4.34).

0 2 4 6 8 10 12
-0.5

0

0.5

1

1.5

2

L1

L2

Norm

SVD

Experiment number

Es
ti

m
at

io
n

 e
rr

o
r

117

Figure 4.49. Runtime performance w.r.t. observation size (cf. Table 4.27 and Table 4.33).

Figure 4.50. Runtime performance w.r.t. observation size (only the first 9 experiments, cf. Table 4.33).

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9

Experiment number

Experiment number

R
u

n
ti

m
e

o
ve

rh
ea

d
 (

s)

R
u

n
ti

m
e

o
ve

rh
ea

d
 (

s)

118

4.4.3.3.8. Sensitivity of the estimation errors to simulation and burn-in rounds

In order to assess the sensitivity of the proposed model calibration mechanism (see Section 4.4.3.2) to

the number of simulation rounds, we have conducted a set of experiments using simulation with different

settings by changing the simulation and burn-in rounds as listed in Table 4.27. In parameter estimation

approaches in statistics, burn-in periods are considered to discard the initial erogenous estimations

(Inamura, 2006). However, we claim that our approach converges to the actual value of the parameters

quickly in order to avoid a large runtime overhead. In order to evaluate the claim, we increased the

number of burn-in periods from Exp. 1 to Exp. 7 in Table 4.35. Based on the results, which are reported in

Table 4.36 and visualized in Figure 4.51, the estimation accuracy has not been increased after increasing

the burn-in period. These observations based on the experimental results support our claim regarding the

quick convergence of our approach. Even increasing in the simulation rounds (cf. Exp. 8 to Exp. 10 in

Table 4.35) does not show a decrease in estimation errors necessarily as depicted in Figure 4.51.

Table 4.35. Experimental settings for sensivity analyses (cf. Table 4.27).

variable Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10

𝑺𝒕𝒂𝒕𝒆𝒔 8 8 8 8 8 8 8 8 8 8

𝑨𝒃𝒔 1 1 1 1 1 1 1 1 1 1

𝑻 7 7 7 7 7 7 7 7 7 7

𝚫𝒕 1 1 1 1 1 1 1 1 1 1

𝑶𝒃𝒔 100 100 100 100 100 100 100 100 100 100

𝜶 1 1 1 1 1 1 1 1 1 1

𝜷 1 1 1 1 1 1 1 1 1 1

𝑴 2000 2000 2000 2000 2000 2000 2000 200 500 10000

𝒃 0 10 20 30 100 200 1000 150 50 1000

Table 4.36. Estimation error comparison between experiments (cf. Table 4.33).

Metric
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸)
𝑫𝑳𝟏 0.0186 0.0142 0.0182 0.0119 0.0146 0.0108 0.0265 0.0176 0.0215 0.0151

𝑫𝑳𝟐 0.0047 0.0034 0.0056 0.0034 0.0041 0.0029 0.0090 0.0053 0.0063 0.0041

‖�̂� − 𝑸‖
𝟐

 0.2060 0.1267 0.2945 0.1539 0.2029 0.1398 0.5038 0.2522 0.3153 0.2008

𝑫𝑺𝑽𝑫 0.0025 0.1840 -0.0584 0.1840 -0.0332 0.1840 -0.1069 0.1840 -0.0336 0.1840

Metric
Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10

𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸) 𝑸 𝑷(𝑸)
𝑫𝑳𝟏 0.0231 0.0169 0.0156 0.0120 0.0109 0.0079 0.0168 0.0128 0.0172 0.0132

𝑫𝑳𝟐 0.0074 0.0050 0.0046 0.0032 0.0027 0.0019 0.0041 0.0030 0.0047 0.0034

‖�̂� − 𝑸‖
𝟐

 0.3643 0.2325 0.2100 0.1430 0.1351 0.0892 0.1751 0.1168 0.2155 0.1454

𝑫𝑺𝑽𝑫 -0.0269 0.1840 -0.0134 0.1840 -0.0167 0.1840 -0.0225 0.1840 -0.0050 0.1840

119

Figure 4.51. Visual comparison of estimation errors between experiments (cf. Table 4.36).

4.4.3.3.9. Limitations and threats to validity

The experiments in this section indicate that the effectiveness of the proposed CTMC parameter

estimation approach depends on the number of sampling rounds (cf. Figure 4.36), which directly

determine the time overhead of the approach. In other words, the more sampling rounds, the more

accurate estimations the approach can provide, but this is less appropriate for runtime requirement

verification because of the timing constraints (cf. Sections 4.4.3.3.7 and 4.4.3.3.8). To address this

limitation, we found out that the choice of the Gamma distribution for prior distribution enables the

estimation approach to quickly converge to the real value of the unknown parameter. However, this does

not mean that we can expect to derive an accurate estimation in a couple of rounds. This is one of the

limitation of our proposed estimation approach and a fruitful avenue for future improvements in terms

of decreasing runtime overhead.

In Section 4.4.3.3, we only evaluated the approach with 1 experiment but for the estimation of 32 non-

zero parameters of the 𝑞_𝐴𝑐𝑡𝑢𝑎𝑙 matrix in Table 4.28. In this experimental evaluation, our aim was to

measure the effectiveness of our estimation approach quantitatively as we have done and reported in

Section 4.4.3.3.4, Section 4.4.3.3.5 and Section 4.4.3.3.6. However, as opposed to the first experimental

evaluations in Section 4.4.2.6 where we combined different values for the controlled variables to

demonstrate the effectiveness of the extended Bayes method in different situations, here, we only

considered such measurements by changing a limited number of controlled variables (see

Sections 4.4.3.3.7 and 4.4.3.3.8). Although we reported both qualitative observations in Sections 4.4.3.3.4

and quantitative comparison in Section 4.4.3.3.5, the limitations of the controlled experiments is one of

the threats to the validity of this work. The only strategy for mitigating this threat was to extend the

experimental setting and perform a case study. We will report results regarding this in the evaluation

chapter, i.e., Chapter 7.

1 2 3 4 5 6 7 8 9 10
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

L1

L2

Norm

SVD

Es
ti

m
at

io
n

 e
rr

o
r

Experiment number

120

4.5. Related Work

In this section, we review only the most closely related approaches to parameter estimation for

requirement verification that have been published in software engineering venues.

Several methods and techniques support measurement or analyses of non-functional properties of

running software systems. In general, two approaches are possible: (1) measurement and (2) modeling.

The former is established based on direct measurement of the selected requirement of the system

through the use of dedicated tools (e.g., profiler, tracer, etc.). For example, JMeter (“JMeter,” 2014) can

perform load testing for identifying bottlenecks in software applications, specifically cloud-based

software. As another example, we can mention Load Runner (“Load Runner,” 2014), which performs

scalability analyses. Data extracted from these software can help in identifying critical parts of the system

that require a modification to achieve the desired quality based on the analyses on non-functional

properties. Modeling can solve restrictions of direct measurements specifically in large systems, because

it may abstract away from the complexities of systems. In general, measurements and modeling are

complementary rather than alternative techniques (Epifani et al., 2009).

The approach that is presented in this thesis for model calibration promises the benefits provided by both

approaches based on measurement and those based on modeling. In this thesis, analytical models (i.e.,

Markov models) are kept alive at runtime and, via measurements, they can become gradually more

precise. As a result, the decision for adaptations can become more accurate based on this latest situation

of the running system.

In particular, (Woodside & Litoiu, 2008) describe a method for estimating model parameters through a

control-based approach. This work is based on a runtime monitoring solution that provides data feeding

a Kalman filter, aimed at updating the control-theoretic performance model. This approach differs from

the approach presented in this thesis since it explicitly supports uncertainty handling in runtime data.

Conversely, the approach is limited to the performance model, while the approach in this thesis is based

on both discrete and continuous Markov models, which are appropriate to handle different sorts of

properties comprising performance, reliability and so on.

The work in (Sato & Trivedi, 2007) is based on a CTMC formulation of composite services to predict

performance and reliability bottlenecks by applying a sensitivity analysis technique. Although this work

focuses on design-time, this thesis utilizes CTMCs for run time analyses.

The work in (L. Cheung et al., 2008) presents a framework for predicting component reliability at design-

time. The objective of this work is to construct a stochastic reliability model allowing software architects

to explore alternative designs. Specifically, the authors address the problem for parameter estimation at

architectural level. The problem of correct parameter estimation is also discussed in (Gokhale, 2007) and

(Smith & Williams, 2002).

Another work (Calinescu, Johnson, et al., 2011) proposes a novel approach for learning the parameters of

DTMC parameters based on runtime observations of the system. This approach learns DTMC parameters

through analyzing the system workload over time by adopting time series analysis. A very similar approach

is also presented in (Epifani et al., 2009). The difference between the two approaches (i.e. (Calinescu,

Johnson, et al., 2011) and (Epifani et al., 2009)) is that the former adopts a smoothing approach, which

makes the estimations at runtime more effective in terms of precisions. These two pieces of work are the

121

closest approaches to what we proposed here in this chapter and both were inspiring for the research

reported in this thesis. Both approaches are based on Bayes formula (cf. Equation (4.18)) for model

update. However, the main difference is that our approach is capable of estimating model parameters in

the presence of measurement errors. In general, they (i.e. (Calinescu, Johnson, et al., 2011) and (Epifani

et al., 2009)) explicitly assume that the observations based on which they derive the estimations at

runtime are complete and contains no measurement errors. The other difference is that we

experimentally evaluate the model update mechanisms through which some insights have been revealed.

But, in general, in terms of underlying theory that has been adopted in these approaches, there is no

critical difference.

There are also some established frameworks for facilitating evolution based on model updates at runtime,

specifically in the domain of service-based systems. For example, KAMI (C Ghezzi & Tamburrelli, 2009) is

a framework for runtime model updates for service-based systems. It focuses on nonfunctional models,

which are typically dependent on some parameters that are provided a-priori by domain experts or

extracted from other similar systems. Even if these values are initially correct, they can change during the

operating life of the system. Consequently, accurate models must be updated over time. KAMI focuses on

keeping nonfunctional models up to date with the current behavior of the modeled system by updating

model parameters. Updated models can then be used to recheck at runtime the requirements that were

initially verified at design-time to guarantee the correctness of the system. This may trigger appropriate

adaptations of the system at runtime in order to adjust the system to satisfy system requirements.

As another example, QoSMOS (Calinescu, Grunske, et al., 2011) is a framework as well as supporting tools

for QoS management of service-based systems. QoSMOS implements the full self-adaptation loop that

combines formal specification of requirements, model-based QoS evaluation, monitoring and parameter

adaptation of the QoS models, and planning and execution of system adaptation. The proposed

framework integrates extended versions of existing tools such as KAMI (C Ghezzi & Tamburrelli, 2009) to

realize the feedback control loop.

The approach presented in this chapter differs from existing work because we emphasize model

calibration without considering that the runtime data are precise and free of noise. In fact, we strongly

believe that self-adaptation must be based on explicit assumptions that the runtime data may be

incomplete and contain noise.

4.6. Conclusions, Limitations and Future Work

In this chapter, we provided an answer to RQ1 that requires the development of methods and techniques

for estimating model parameters and serves as a pre-requisite for runtime requirement verification in the

feedback control loop of self-adaptive component connectors.

Conclusions. In this chapter, our approach to analytical model evolution by runtime adaptation is

presented. Our approach exploits Bayesian and Markov Chain Monte Carlo techniques to extend and

develop estimators which produce updated model parameters considering the uncertainty in runtime

observations. The updated analytical models provide a progressively better representation of the

connectors that allows continuous automated verification of requirements at runtime. The analytical

models updated at runtime support failure detection and prediction, and contribute to achieving self-

adaptive component connector as the key thesis of this work. The main contribution of this work, rather

122

than providing the statistical machineries to perform runtime adaptation of DTMCs and CTMCs, is

handling runtime uncertainties by the mechanisms. We provided experimental evidence by conducting

extensive simulation campaigns to shed light on issues like the mutual effects of the choice of different

values for smoothing parameters, and the distance between design-time estimation and real values of

parameters, and different change patterns in runtime data. In our experimental evaluations, the estimates

converge to real values of probabilities (in the case of DTMCs) and transition rates (in the case of CTMCs)

even in case of uncertain noisy runtime data, but the speed of convergence depends on several factors.

For example, we investigated the influence of smoothing parameters and the dependence on the variance

of runtime data.

Limitations and threats to validity. There are some threats to the validity of this work. The estimation

approaches presented in this chapter can be categorized as time series estimation. The time series

estimators in general imply certain limitations when used for short-term prediction of certain quality

factors. As observed in the experimental evaluations, there is a conflict between being responsive enough

to changes in observation data and being too responsive and thus being perturbed by fluctuations in very

recent observations. In other words, if the smoothing parameter is too high, this may lead to a delay in

the estimations. On the other hand, too little smoothing may lead to limited precision in highly variable

scenarios. Although the value of the parameter can be set at deign-time based on the type of the system,

however, the behavior of the system may change dramatically at runtime and the parameter requires to

be adapted. We hypothesize that an adaptive filtering such as Kalman filtering approach can be a solution

for adjusting the smoothing parameter dynamically at runtime. This can be considered as a potential

future direction of such estimation techniques.

The other factor that influences the required time for the estimation to approach to the true value of the

unknown parameter is the length of the observations. This means that if monitoring observations occur

only very infrequently, the estimators in fact need to estimate based on long runs. Thus, the accuracy of

the estimation approach may be severely limited in the setting of the runtime platform that provides

observation data.

Threats to construct validity depend on how unknown model parameters were measured. This work

considers DTMC and CTMC parameter measurement for self-adaptive component connectors performed

through simulations. This can be affected by the load in the real setting of the connectors being deployed

in for example internet-wide systems. However, this still reflects a realistic situation, as we generate the

data using statistical distributions exactly the same way that simulation embedded in for example the Reo

tool sets works (Moon, 2011).

Future directions. The future directions of this work will consist of refining the approach investigating its

scalability in real-world noisy data. Currently our approach modifies models through the estimation of

their unknown parameters and we do not take into account structural changes in the analytical models.

In other words, model structures should be known when the estimation process is started and cannot

change during estimations. This would be one of the most challenging future directions of this work mainly

because of the difficulties in the theoretical background of structural model evolution and the runtime

efficiency which is required in self-adaptive software, see (Antonio Filieri, 2013). However, this direction

of research, although challenging, is also promising, as new techniques have been recently coming out,

e.g., (Bianculli, Filieri, Ghezzi, & Mandrioli, 2014), based on incremental and compositional techniques,

which are relevant to the domain of self-adaptive software.

123

Chapter 5

5. Adaptation Reasoning

“There are many different styles of composition. I characterize them always as Mozart versus Beethoven.

When Mozart began to write at that time he had the composition ready in his mind. He wrote the

manuscript and it was ‘aus einem Guss’ (casted as one). And it was also written very beautiful.

Beethoven was an indecisive and a tinkerer and wrote down before he had the composition ready and

plastered parts over to change them. There was a certain place where he plastered over nine times and

one did remove that carefully to see what happened and it turned out the last version was the same as the

first one.” – Edsger Dijkstra (1930-2002).

Contents

5.1. CHAPTER OVERVIEW .. 125
5.2. A HIGH-LEVEL OVERVIEW OF ADAPTATION REASONING .. 126

5.2.1. Environment representation .. 126
5.2.2. Autonomous reasoning ... 126
5.2.3. Types of reasoning in self-adaptive software .. 127

5.2.3.1. Offline reasoning ... 128
5.2.3.2. Online reasoning ... 128

5.3. EXISTING REASONING TECHNIQUES IN SELF-ADAPTIVE SOFTWARE .. 128
5.3.1. Rule-based reasoning .. 128
5.3.2. Goal-based reasoning .. 129
5.3.3. Utility function reasoning .. 130
5.3.4. Reactive planning based reasoning ... 130
5.3.5. Heuristic-based reasoning ... 130
5.3.6. Test-based reasoning .. 131
5.3.7. Learning-based reasoning ... 131
5.3.8. Model-based quantitative reasoning .. 132
5.3.9. Control theory based reasoning .. 132
5.3.10. Summary of reasoning techniques .. 133

5.4. NON-FUNCTIONAL REQUIREMENTS FOR COMPONENT CONNECTORS ... 135
5.4.1. A specification of non-functional requirements with Type-1 (T1) fuzzy sets (FS) 135
5.4.2. The need for revisiting non-functional requirement specifications ... 139
5.4.3. A specification of non-functional requirements with Type-2 (T2) fuzzy sets (FS) 140

5.4.3.1. Requirement specifications with IT2-FS .. 141
5.4.3.2. Measure of relationships between requirements .. 141
5.4.3.3. Non-functional requirements tradeoff analysis .. 142
5.4.3.4. Non-functional requirement change analysis ... 144

5.5. ROBUST2: A FRAMEWORK FOR AUTONOMOUS ADAPTATION REASONING USING TYPE-2 FUZZY LOGIC SYSTEMS 145
5.5.1. Fuzzy logic systems and uncertainty control ... 145

5.5.1.1. The Concept of Uncertainty in Fuzzy Logic Systems ... 146
5.5.1.2. Knowledge base (Rule base) ... 147
5.5.1.3. Membership functions .. 147

5.5.1.3.1. Interval type-2 membership functions .. 149

124

5.5.1.3.2. Membership function creation .. 149
5.5.1.3.3. The Concept of centroid of an interval type-2 MF ... 149

5.5.1.4. Fuzzifier ... 152
5.5.1.5. Inference Engine ... 154
5.5.1.6. Output Processor .. 157

5.5.1.6.1. Type-reducer ... 157
5.5.1.6.2. Defuzzifier .. 157

5.5.1.7. Fuzzy logic control surfaces .. 158
5.5.1.8. Benefits of Using IT2 FLS over T1 FLS .. 159

5.5.2. Running example ... 159
5.5.3. Research challenges .. 160
5.5.4. Overview of autonomous adaptation reasoning ... 160
5.5.5. Adaptation knowledge elicitation ... 161

5.5.5.1. Eliciting Adaptation Knowledge from Knowledgeable Experts in Fuzzy.. 162
5.5.5.2. Eliciting Adaptation Knowledge from Experts who are not Knowledgeable in Fuzzy 166

5.5.5.2.1. Methodology for collecting interval end-point data .. 167
5.5.5.2.2. Methodology for data pruning .. 169
5.5.5.2.3. Methodology for Probability to Fuzzy Transformation .. 170

1. Transformation using IA Approach ... 170
2. Transformation using the Blurring Parameter .. 171

5.5.5.3. Evaluation of Adaptation Knowledge Extraction Methodology .. 172
5.5.6. Fuzzy logic system design for adaptation reasoning ... 177

5.5.6.1. Rule-base design ... 177
5.5.6.2. Input membership functions design ... 178
5.5.6.3. Output membership functions design .. 179
5.5.6.4. Adaptation reasoning process using the designed FLS ... 180
5.5.6.5. Fuzzy logic control surfaces .. 182

5.5.7. Benefits of Using IT2 FLS over T1 FLS ... 183
5.5.8. Experimental evaluations and validation .. 184

5.5.8.1. Adaptation rule reduction (Q1) ... 184
5.5.8.2. Robustness testing of the reasoner (Q2) .. 186

5.5.9. Limitations and future work .. 188
5.6. CONCLUSION .. 189

125

5.1. Chapter Overview

Adaptation reasoning is the core reasoning process in self-adaptive systems (Lemos et al., 2013). The

pieces of software that realize adaptation reasoning make decisions that affect how the base-level system

interacts with the environment in which it is embedded and how it satisfies its quantifiable (non-

functional) requirements. The decision is made over a reasoning space, which represents a dynamic and

situational environment. Such decisions are dependent on domain knowledge and influenced by the

historical behavior of the system over time. Note that the entities that reason about adaptation of a

software perceive and use historical behavior of the system as a means to support the decision making

process.

In the previous chapter, we introduced a number of stochastic methods to calibrate analytical models of

component connectors in order to enable the requirement verification in the feedback control loop of

self-adaptive connectors. The key challenge that we addressed there is the need to provide acceptable

estimations of model parameters given that the input monitoring data are not perfect and contain

uncertainties. This ensures that the requirement verification, which triggers connector adaptations, does

not trigger unnecessary adaptations or miss necessary ones. In this chapter, the focus is on the reasoning

part of the feedback control loop. We introduce a mechanism to select from many connector

configurations the one that is most appropriate to obtain some specific performance result based on fuzzy

adaptation reasoning. The key challenge that we intend to address here is the uncertainty corresponding

to the specification of adaptation policies. More specifically, when specifying adaptation policies, different

users have different and even conflicting opinions about adaptation action. We need an adaptation

reasoning approach that considers such conflicting policies and decides about the adaptation of

connectors considering these sources of uncertainty. Note that the scope of this chapter, as illustrated in

Figure 5.1, is to Plan the adaptation (in the context of MAPE-K control loop).

Figure 5.1. Scope of Chapter 5.

The outcome of this chapter is a framework, called RobusT2, for adaptation reasoning using type-2 fuzzy

logic systems. In this chapter, we aim to address RQ2 (cf. Chapter 1) that highlight the need for an

adaptation reasoning mechanism that can determine the connector mode appropriate for current

situation of the system. We called for a dependable mechanism that performs well in the presence of

noisy inputs and imprecise adaptation policy specifications.

The rest of the chapter is organized as follows. Section 5.2 gives some fundamental definitions regarding

adaptation reasoning. Section 5.3 reviews existing adaptation reasoning techniques for dynamic adaptive

126

systems and self-adaptive software. Section 5.4 discusses how we specify non-functional requirements

for component connectors based on type-2 fuzzy membership functions. Section 5.5 proposes a

framework, called RobusT2, for adaptation reasoning using type-2 fuzzy logic. The RobusT2 framework,

as the main outcome of this chapter and the main contribution of this thesis, contains the methods for

designing the adaptation reasoning engine. This section also contains experimental results and discusses

the significance of the main results. Finally, Section 5.6 summarizes the chapter.

5.2. A High-level Overview of Adaptation Reasoning

In this section, we briefly review fundamental concepts regarding adaptation reasoning comprising a

definition of basic concepts in self-adaptive software, a high-level overview of autonomous reasoning and

types of reasoning.

5.2.1. Environment representation

Environmental situations for software systems in general and self-adaptive software (SAS) in particular

can be represented with a number of different techniques. These techniques represent environmental

situations through variables as properties of the environment. These variables have well-defined discrete

or continuous domains. For instance, the battery level of an autonomous robot or the reliability of a

software component or the performance of a connector might be environmental variables for a software-

intensive system. Each variable gets a value of its domain that conveys the current state of environment.

For instance, battery level as a variable with a discrete domain space may be quantified as low, medium

or high. On the other hand, reliability and performance may be quantified by continuous values within a

well-defined range.

Environmental variable values determine the current state of a specific property of an environment at a

very particular instant and a set of variables with their values represent the current state of the

environment.

Definition 18. An environment state is a set of pairs each comprising an environmental variable and its

current value at a precise time instant.

Definition 19. An environment situation of a self-adaptive software system is an environment state

(Definition 18) which is important for the system and needs to be considered for the reasoning process.

A set of situations, which obviously is a subset of all environmental states, might be predefined and

encoded by domain experts or might be learned during the reasoning process.

5.2.2. Autonomous reasoning

Domain experts of the self-adaptive software know how the system must respond to environmental

change. For example, an expert in robotics knows which camera resolution a robot should use when it has

low battery level. As another example, an architect knows which communication channel must be used in

connectors when the number of requests is high and the messages should not be lost in any circumstance.

In adaptive systems in general and self-adaptive software in particular which operate in a specific domain,

the reasoning process encodes the knowledge of that domain into a mapping between different

127

environmental situations and the actions for system adaptations (Dobson et al., 2006; Müller, Pezzè, &

Shaw, 2008).

The reasoning process is typically delegated to a piece of software, which is responsible for linking a

particular environmental state to an action, which leads to an adaptation of the underlying software

system. For example, in the task queue connector example in Chapter 4, when the rate of receiving

messages at the receiving port increases, an environmental change happens. The reasoning mechanism

in this case processes the change and based on the environmental information, it decides to use another

channel with better quality of service.

The reasoning process typically consists of two critical steps: (i) processing a time-series runtime data,

which are collected through monitoring facilities; and, (ii) decision making about the adaptation action to

perform when a specific environment state (Definition 18) occurs. The first step is covered in the model

calibration chapter (i.e., Chapter 4). The second step, which is known as adaptation planning, is the main

subject of this chapter.

One important and critical issue is that how this decision making can be performed in self-adaptive

software. Let 𝑆 be a finite set of situations (Definition 19) that a software system might encounter based

on different environmental states occurs. Also, let 𝐶 be a finite set of valid architectural configurations

that the software system can take. As soon as a specific situation 𝑠 ∈ 𝑆 is detected, the reasoning

mechanism chooses a (possibly optimal) architectural configuration 𝑐 ∈ 𝐶 from possible configurations of

the software system. This process can be formally delineated by:

𝑃: 𝑆 → 𝐶

𝑈(𝑠𝑖, 𝑃(𝑠𝑖)) = arg max {𝑈(𝑐𝑗, 𝑠𝑖)|∀𝑐𝑗 ∈ 𝐶: }
(5.1)

Where 𝑃 in equation (5.1) is a reasoner, which maps each situation 𝑠 ∈ 𝑆 into an appropriate architectural

configuration 𝑐 ∈ 𝐶 during the adaptation process, which might be performed in a self-managed manner

in particular. The notion of a reasoner here generalizes that of a planner by covering a broader domain of

reasoning consisting of analysis and planning altogether. The notation 𝑈 is a function which quantifies the

appropriateness of a configuration 𝑐𝑗 ∈ 𝐶 for the given situation 𝑠𝑖 ∈ 𝑆. The main goal here for reasoning

is to find the most appropriate and (possibly optimal) configuration given the constraints such as timing

or frequency of adaptation in dynamically changing environments.

The problem of building efficient reasoners as a self-adaptive controller has been the target of several

projects, which resulted in various approaches that differ regarding the types of reasoning with respect

to the required level of flexibility and adaptability, and for the techniques to identify a suitable

configuration while reacting to the changes in environment. One of the key requirements for this kind of

reaction to the environment is to achieve the adaptation in a timely manner.

5.2.3. Types of reasoning in self-adaptive software

There are two different types of reasoning in general and planning in particular here: offline (design-time)

and online (runtime) planning.

128

5.2.3.1. Offline reasoning

Design-time planning (or offline reasoning) means that decisions to relate environmental situations to

architectural configurations (plans) are made statically at design-time. More specifically, whenever a self-

adaptive software system encounters a specific environment situation 𝑠𝑖 ∈ 𝑆, the self-adaptive controller

selects one specific architectural configuration 𝑐𝑗 ∈ 𝐶. The next time when the same situation 𝑠𝑖 is sensed,

the reasoner chooses exactly the same plan 𝑐𝑗 for the software system. These predefined plans, which

freeze the adaptation space, are referred to as tactics (Georgiadis, Magee, & Kramer, 2002) or strategies

(D Garlan et al., 2004), change operation (Oreizy, Medvidovic, & Taylor, 1998), policy (Georgas & Taylor,

2008) or even a combination of them (S.-W. Cheng & Garlan, 2012).

These approaches can be effective if it can be demonstrated that the set of frozen change plans are

sufficient to deal with any possible environmental situations (Kramer & Magee, 2007). These fixed plans

might be sufficient for domains such as embedded software or fault-tolerant architectures. However, it is

very difficult to identify a sufficient set of them due to the nature of planning problems (Klein, 2007).

Runtime planning, however, is a more flexible alternative to overcome the shortcoming of offline planning

approaches.

5.2.3.2. Online reasoning

Runtime planning (or online reasoning) means that the decisions to relate environmental situations to

architectural configurations are made dynamically at runtime. In other words, the planner autonomously

generates a configuration, which suits the current situation of the surrounding environment.

Online reasoning, in general, consists of three major steps (Park, 2009): selection, evaluation,

accumulation. In the selection step, the planner autonomously chooses a suitable configuration for the

current configuration. In the evaluation step, the planner measures the effectiveness of the chosen plan.

Finally, in the accumulation, the planner stores the configurations alongside their evaluations for future

planning purposes.

In the next section, we review existing techniques that have been applied for enabling adaptation

reasoning in open-loop dynamic adaptive software and in closed-loop self-adaptive software.

5.3. Existing Reasoning Techniques in Self-Adaptive Software

There are several techniques (or strategies) to be employed for adaptation planning with different

capabilities and characteristics. These techniques comprise rule-based, goal-based, utility-based planning,

reactive, heuristic-based, test-based, learning-based, model-based and control-based. Note that among

these techniques, rule-based, goal-based and utility function reasoning have been applied a lot in practice

and are mature enough to be used by most self-adaptive systems. However, other techniques are still in

early formative stages of maturity; for instance, test-based techniques (Metzger et al., 2013) have just

recently been proposed in the self-adaptive community.

5.3.1. Rule-based reasoning

In rule-based planning, decisions are made for a set of predefined environmental situations. Generally,

they are specified by "𝑖𝑓 (𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛) 𝑡ℎ𝑒𝑛 (𝑎𝑐𝑡𝑖𝑜𝑛)" statements (Fleurey & Solberg, 2009; Georgas &

129

Taylor, 2008). When a set of environmental states from the 𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 occur then the 𝑎𝑐𝑡𝑖𝑜𝑛 takes place.

An alternative version of rule-based reasoning are event-condition-action (ECA) rules. In this form when

a special 𝑒𝑣𝑒𝑛𝑡 occurs, it may activate rules with specific 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 that, if satisfied, activate a set of

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (Georgas, Hoek, & Taylor, 2009; Brice Morin, Barais, Jezequel, Fleurey, & Solberg, 2009). The

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 are usually quantitative values of environmental variables. However, there are some

approaches that enable qualitative descriptions, which handle imprecision and variation instead of exact

quantitative values (Franck Chauvel, Barais, Borne, & Jezequel, 2008). A special kind of rule-based

reasoning considers the notion of reasoning based on some temporal properties. By adopting this type of

rule, one can specify 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 over a sequence of the past environmental states.

By adopting this technique, the adaptation behavior can be analyzed and validated at design-time. It is

also efficient at runtime. However, it requires the identification and enumeration of all possible

configuration variants and adaptation rules at design-time. The number of rules may also become

unfeasibly large. For example, although writing new rules is straightforward, it is hard to foresee errors

that might be introduced based on conflicts between rules (Serugendo, Fitzgerald, Romanovsky, & Guelfi,

2007).

However, some new advances address some of the issues. In the DiVA project (Brice Morin et al., 2009),

the rules can be deduced at runtime by comparing the resulting product model with the model of the

running system. The rules in rule-based reasoning can be enhanced by learning new rules, which are

derived based on the past facts (Abbas, Andersson, & Weyns, 2011).

5.3.2. Goal-based reasoning

Goal-based planning is inspired by multi-agent planning within which a number of agents cooperate to

achieve a specific goal. In goal-based reasoning, high-level goals drive the adaptation process (JO Kephart

& Chess, 2003). The goals are typically expressed using a declarative language such as PROLOG. When an

environment changes, the controller of the system decides if the system still holds its declared goals. If

not, the controller selects a set of adaptation actions in order to lead to the goal.

A number of approaches have explored goal-based planning in self-adaptive software (Eliassen, Gjørven,

Eide, & Michaelsen, 2006; Heaven, Sykes, Magee, & Kramer, 2009; Morandini, Penserini, & Perini, 2008;

Salehie & Tahvildari, 2012; Sykes, Heaven, Magee, & Kramer, 2007). The general process is as follows.

These approaches first define the high-level goals the system should attain. Then a number of primitive

change operations are defined. Finally, a number of processes are defined to connect the goals and

actions. However, in contrast to rule-based reasoning, the writing of goals is not situational and therefore

straightforward. As a result, a number of researchers (Sykes et al., 2007; Sykes, Heaven, Magee, & Kramer,

2008) propose to declare the goals using linear temporal logic (LTL). Then, the plans can be generated

automatically to achieve the goals.

In general, adopting goal-based reasoning avoids the problem of fixed configurations, which are

enumerated at design-time, but usually at the cost of runtime overhead. This approach suffers from

scalability issues. One of the other difficulties of goal-based reasoning is whether all the goals are

achievable, because in the system of goals, one special goal might be prevented from being attained

because of mutual conflicts between goals.

130

5.3.3. Utility function reasoning

Utility function planning has its root in functional optimization, which consists of a given mathematical

function, and the goal is to find its optimal value with respect to a set of parameters. In self-adaptive

software, utility function-based reasoning is used to find and select the most appropriate architectural

configuration for a given environmental situation using functional optimization. The function to be

optimized is called utility function and is defined in terms of the utility that each architectural

configuration can provide given a particular state of the environment. More specifically, this function

defines a quantitative basis of desirability of a given configuration. The desirability is a mapping such as 𝑈

in equation (5.20) between each configuration 𝑐𝑗 ∈ 𝐶 and its worthiness with respect to environmental

state 𝑠𝑖 ∈ 𝑆. Therefore, in the case of environmental changes, the adaptation is decided based on the

optimization (maximization or minimization) of the utility function. To do so, there are many approaches

in mathematics from linear programming to meta-heuristic approaches that can be applied to find the

optimal value.

A number of approaches have investigated the application of utility function optimization for decision

making in self-adaptive software (Bennani & Menasce, 2005; S.-W. Cheng, Garlan, & Schmerl, 2006;

Georgas et al., 2009; Jeffrey Kephart & Das, 2007; Marzolla & Mirandola, 2010; Sykes, Heaven, Magee, &

Kramer, 2010). Typically, the utility function is defined as the sum of the utility value of the adaptable

parts of the architectural configuration in relation to the environment. The utility function may be defined

by several parameters and even combinations of continuous and discrete functions. Sometimes, the utility

functions need to be defined by multiple functions (S.-W. Cheng et al., 2006). Therefore, in this case the

problem of optimizing the utility function can be categorized as a multi-objective optimization problem

whose goal is to reach the best compromise among different competing functions.

Utility functions can discriminate between different architectural configurations and evaluate them, but

without the need for constructing them. Although this makes the reasoning process quite straightforward,

constructing the utility function itself is not an easy task.

5.3.4. Reactive planning based reasoning

A reactive planning explores gradually the space of architectural configurations. As opposed to traditional

planning which searches for a sequence of actions satisfying predefined objectives, reactive planning

searches for a single action, which contributes to a better satisfaction of the objectives, which themselves

might change according to environmental changes. A number of approaches have explored reactive

planning based in architecture-centric self-adaptive software (F Chauvel, Song, & Chen, 2010; Sykes et al.,

2010). These approaches do not need to freeze the adaptation space by predefined architecture

configurations as in Plastic (Batista, Joolia, & Coulson, 2005), C2 (Oreizy et al., 1998), Genie (Nelly

Bencomo, Grace, Flores, Hughes, & Blair, 2008). Or by predefined architecture-change operations as in

Rainbow (S.-W. Cheng et al., 2006; D Garlan et al., 2004), MADAM (Floch et al., 2006), DiVA (Fleurey &

Solberg, 2009), Sykes et al. (Sykes et al., 2007, 2008). Instead, they can explore unforeseen architecture

configurations in dynamic environments.

5.3.5. Heuristic-based reasoning

As the state space of adaptation grows, the management of adaptation rules becomes difficult. In order

to solve this, a number of approaches have investigated heuristic-based approaches such as genetic

131

algorithms (e.g., Plato (A. J. Ramirez, Knoester, Cheng, & McKinley, 2009, 2010)) or hill climbing (C Ghezzi

& Sharifloo, 2013) in order to make adaptation plans.

A key benefit of this approach is that there is no need for prescribing adaptation plans beforehand to

address environmental situations warranting adaptation. Instead, they use the power of heuristic search

to generate suitable adaptation plans at runtime. They also exploit computationally inexpensive fitness

functions, which is akin to utility functions in order to evolve the plans in response to changing

environmental states. Therefore, they can handle more environmental situations than traditional

prescriptive approaches. One potential drawback of this approach is that the heuristic approaches cannot

guarantee that the best adaptation plan will be found.

5.3.6. Test-based reasoning

Online testing (E. M. Fredericks et al., 2013; Hielscher & Kazhamiakin, 2008; Metzger et al., 2013) means

that the self-adaptive software system is fed with test data in parallel to its normal run in order to detect

or predict failures. Whenever a test fails, it can trigger an adaptation in order to prevent the system from

actual failure. Since online testing actively engages in collecting runtime data and complement monitoring

runtime data, the accuracy of reasoning process can be improved significantly (Metzger et al., 2013).

However, there are some limitations including increasing the runtime load and imposing additional costs

(Metzger et al., 2013).

5.3.7. Learning-based reasoning

By using learning data, which are accumulated during system execution, the self-adaptive system can

determine the best configuration when the environment changes (Park, 2009). Generally, by repeating

the process of execution, accumulation, learning and decision-making, the system can make better

decisions over time.

Gambi et al. (Gambi, Toffetti, & Pezzè, 2010) use online machine learning to update surrogate models in

order to limit violations of SLAs of software applications within data centers. However, their approach

does not apply any state space reduction heuristics to improve runtime convergence.

Tesauro et al. (Tesauro, 2007) proposed a hybrid approach to combine white-box analytical modeling (i.e.,

QN model) with Reinforcement Learning. Online learning uses a black-box model of the running system,

while the white-box QN model is used as a training facility. They assume white box QN model of the

system is available and can accurately predict its behavior under different adaptation decisions.

Kim and Park (Park, 2009) use a reinforcement learning approach for online planning. Their work is based

on behavior improvements of robots by learning from design-time training and by dynamically discovering

adaptation plans in response to changes in the environment in which the robots are operating. Similarly,

Zhao et al. (Zhao, 2011) combine supervised learning and reinforcement learning to develop an adaptive

real-time cruise control system.

FUSION (Elkhodary et al., 2010; Esfahani, Elkhodary, et al., 2013) is a general-purpose framework for self-

adaption of the software systems, which is fundamentally different from the above, as it works in a way

that it is a general-purpose framework, while the above mentioned works have concentrated on specific

problem domains. FUSION combines a number of techniques comprising feature-based modeling,

significance testing, and heuristic search to reason about adaptation.

132

5.3.8. Model-based quantitative reasoning

In general, analytical models can be categorized into two broad groups (Esfahani, Elkhodary, et al., 2013):

white-box and black-box. The former requires an explicit model of the internal organization of the

software system (i.e., typically an architectural model), while the latter does not need such knowledge.

Queuing Networks (QN) (Ardagna et al., 2008) are mathematical models used for performance analysis of

a software system, represented as a collection of Queues (i.e., system resources) and Customers (i.e., user

requests). Markov models (Ardagna et al., 2008) are often used for reliability analysis. They are comprised

of a stochastic model that captures the state of the system using random variables that change overtime

according to the probability distribution of the previous state. These white-box approaches require an

explicit model of the internal structure of the software system. Such models are typically used at design-

time to analyze the tradeoffs of different architectural decisions before implementation, but recently

these models are used at runtime to dynamically analyze the system properties (Ardagna et al., 2008).

However, the structure of these models cannot be easily changed at runtime in ways that were not

accounted for during their formulation (e.g., addition of new states in a Markov model due to emerging

software behavior).

Artificial Neural Networks (ANN) are an effective way of solving a large number of nonlinear estimation

problems (Esfahani, Elkhodary, et al., 2013). These approaches do not require knowledge of the internal

structure of the system. However, they require enough sampling of the input/output parameters to build

a rough calculation of the relationship between the inputs and outputs. A main advantage of black-box

approaches is that they can be used to detect changes to the underling properties of a software system

over time. FUSION (Esfahani, Elkhodary, et al., 2013) follows the black-box approach.

5.3.9. Control theory based reasoning

Control theory is recently gaining momentum in the software engineering community (Hellerstein et al.,

2004; Jamshidi et al., 2014; Zhu et al., 2009). For instance, in the proceedings of the most recent ICSE,

Companion Proceedings of the 36th International Conference on Software Engineering (Briand & van der

Hoek, 2014), as well as the proceedings of the most recent SEAMS, Proceedings of the 9th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems (Engels & Bencomo, 2014),

we have seen an increasing number of control theory-based approaches applied to address the challenges

in software engineering. The application of control theory in software engineering, however, is still at a

preliminary stage (Patikirikorala et al., 2012) and is limited to the design of controllers focused on

particular ad-hoc solutions that address a specific computing problem (Antonio Filieri et al., 2014). Filieri

et al. (Antonio Filieri et al., 2014) developed a general methodology, which reduces the need for strong

mathematical background to devise ad-hoc control solutions.

As a notable control theory-based approach that has been applied for adaptation reasoning, we can

mention the work of Filieri et al. (Antonio Filieri, Ghezzi, Leva, & Maggio, 2012). In this work, the bindings

among services are dynamically set at runtime. They formulated the dynamic binding problem as a

feedback control problem, and solved it with simple controller synthesis.

Yang et al. (Q.-L. Yang et al., 2013) proposed a type-1 fuzzy logic system to adjust system parameters (as

opposed to ours on architecture change) in mission-critical systems. They deal with uncertainty in the self-

adaptation loop by representing adaptation logic with type-1 fuzzy membership functions. Gmach et al.

133

(Gmach et al., 2008) and Chuang and Chan (Chan, 2008) proposed the use of type-1 fuzzy logic systems

for adaptive service management to remedy exceptional situations and manage quality of services

respectively. They applied fuzzy control theory to manage and balance resources of enterprise service. In

a recent published work (Jamshidi et al., 2014), we proposed an extended fuzzy controllers for solving

similar problem of elasticity reasoning in the context of autonomic resource provisioning for cloud-based

applications. The main challenges that we addressed in this work were to control the measurement

uncertainties and uncertainty related to specifying elasticity policies (corresponding to the adaptation

policies here in this thesis).

5.3.10. Summary of reasoning techniques

Table 5.1 summarizes the adaptation reasoning approaches we reviewed earlier for enabling self-

adaptation of software systems. In this table, a check mark (√) indicates where the approach proposes

solutions or deals with the criteria, and a blank () in the opposite case.

Note that among the reviewed approaches, rule-based, goal-based and utility function reasoning are

mature and other techniques are still in early formative stages of maturity.

All of the reviewed techniques have their own pros and cons and are mostly situational, i.e., they are more

appropriate for addressing the challenges in a particular domain. For example, rule-based reasoning is

useful in situational contexts, in which predefined responses are triggered by predefined events. Such

approaches based on rule-based reasoning can also consider learning to update the rule set at runtime.

One of the downsides of such approaches is that, it is difficult to manage rule-based reasoning, especially

when thousands of rules are in the rule base. In contrast, goal-based and utility-based reasoning use very

different approaches. The first one introduces the concept of goals that enable the reasoning process, and

uses a variation of goal models to derive each particular adaptation decision. It enables decision making

by accomplishing a set of goals. The later defines a priori mapping in terms of a utility functions between

reasoning variables and architectural configurations of the system. The utility-based approaches evaluate

a decision and pick one option out of many. More concretely, goal-based reasoning can select the best

configuration given the encoding in utility function. However, rule-based and goal-based reasoning cannot

ensure such optimum selection.

This domain is not yet mature, and as a result, new adaptation reasoning approaches appear in the

software engineering and self-adaptive communities. These techniques use heuristics, models and test

cases, machine learning, control theory and reactive techniques to drive the system adaptations and

produce promising results. Nevertheless, they are still at a formative stages and subject of current ongoing

research. In this thesis, we use fuzzy control as the adaptation reasoning technique. The rationale that

motivates this choice is that fuzzy control use rules elicitation from users that properly captures the

relationship between particular environmental conditions, historic observations, and decision-making in

the reasoning process. The main difference between the existing control-based approaches and our

approach is that the fuzzy logic controller we employed in this work can handle expert knowledge and

numerical data in a unified framework, and the fuzzy reasoning approach, in general, requires less

computational complexity. The other benefit of our approach is that fuzzy logic controllers do not require

the mathematical model of the system that it controls. In this work, deriving an accurate mathematical

model of the underlying software is a very difficult task due to non-linear dynamics of real systems

(Esfahani, Elkhodary, et al., 2013; Hellerstein et al., 2004; Lemos et al., 2013; Zhu et al., 2009).

134

Table 5.1. Classification and comparison of adaptation reasoning approaches.

Reference

Scope Reasoning Technique
Environ

ment
Domain

M
o

d
el

A
rc

h
it

ec
tu

re

C
o

d
e

R
eq

u
ir

em
en

t
(S

p
ec

)

R
u

le
-b

as
ed

G
o

al
-b

as
ed

U
ti

lit
y

fu
n

ct
io

n

Te
st

-b
as

e
d

Le
ar

n
in

g-
b

as
e

d

M
o

d
el

-b
as

ed

R
ea

ct
iv

e
p

la
n

n
in

g

H
eu

ri
st

ic
-b

as
e

d

C
o

n
tr

o
l-

b
as

ed

C
o

n
te

xt

N
FR

M
o

b
ile

Em
b

ed
d

e
d

 S
ys

te
m

Sm
ar

t-
*

R
o

b
o

ti
c

G
en

e
ra

l-
p

u
rp

o
se

(Georgas & Taylor, 2008) √ √ √ √
(Fleurey & Solberg, 2009) √ √ √ √ √
(Brice Morin et al., 2009) √ √ √ √
(Georgas et al., 2009) √ √ √ √
(Franck Chauvel et al., 2008) √ √ √ √ √
(Serugendo et al., 2007) √ √ √ √ √
(Eliassen et al., 2006) √ √ √ √ √
(Heaven et al., 2009) √ √ √ √ √ √
(Morandini et al., 2008) √ √ √ √
(Sykes et al., 2007) √ √ √ √ √
(Salehie & Tahvildari, 2012) √ √ √ √ √
(Jeffrey Kephart & Das, 2007) √ √ √ √ √
(Bennani & Menasce, 2005) √ √ √ √
(S.-W. Cheng et al., 2006) √ √ √ √
(Sykes et al., 2010) √ √ √ √ √ √
(Marzolla & Mirandola, 2010) √ √ √ √
(F Chauvel et al., 2010) √ √ √ √
(Batista et al., 2005) √ √ √ √
(Oreizy et al., 1998) √ √ √ √
(Floch et al., 2006) √ √ √ √ √
(A. J. Ramirez et al., 2009) √ √ √ √
(C Ghezzi & Sharifloo, 2013) √ √ √ √
(Hielscher & Kazhamiakin, 2008) √ √ √ √
(Metzger et al., 2013) √ √ √ √ √
(Park, 2009) √ √ √ √ √
(Gambi et al., 2010) √ √ √ √ √
(Tesauro, 2007) √ √ √ √ √
(Esfahani, Elkhodary, et al., 2013) √ √ √ √
(Antonio Filieri et al., 2012) √ √ √ √ √
(Chan, 2008) √ √ √ √
(Gmach et al., 2008) √ √ √ √
(Q.-L. Yang et al., 2013) √ √ √ √ √ √
RobusT2 (our approach) √ √ √ √ √ √

135

5.4. Non-functional Requirements for Component Connectors

In contrast to traditional requirements, self-adaptive software systems require a new class of

requirements (Lemos et al., 2013). We consider two types of quantitative non-functional requirements:

1) crisp (hard (Glinz, 2005)), and 2) fuzzy (elastic (X. (Frank) Liu, Azmoodeh, & Georgalas, 2007), soft (Glinz,

2005)). A crisp quantitative non-functional requirement imposes rigid constraints on a non-functional

property (e.g., end-to-end response time or reliability) of a system or more precisely for component

connectors in this work. After verifying the satisfaction of a crisp requirement, it is either satisfied or

unsatisfied. While a fuzzy non-functional requirement imposes a flexible constraint on a non-functional

property of a connector using a membership function of a qualitative term to characterize its satisfaction.

Note that a membership function quantifies a degree of membership of a qualitative term in a fuzzy set

(Zadeh, 1965).

5.4.1. A specification of non-functional requirements with Type-1 (T1) fuzzy sets (FS)

Below is an example of a crisp quantitative non-functional requirement 𝑁𝐹𝑅1 with satisfaction function

in Figure 5.2. In this case, if the coordination time between the two specific points (one source node and

one sink node) takes, for example, 1.005 milliseconds, it does not satisfy the requirement and it leads to

an adaptation of the connector.

 𝑁𝐹𝑅1: The period of time between receiving a message from a component to
dispatching it to another component must be less than a millisecond.

(5.2)

Figure 5.2. Satisfaction function for requirement NFR1.

However, in the case of the following a fuzzy non-functional requirement, i.e., 𝑁𝐹𝑅2 with membership

function in Figure 5.3, if the coordination takes 0.8 milliseconds, its satisfaction degree is one, which is

the highest. It actually points out that the requirement is fully satisfied by the connector. If it takes, for

example, 1.4𝑚𝑠 its satisfaction degree is around 0.6 and it partially satisfies the requirement though it is

acceptable.

 𝑁𝐹𝑅2: The period of time between receiving a message from a component to
dispatching it to another component must be SHORT.

(5.3)

“SHORT” in (5.3) is a linguistic term, whose membership function (see Figure 5.3) characterizes satisfaction

of the requirement 𝑁𝐹𝑅2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Region of

definite

satisfaction

Region of

definite

dissatisfaction

NFR1 domain

Sa
ti

sf
ac

ti
o

n
 v

al
u

e

136

Figure 5.3. Satisfaction function for requirement NFR2.

The constraint imposed by an imprecise or fuzzy requirement 𝑅 is characterized by a satisfaction function

(X. Liu & Yen, 1996).

Definition 20. A satisfaction function, denoted by 𝜇𝑅, maps an element of 𝑅’s domain or universe of
discourse 𝐷 to a number in [0,1] that represents the degree to which the requirement 𝑅 is satisfied.

 𝜇𝑅: 𝐷 → [0,1] (5.4)

Intuitively, the satisfaction function characterizes a fuzzy subset of a requirement’s domain, which

satisfies the fuzzy requirement. In fuzzy non-functional requirements, a minimum threshold is usually

specified. It shows that a connector configuration, whose value is below this threshold, is not acceptable

and it should trigger an adaptation to lead to a configuration that has a satisfaction degree of a value

higher than zero. For instance, if a coordination takes 2.1 milliseconds, which is greater than the threshold

of two, in this case, its satisfaction degree is zero and it is totally unacceptable.

The satisfaction function (cf. membership function in fuzzy set theory (Zadeh, 1965)) for fuzzy

requirements must vary in [0,1]. The function itself can be of any shape that defines a function, which is

simple enough to interpret the satisfaction degree. The simplest satisfaction function is formed using

straight lines. Figure 5.4 and Figure 5.5 respectively illustrate a simple triangular and a trapezoidal

satisfaction function.

Figure 5.4. A triangular satisfaction function.

A number of key characteristics of satisfaction functions are as follows (cf. Figure 5.5):

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trimf, P=[0.5 1 2]

Region of

definite

satisfaction

Region of

definite

dissatisfaction

Region of

uncertain

satisfaction

NFR2 domain

Sa
ti

sf
ac

ti
o

n
 v

al
u

e

137

The height of a satisfaction function is the largest degree, which satisfies the requirement 𝑅.

 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑅) = sup 𝜇𝑅(𝑥) (5.5)

The support of a satisfaction function is the crisp set containing all elements with non-zero satisfaction

degree.

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑅) = {𝑥|𝜇𝑅(𝑥) > 0} (5.6)

The core of a satisfaction function is the crisp set containing elements with satisfaction degree equal to

one.

 𝑐𝑜𝑟𝑒 (𝑅) = {𝑥|𝜇𝑅(𝑥) = 1} (5.7)

The boundary of a satisfaction function is the crisp set with satisfaction degree higher than zero and lower

than 1.

 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (𝑅) = {𝑥|0 < 𝜇𝑅(𝑥) < 1} (5.8)

The 𝛼 − 𝑐𝑢𝑡 of a satisfaction function is the crisp set that contains all the elements whose satisfaction

degree are greater than 𝛼.

 𝑅 = {𝑥|𝜇𝑅(𝑥) ≥ 𝛼}
𝛼 (5.9)

Figure 5.5. A trapezoidal satisfaction function.

Due to their smoothness, Gaussian satisfaction functions are appropriate for specifying fuzzy sets. As

illustrated in Figure 5.6 and Figure 5.7, the curve has the advantage of being smooth and non-zero at all

points. However, since in self-adaptive software we need to reason about the satisfaction of

requirements, and since in this function there is no point with satisfaction degree zero, this type of

function is of limited use.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trapmf, P=[0.5 2 3 3.5]

Core Boundary

H
ei

gh
t

Support

𝛼

138

Figure 5.6. A Gaussian satisfaction function.

Figure 5.7. A bell satisfaction function.

Although Gaussian and bell functions have the advantage of being smooth, they are unable to specify

asymmetric functions, which are critical in some requirement specifications. Figure 5.8 shows a sigmoidal

satisfaction function, which is open to the right.

Figure 5.8. A sigmoidal satisfaction function.

One of the main advantages of using fuzzy non-functional requirement specification in self-adaptive

software is the avoidance of unnecessary adaptation of connectors due to transient violations of

constraints. Let us consider the coordination time in a connector that oscillates between 0.99 and 1.01.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gaussmf, P=[1 2]

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gbellmf, P=[2 4 6]

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigmf, P=[2 4]

139

By considering 𝑁𝐹𝑅1, each time the coordination times goes up to 1.01, it violates the requirements and

an adaptation will be necessary. However, by considering 𝑁𝐹𝑅2, the satisfaction degree is close to one

and far greater than the minimum threshold of satisfaction based on the function illustrated in Figure 5.3.

This result is more desirable than the one obtained using crisp function as depicted in Figure 5.2 because

it avoids several unnecessary adaptations during runtime execution of the connector.

Such a specification of non-functional requirements through type-1 fuzzy membership function is not new

and it has been adopted mainly to specify flexible requirements in (Luciano Baresi et al., 2010; X. Liu &

Yen, 1996; Whittle et al., 2009; Yen & Tiao, 1997). The challenge is where there is uncertainty about the

membership function itself. In the following, we first raise this concern by providing concrete scenarios

and we address this challenge by adopting T2 fuzzy logic in order to incorporate uncertainty about the

adaptation policies. The RobusT2 framework is proposed in Section 5.5, to address this challenge and

provide a mechanism to reason about adaptation handling such sources of uncertainties.

5.4.2. The need for revisiting non-functional requirement specifications

In order to deal with uncertainty, it needs to be quantified. In this section, we discuss why the self-adaptive

software community needs to revisit approaches for quantifying uncertainty. Users provide input for

different aspects of a self-adaptive software system (Esfahani & Malek, 2013; Lemos et al., 2013). The

most prominent user inputs are: 1) Non-functional requirements or quality preferences. 2) Particular

system properties that cannot be monitored. 3) Certain environmental properties that can be specified

by engineers based on their experiences, hardware specification, or similar systems. 4) Adaptation

policies and their effects on the quality factors. However, eliciting user preferences for the

aforementioned inputs in terms of a mathematical function or an absolute value is a well-known challenge

(Lemos et al., 2013) and introduces subjective and imprecise data to the system. Thus, in order to cease

the effects of this uncertainty, we need to adopt an appropriate mathematical theory to quantify them.

There are four different possibilities when extracting a user input: 1) One user provides a crisp value

representing an estimation of the expected value for the input. 2) One user estimates a range of

uncertainty based on the expected level of variation in the input. 3) A group of users provides a set of

crisp values as estimations of the expected value for the input. 4) A group of users provides estimations

of the range of uncertainty based on the expected variation in the input. Although it has been commonly

used in self-adaptive software domain, we argue that the first three approaches are not scientifically

accurate enough to capture the uncertainty regarding adaptation knowledge specification. The first issue

is with the crisp estimation of the input (i.e., 1, 3). In this way, the possibility distribution of the input

becomes like a step function that takes either “zero” or “one” and the tradeoffs between different quality

factors become impossible. The second issue is with the elicitations based on a single user (i.e., 1, 2). Users

often have diverse opinions about specific inputs. Therefore, inputs based on just one user is partial and

the approaches such as (Luciano Baresi et al., 2010; S. Cheng & Garlan, 2007; Esfahani et al., 2011; Whittle

et al., 2009) pursuing this way of knowledge elicitations ignore the uncertainties associated with collecting

inputs from different users. This assumption based on one user opinion is, in fact, unrealistic for certain

types of applications such as multi-tenant systems. Figure 5.9 shows how a user estimates the range of a

requirement with a trapezoidal function.

140

Figure 5.9. A trapezoidal possibility distribution.

The current work for handling uncertainty in self-adaptive software assumes one can accurately specify

the possibility distribution. When someone specifies a possibility distribution of an input, as soon as the

function is specified, there remains no uncertainty in that function. For instance, as soon as the possibility

distribution of the performance of a component is specified in Figure 5.9, the three associated regions are

precisely determined. Yet, as we mentioned in the fourth approach for eliciting the input, each user might

come up with different distributions (see Figure 5.10). The challenge is how to accommodate all

preferences in one coherent distribution.

Figure 5.10. Possibility distributions elicited from different users.

We address this challenge by adopting type-2 fuzzy sets (Zadeh, 1975) in order to incorporate uncertainty

in the distribution function.

5.4.3. A specification of non-functional requirements with Type-2 (T2) fuzzy sets (FS)

The concept of imprecise requirements (X. Liu & Yen, 1996) is not a new phenomenon. Fuzzy theory is

mainly used to specify uncertain, flexible and imprecise requirements (Whittle et al., 2009), to

accommodate adaptive goals (Luciano Baresi et al., 2010) and to perform trade-offs among conflicting

functional (Yen & Tiao, 1997) and non-functional requirements (Esfahani et al., 2011). In these works, they

exploit fuzzy theory to specify at design-time and assess at runtime the satisfaction degree of

requirements, which is specified by a membership function. The idea is to prevent violations of

requirements by tolerating some small transient deviations. The presumed benefit of such imprecise

requirements is that it gives the system room to behave flexibly (Chopra, 2012). More specifically, a

system can partially satisfy a requirement depending on circumstances. However, the state-of-the-art in

this domain assumes one can specify the satisfaction function precisely. However, this is not practical and

realistic in real-world applications. The question is what to do when there is uncertainty about the value

of the membership function. In this section, we intent to address this shortcoming by adopting type-2

fuzzy logic (Zadeh, 1975) in order to incorporate uncertainty about the satisfaction function. The

fundamental difference between type-1 and type-2 fuzzy logic is in the model of individual fuzzy sets.

 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Region of

definite

satisfaction

Region of

definite

dissatisfaction Region of

uncertain

satisfaction

 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Performance Index
P

o
ss

ib
ili

ty

Performance Index

P
o

ss
ib

ili
ty

141

Type-2 fuzzy sets employ membership degrees that are not a crisp value, but fuzzy sets themselves. This

additional uncertainty dimension provides new degrees of freedom for modeling dynamic uncertainties.

5.4.3.1. Requirement specifications with IT2-FS

Although a number of analytical frameworks (Luciano Baresi et al., 2010; X. Liu & Yen, 1996; A. Ramirez &

Cheng, 2012) based on type-1 fuzzy sets have been proposed by researchers in requirements engineering

and self-adaptive software, we intent to extend the concepts based on interval type-2 fuzzy sets. We

therefore call the previous imprecise requirement specification approaches based on type-1 fuzzy logic

traditional approaches. Those traditional approaches based their satisfaction function on Definition 20.

However, we specify the satisfaction function according to the definition that is given in Definition 21.

Definition 21. A satisfaction function, denoted by 𝜇�̃�, maps an element of �̃�’s domain or universe of
discourse 𝐷 to an interval [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)] that represents the spectrum of degrees to which the

requirement �̃� is satisfied.

 𝜇�̃�(𝑥): 𝐷 → [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)] (5.10)

By adopting this definition for requirements specification, the satisfaction degree is not a crisp value in

the interval [0,1] anymore, but it is a spectrum of values in [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)]. This provides an opportunities

to accommodate the scenarios that we have discussed in 5.4.2 and specify a satisfaction function that

considers different opinions of different users as shown in Figure 5.10. Figure 5.11 illustrates a type-2

fuzzy membership function that is discussed in detail in Chapter 2.

Figure 5.11. An interval type-2 fuzzy set based possibility distribution.

5.4.3.2. Measure of relationships between requirements

Four types of relationships between requirements have been introduced and defined in (X. Liu & Yen,

1996) based on type-1 fuzzy sets. Here we intend to redefine these classes of relationships with regard to

interval type-2 fuzzy sets. These relationship types are: 1) conflicting, 2) cooperative, 3) mutually

exclusive, 4) irrelevant. This classification is based on the relationships between satisfaction functions (cf.

Definition 20, Definition 21) of the requirements involved in a specific context.

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

�̃�

𝜇�̃�(𝑥)

𝜇�̃�(𝑥) 𝑅𝑒

𝑥′

𝐽𝑥′ 𝑢
∈
𝐽 𝑥

Uncertainty

about end

point

Uncertainty

about

satisfaction

degree

𝑭𝑶𝑼 (�̃�)

= [𝜇
𝑅
(𝑥), 𝜇𝑅 (𝑥)]

𝑥∈𝑋

𝐿𝑀𝐹

𝑈𝑀𝐹

𝑥 ∈ 𝑋 Primary variable

S
ec

o
n

d
ar

y
 v

ar
ia

b
le

142

Two imprecise requirements are categorized as conflicting if an increase in the mean interval of the

satisfaction degree (cf. Definition 22) decreases the mean interval of the satisfaction degree of the other

(cf. Figure 5.12).

Definition 22. The mean interval of satisfaction function, denoted by 𝜃�̃� , maps an element of �̃�’s
domain or universe of discourse 𝐷 to the mean of interval [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)].

 𝜃�̃�(𝑥):𝐷 → (𝜇�̃�(𝑥) + 𝜇�̃�(𝑥)) 2⁄ (5.11)

On the other hand, two imprecise requirements are classified as cooperative if an increase in the mean

interval of satisfaction degree often increases the mean interval of satisfaction degree of the other. If the

mean intervals of the satisfaction degree of two imprecise requirements cannot be satisfied at the same

time, they are categorized as mutually exclusive requirements. Finally, if the mean intervals of the

satisfaction function of two requirements have no impact to each other, the requirements are called

irrelevant.

Figure 5.12. Conflicting imprecise non-functional requirements.

5.4.3.3. Non-functional requirements tradeoff analysis

In order to perform tradeoff analysis, multiple non-functional requirements need to be aggregated to

formulate an overall aggregated function to be verified. As a result, we introduce and define a number of

aggregation operators according to fuzzy logic to enable the tradeoff analyses. The aggregation operations

are as follows: union of requirements (cf. Figure 5.13) is given in Definition 23 and illustrated in

Figure 5.14; intersection of requirements is given in Definition 24 and illustrated in Figure 5.15;

complement of requirements (cf. Figure 5.13) is given in Definition 25.

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sa
ti

sf
ac

ti
o

n
 d

eg
re

e

�̃�1

�̃�2

143

Figure 5.13. Two IT2-FSs, A and B (adapted from (J Mendel & Wu, 2010)).

Definition 23. The union of two imprecise requirements �̃�1 and �̃�2 is

𝜇�̃�1(𝑥):𝐷 → [𝜇�̃�1(𝑥), 𝜇�̃�1
(𝑥)]

𝜇�̃�2(𝑥):𝐷 → [𝜇�̃�2(𝑥), 𝜇�̃�2
(𝑥)]

𝜇�̃�1∪�̃�2(𝑥):𝐷 → [𝜇�̃�1(𝑥) ∨ 𝜇�̃�2(𝑥), 𝜇�̃�1
(𝑥) ∨ 𝜇�̃�2

(𝑥)]

(5.12)

Figure 5.14. Visual representation of union of two IT2-FSs (adapted from (J Mendel & Wu, 2010)).

Definition 24. The intersection of two imprecise requirements �̃�1 and �̃�2 is

𝜇�̃�1(𝑥):𝐷 → [𝜇�̃�1(𝑥), 𝜇�̃�1
(𝑥)]

𝜇�̃�2(𝑥):𝐷 → [𝜇�̃�2(𝑥), 𝜇�̃�2
(𝑥)]

𝜇�̃�1∩�̃�2(𝑥):𝐷 → [𝜇�̃�1(𝑥) ∧ 𝜇�̃�2(𝑥), 𝜇�̃�1
(𝑥) ∧ 𝜇�̃�2

(𝑥)]

(5.13)

Figure 5.15. Visual representation of intersection of two IT2-FSs (adapted from (J Mendel & Wu, 2010)).

144

Definition 25. The complement of an imprecise requirement �̃� is

𝜇�̃�(𝑥):𝐷 → [𝜇�̃�(𝑥), 𝜇�̃�(𝑥)]

𝜇
�̃�
(𝑥):𝐷 → [1 − 𝜇�̃�(𝑥), 1 − 𝜇�̃�(𝑥)]

(5.14)

Finally, the tradeoff between requirements is defined in Definition 26.

Definition 26. Let �̃� be a list of non-functional requirements �̃� = (�̃�1, �̃�2, … , �̃�𝑛) that a component
connector is supposed to satisfy and 𝜇 = (𝜇�̃�1(𝑥), 𝜇�̃�2(𝑥),… , 𝜇�̃�𝑛(𝑥)) be the associated satisfaction

degrees. Let 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛) contain a list of real numbers representing the normalized relative
importance of the requirements. The overall satisfaction degree is as follows:

 𝑈�̃� =∑𝑤𝑖

𝑛

𝑖=1

× 𝜇�̃�𝑖(𝑥) (5.15)

5.4.3.4. Non-functional requirement change analysis

We consider here three types of change in non-functional requirements and their analysis with type-2

fuzzy sets: 1) relaxing a requirement, 2) strengthening a requirement, and 3) changing the priority of a

requirement.

Definition 27. The requirement �̃�1 is considered to be relaxed to �̃�2 and �̃�2 is considered to be

strengthened to �̃�1 if:

 ∀𝑥 ∈ 𝐷, 𝜃�̃�1(𝑥) ≤ 𝜃�̃�2(𝑥) (5.16)

Definition 28. Let �̃� be a requirement, then the feasibility of �̃� in domain 𝐷 can be defined as

 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (�̃�) = 𝑠𝑢𝑝𝑥∈𝐷𝜇�̃�(𝑥) (5.17)

Intuitively, according to Definition 28, relaxing a requirement improves the feasibility of the system

realizing the requirement.

Theorem 2. Let �̃� = �̃�1⨂…⨂�̃�𝑖⨂…⨂�̃�𝑛 and 𝑅′ = �̃�1⨂…⨂𝑅′ 𝑖⨂…⨂�̃�𝑛 and assume that �̃�𝑖 is

relaxed to �̃�′𝑖. Then,

 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (R i) ≤ 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (R ′i) (5.18)

In the next section, we introduce the main outcome of this chapter, i.e., the adaptation reasoning

framework.

145

5.5. RobusT2: A Framework for Autonomous Adaptation Reasoning using Type-

2 Fuzzy Logic Systems

In this section, we develop a framework, called RobusT2, to reason about adaptation of component

connectors, in which adaptation rules are based on a data collection from a group of users who have

potentially conflicting opinions about adaptation policies. As we discussed in earlier sections, we chose to

develop a fuzzy controller to give software architects more flexibility to accommodate their preferences

even when they are conflicting.

The overall view of the autonomous controller for adaptation reasoning, as the main artifact of the

RobusT2 framework, is shown in Figure 5.34. As illustrated, the controller covers both design-time and

runtime. During design-time, the aim is to design a fuzzy controller, specify its rule-base, and derive

appropriate satisfaction functions. At runtime, while the controller starts operating for connector self-

adaptation, it keeps monitoring quality and environmental data that may affect non-functional

requirement satisfaction. The requirements are continuously verified with respect to runtime data that

may reflect changes in the environment's behavior. In the case of detection of any violations, appropriate

adaptation actions (in terms of mode changes here) are generated through the fuzzy logic controller and

applied via an execution actuator. More specifically, the controller adjusts the system configuration with

respect to runtime data that may affect changes in the connector’s behavior. The key mechanism for

decision-making at runtime is the fuzzy inference process.

In the following, we discuss each phase in turn and describe the relevant activities. Section 5.5.1 presents

basic concepts and phenomena in fuzzy inference and the main entities and processes involved in fuzzy

reasoning. We provide concrete examples, in this section, to enable readers to easily grasp the involved

intricacies in fuzzy reasoning and prepare them to fully understand the outcome of this chapter, which is

the proposed method for designing the fuzzy controller. Section 5.5.2 introduces a running example.

Section 5.5.3 provides concrete challenges that motivated us to pursue such solution. Section 5.5.4 gives

a high-level overview of the proposed autonomous reasoning providing an abstract overview of the

approach. Section 5.5.5 proposes our knowledge elicitation approach for enabling adaptation rule

elicitation from different users. Section 5.5.6 proposes a technique for transforming the collected data to

design a fuzzy logic controller that acts as the main outcome of this chapter. Section 5.5.7 reviews the

benefits of the designed type-2 fuzzy logic controller over traditional type-1 controllers. Section 5.5.8

contains experimental evaluation results regarding the designed and implemented controller. Finally,

Section 5.5.9 discusses the significance of the main results.

5.5.1. Fuzzy logic systems and uncertainty control

From a software engineering perspective, fuzzy logic can be interpreted as a theory that allows using

linguistic words and human knowledge 1) to represent or model adaptation knowledge and 2) to design

their reasoning mechanisms. Fuzzy control has been used in different application areas such as industrial

control, mobile robots control and ambient intelligent environments control (Hagras, 2007).

The human brain reasons based on linguistics such as slow, fast, near or far and it execute control actions

accordingly. Therefore, human activities exemplify the concept of fuzzy control. For instance, people do

not need to measure acceleration to be able to safely control the car they are driving.

146

5.5.1.1. The Concept of Uncertainty in Fuzzy Logic Systems

Uncertainty exists in any situation with a lack of knowledge. For example, knowledge may be incomplete,

imprecise, noisy, patchy, not reliable, vague, contradictory or deficient (Klir & Yuan, 1995). Different

authors define and classify different types of uncertainty. The classification proposed in (Esfahani &

Malek, 2013) fits to describe and interpret the effects of uncertainty in self-adaptive software. There are

some other classification of uncertainty in this domain such as (A. J. Ramirez et al., 2012).

Uncertainty is also exists in fuzzy logic systems as explained in (JM Mendel, 2001; Wu, 2012):

 Uncertainty about the meaning of the words that are used in the rules used for reasoning.

 Uncertainty about the consequence of the rules.

 Uncertainty about the input data that activate the fuzzy logic systems.

 Uncertainty about the data used to tune the design parameters of fuzzy logic system.

As we discussed in the background chapter, T1 MFs are precise and, as a result, T1 FSs as used in T1-FLS

cannot capture the uncertainty. This is the reason why Zadeh proposed to represent this uncertainty by

using T2 FSs (Zadeh, 1975). T2 FLSs are to some extent different from classical fuzzy logic systems, see the

difference in Figure 5.16 and Figure 2.3. The next sections presents these differences by introducing the

subsystems of a T2 FLS as presented in Figure 2.3.

Figure 5.16. The architecture of type-1 fuzzy logic system (adapted from (JM Mendel, 2000)).

Figure 5.17. The architecture of type-2 fuzzy logic system (adapted from (JM Mendel, 2000)).

147

5.5.1.2. Knowledge base (Rule base)

The knowledge base (or in some literature it is known as rule base) allows the representation of human

knowledge by using linguistic rules. A fuzzy rule is specified with the structure below:

 IF (some conditions are satisfied) THEN (perform a control action) (5.19)

In general, the fuzzy rules are organized using tables whose objective is to represent all the different

combinations of the inputs of the system. The structure of the rule-base are the same in both type-1 and

type-2 fuzzy logic systems, except that in the former the linguistics have type-1 MFs, while in the latter

the linguistics have type-2 MFs.

5.5.1.3. Membership functions

Membership functions (MFs) enable forming a connection between crisp values and linguistic words.

Type-1 fuzzy MFs (T1-MF) are two-dimensional and characterize the membership value 𝜇 for a variable

𝑥 ∈ 𝑋 . Type-2 fuzzy MFs (T2-MF) are three-dimensional by considering an uncertainty 𝑢 of the

membership value. T1-MFs are a special case of T2-MFs where the uncertainty value is zero. In general,

membership functions can be classified as:

 Singleton MFs. A membership function that is unity at one particular point and zero everywhere else.

See Figure 5.18.

 𝜇 = {
1
0

𝑥 = 𝑥1
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.20)

Figure 5.18. Singleton membership function.

 Interval type-1 MFs. A membership function that is zero except in the interval defined by its left and

right bounds. See Figure 5.19.

 𝜇 = {
1
0
 𝑙𝑎 ≤ 𝑥 ≤ 𝑙𝑏
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.21)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑥1

𝜇

𝑋

148

Figure 5.19. Interval type-1 membership function.

 Type-1 MFs. A membership function that is a crisp value which vary in the interval [0,1]. See Figure 5.2

to Figure 5.8.

 Type-2 MFs. A membership function that is characterized by a secondary degree MF 𝜇�̃�. This type of

MF can further classified as:

1. Interval type-2 MFs. If 𝜇�̃�(𝑥, 𝑢) is an interval type-1 MF.

2. General type-2 MFs. If 𝜇�̃�(𝑥, 𝑢) is a type-1 MF.

Figure 5.20. An interval type-2 membership function.

Figure 5.21. General type-2 membership function.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑋

𝜇

𝑙𝑎 𝑙𝑏

�̃�

𝑥1

𝑢1

𝑢2

𝑥1

𝑢1

𝜇�̃�

𝑋

𝑢

𝑢1 𝑢2

𝜇�̃� 𝐹𝑂𝑈 (�̃�)

𝐿𝑀𝐹

𝑈𝑀𝐹

𝑢2

𝑢1 𝑢2

149

5.5.1.3.1. Interval type-2 membership functions

General T2 MFs are complicated to implement and the computational overhead of processing based on

this type of MF is high (N. Karnik & Mendel, 1999) and obviously not appropriate for time-constrained

applications such as adaptation reasoning in a self-adaptive control loop. However, interval T2 MFs are

straightforward to implement and have been used in almost all works about type-2 fuzzy logic (Hagras,

2007). Therefore, an interval type-2 membership function has been also selected for this research.

An IT2 MF can be created with two T1 MFs. An Upper Membership Function (UMF), which represents the

maximum value and a Lower Membership Function (LMF), which represents the minimum value of 𝜇 for

each 𝑥. The uncertainty 𝑢 is represented by the area between the UMF and the LMF. This region is called

Footprint of Uncertainty (FOU) and is illustrated in Figure 2.2. Note that T1 MFs are a particular case of

T2-MFs that does not consider the uncertainty; the same MF represents both the UMF and LMF and,

therefore, the area of the FOU is zero.

5.5.1.3.2. Membership function creation

In this thesis, for representing the IT2 MFs, trapezoidal and triangular membership functions are used to

construct the FOU. IT2 MFs are completely described by 9 points (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, 𝑖, ℎ), see Figure 5.22.

Note that triangular MFs are a particular case of trapezoidal MFs where the two middle points coincide.

For example, in Figure 5.22, if 𝑓 = 𝑔 then the IT2 MF �̃� is a trapezoidal MF with trapezoidal UMF and

triangular LMF. If both 𝑏 = 𝑐 𝑎𝑛𝑑 𝑓 = 𝑔 then the MF is triangular. An special case of triangular MF, all the

middle pints could meet, 𝑏 = 𝑐 = 𝑓 = 𝑔.

Figure 5.22. The nine points that represent an IT2 FS (adapted from (J Mendel & Wu, 2010)).

5.5.1.3.3. The Concept of centroid of an interval type-2 MF

An IT2 MF can be approximated with a set of 𝑁 IT1 MFs located at the points 𝑥𝑖 and with upper and lower

bounds 𝜇𝑈𝑀𝐹 and 𝜇𝐿𝑀𝐹 as illustrated on Figure 5.23. Then, the centroid of the IT2 MF is calculated as the

centroid of the 𝑁 IT1 MFs. Note that the accuracy of the calculation depends on 𝑁.

x

u
1

a c de f g i

X

h

b

150

Figure 5.23. A discretized IT2 MF.

The centroid of a T1 MF, 𝑅, discretized in 𝑁 points is located at 𝑥 = 𝑐. This point is defined in Definition

29.

Definition 29. The centroid of a type-1 fuzzy set 𝑅 is defined as:

 𝑐(𝑅) =
∑ 𝑥𝑖𝜇𝑅(𝑥𝑖)
𝑁
𝑖=1

∑ 𝜇𝑅(𝑥𝑖)
𝑁
𝑖=1

 (5.22)

Similarly, the centroid of an IT2 MF discretized in 𝑁 intervals is located at the interval [𝑐𝑙 , 𝑐𝑟]. This interval

is defined in Definition 30.

Definition 30. The centroid of a type-2 fuzzy set �̃� is the union of the centroids of all its embedded type-

1 fuzzy sets 𝑅𝑒:

𝐶�̃� ≡ 𝑐(𝑅𝑒) = [𝑐𝑙(�̃�), 𝑐𝑟(�̃�)]

∀𝑅𝑒

𝑐𝑙(�̃�) = min
∀𝑅𝑒
𝑐(𝑅𝑒)

𝑐𝑟(�̃�) = max
∀𝑅𝑒
𝑐(𝑅𝑒)

(5.23)

In order to exemplify this concept, the centroid of the IT2 MF in Figure 5.23 is presented. Note that we

consider a 4 points discretization of the IT2 MF for simplicity in this example, but a different discretization

has been used in our experimental evaluation. The IT2-MF is discretized into the following 4 IT1 MFs:

𝑥1 = 4, 𝜇 = [0,0.25]

𝑥2 = 8, 𝜇 = [0.48,0.75]

𝑥3 = 14, 𝜇 = [0.3429,0.6]

𝑥4 = 18, 𝜇 = [0,0.2]

(5.24)

Table 5.2 summarizes all the possible weighted averages defined in Equation (5.22). Since the

discretization number is 4 and there are two boundaries for each MF in this example, there are 16 (2𝑁)

weighted averages. Note that the centroid of the IT2 MF in Figure 5.23 can be approximated by finding

the minimum and maximum values of the weighted average, 𝑐, in the last column in Table 5.2 as defined

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑥1 𝑥2 𝑥3 𝑥4

𝑢

151

in Equation (5.23). Therefore, 𝑐 = [min(𝑐) ,min(𝑐)] = [8.7874,12.3750] . Note that this is only an

approximation for the centroid of the IT2 MF and in order to find a better approximation, we need to

increase the discretization number.

Table 5.2. Weighted averages of the interval T1 MF.

𝝁(𝒙𝟏) 𝝁(𝒙𝟐) 𝝁(𝒙𝟑) 𝝁(𝒙𝟒) 𝒄
0 0.48 0.3429 0 10.5002
0 0.48 0.3429 0.2 11.9666
0 0.48 0.6 0 11.3333
0 0.48 0.6 0.2 12.3750
0 0.75 0.3429 0 9.8825
0 0.75 0.3429 0.2 11.1382
0 0.75 0.6 0 10.6667
0 0.75 0.6 0.2 11.6129
0.25 0.48 0.3429 0 8.9856
0.25 0.48 0.3429 0.2 10.4019
0.25 0.48 0.6 0 9.9549
0.25 0.48 0.6 0.2 11.0065
0.25 0.75 0.3429 0 8.7874
0.25 0.75 0.3429 0.2 9.9816
0.25 0.75 0.6 0 9.6250
0.25 0.75 0.6 0.2 10.5556

However, once the value of 𝑁 is increased to find better approximations of the centroid, the number of

weighted averages grow exponentially, and the computational time will then become unsuitable for the

self-adaptation feedback loop application. Karnik and Mendel proposed an iterative algorithm to find the

lower and upper bounds of centroid. This algorithm, called KM (N. N. Karnik & Mendel, 2001), dramatically

reduces the number of iterations to find the solutions. The KM algorithm is further enhanced in (JM

Mendel, 2009).

Table 5.3 presents the results of the centroid of the IT2 MF in Figure 5.23 calculated using the KM

algorithm with different values of discretization, 𝑁. The number of iterations to find the value of the

centroid with respect to a naïve calculation as in Table 5.2, the KM algorithm and its enhanced version. As

it is evident in this table, the enhanced KM algorithm enables the efficient calculation of the centroid even

with a large 𝑁. As a result, the enhanced version of the KM algorithm is adopted here to calculate the

centroid of IT2 MF used in the IT2 FLS for adaptation reasoning. For details of the KM algorithm, we refer

to (N. N. Karnik & Mendel, 2001; JM Mendel, 2009).

Table 5.3. Computational complexity of centroid calculation for our IT2 MF example.

𝑵 𝑪𝑹
KM

iterations
Enhanced KM

(EKM) iterations
𝟐𝑵iterations

4 [9.8824,11.3333] 4 1 16
16 [9.4114,11.9426] 6 1 65536
100 [9.3870,11.9615] 6 2 1.2677𝑒 + 30
256 [9.3865,11.9623] 7 2 1.1579𝑒 + 77
1024 [9.3864,11.9623] 8 3 > 8.9885𝑒 + 307

152

5.5.1.4. Fuzzifier

The functionality of the fuzzifier in IT2 FLS (cf. Figure 2.3) is to map a crisp input (𝑥1, 𝑥2 . . . , 𝑥𝑛) ∈ 𝑋1 ×

𝑋2…× 𝑋𝑛 into their corresponding IT2 MFs to produce a set of IT1 FSs. This mapping is needed to activate

rules that are specified in terms of linguistic words. The inputs to the FLS prior to fuzzification module (cf.

Figure 5.16 and Figure 2.3) may be certain (e.g., perfect measurement and noise free) or uncertain (e.g.,

noisy measurements). IT2 FLSs can handle either kind of measurement (JM Mendel, 2007). Note that the

number of sets depends on the number of inputs and the number of MFs. First, we must state how the

numeric inputs 𝑢𝑖 ∈ 𝑈𝑖 are converted to fuzzy sets (with a process called "fuzzification" (Jerry M. Mendel

et al., 2006)) so that they can be used by the FLS, see the input-output of the fuzzifier module in Figure 2.3.

A fuzzification can be defined by a transformation 𝐹: 𝑈𝑖 → 𝑈𝑖
∗, where 𝐹(𝑢𝑖) = �̃�𝑖 and 𝑈𝑖

∗ is a set of all FSs

that can be defined on 𝑈𝑖. In this thesis, we use singleton:

𝜇�̃�𝑖 = {

1 𝑥 = 𝑢𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.25)

In order to show the methodology to implement the subsystems of an IT2 FLS, we use a concrete example

here. We present the whole process of an IT2 FLS step by step through this example. This process can be

viewed as a mapping from crisp inputs to crisps output (cf. the solid path in Figure 2.3): from fuzzification,

all the way down to the defuzzification. Note that this mapping can be delineated as 𝑦 = 𝑓(𝑥).

Let us consider a normalized crisp input (𝑥1, 𝑥2) = (40,50) ∈ 𝑋1 × 𝑋2 of the IT2 FLS whose MFs with

respect to the two elements of the input are illustrated in Figure 5.24 (corresponds to 𝑋1) and Figure 5.25

(corresponds to 𝑋2). Figure 5.24 illustrates the MFs of the first input (i.e., 𝑥1), and Figure 5.25 shows the

MFs of the second input (i.e. 𝑥2).

Figure 5.24. IT2 MFs for input 𝑥1 (workload).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u
M

em
b

er
sh

ip
 g

ra
d

e

𝑉𝐿 𝐿

𝑀

𝐻
𝑉𝐻

153

Figure 5.25. IT2 MFs for input 𝑥2 (response time).

First, the input needs to be fuzzified into the MFs. It can be seen in Figure 5.24 and Figure 5.25 that the

first element of the input (i.e., 𝑥1) is fuzzified into two MFs (i.e., 𝐿,𝑀) and the second element of the input

(i.e., 𝑥2) is fuzzified into three MFs (i.e., 𝑀, 𝑆, 𝑉𝑆). Figure 5.26 illustrates the non-null fuzzified sets

regarding the former element of the input (i.e., 𝑥1) and Figure 5.27 shows the non-null fuzzified sets with

respect to the latter element (i.e., 𝑥2).

Figure 5.26. Non-null fuzzified sets for 𝑥1.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5954

0.3797

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5434

0.3844

M
em

b
er

sh
ip

 g
ra

d
e

𝐼 𝐹

𝑀

𝑆 𝑉𝑆

𝐿 𝑀

154

Figure 5.27. Non-null fuzzified sets for 𝑥2.

Figure 5.28 illustrates a black box representation of the fuzzifier module in Figure 2.3. As discussed earlier,

the fuzzifier functionality is to transform crisp inputs to fuzzy output in order to use them in the inference

process. In the inference process, these fuzzified sets are used to trigger appropriate rules in the rule base.

We describe the inference process in the next section.

Figure 5.28. The fuzzifier module: maps crisps inputs into interval type-2 fuzzy sets outputs.

5.5.1.5. Inference Engine

The functionality of the inference engine module as in Figure 2.3 is to map the set of IT1 MFs (resulting as

output from the fuzzifier) into the consequents of the fired rules. Consequently, the output is a set of IT2

MFs. Note that the number of output MFs is equal to the number of fired rules. Let us continue with our

running example. The complete list of rules is summarized in Table 5.4. Note that in this example, the

antecedents represent different situations that may happen at runtime and consequent of the rules

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1749

0.0000
0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9568
0.9377

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2212

0.0000

𝑀

𝑆

𝑉𝑆

155

determine the control action. In the evaluation section, however, we deal with a set of rules with interval

type-1 fuzzy output. In this example, as discussed in the previous section, according to the provided input,

(𝑥1, 𝑥2) = (40,50), two non-null fuzzified sets for the antecedent 𝑥1 and three non-null fuzzified sets for

the antecedent 𝑥2 are derived, see Figure 5.28. As a result, 6 rules are fired (or activated), see highlighted

rows in Table 5.4.

Table 5.4. Fuzzy rules with singleton consequent.

Rule
(𝒍)

Antecedents Consequent

Workload
(𝒙𝟏)

Response
time (𝒙𝟐)

Nodes
(𝒚)

1 Very low Instantaneous -1.6

2 Very low Fast -1.4

3 Very low Medium 0

4 Very low Slow 0.6

5 Very low Very slow 1.4

6 Low Instantaneous -1.3

7 Low Fast -1.1

8 Low Medium 0.4

9 Low Slow 1

10 Low Very slow 1.6

11 Medium Instantaneous -1.6

12 Medium Fast -0.9

13 Medium Medium 0.6

14 Medium Slow 1.1

15 Medium Very slow 1.5

16 High Instantaneous -1.8

17 High Fast -1.4

18 High Medium 0.4

19 High Slow 1.1

20 High Very slow 1.4

21 Very high Instantaneous -1.9

22 Very high Fast -1.2

23 Very high Medium 0.5

24 Very high Slow 1

25 Very high Very slow 1.6

Figure 5.29 illustrates the inference process for the Rule #9. Here, 𝑦 represents the rule output and 𝐹9

represents its firing value. Figure 5.30 shows a black box representation of the inference module in

Figure 2.3 with respect to the 6 activated rules. The functionality of the inference module is to transform

the fuzzified inputs to the fuzzy output. However, this output needs to be processed in order to produce

a crisp output to be used in the feedback control loop. We describe the output processing in the next

section.

156

Figure 5.29. The inference engine: calculation of the firing degree for Rule #9 (inference operation: product).

Figure 5.30. The Inference engine module: maps IT2 FSs inputs into IT2 FSs outputs.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5954

0.3797

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9568
0.9377

157

5.5.1.6. Output Processor

The output-processing module aggregates the IT2 FSs of the fired rules to obtain the crisp output of the

T2 FLS. The output-processing module is the main difference between T1 FLSs and T2 FLSs. According to

Figure 2.3, the output-processing module is divided into the type-reducer and the defuzzifier sub-

modules. However, in T2 FLSs, there is no type-reducer (cf. Figure 5.16) since the output of the inference

is of T1 FSs and they only need to be defuzzified.

5.5.1.6.1. Type-reducer

The type-reducer aggregates IT2 FSs into an IT1 FS called the type-reduced set (note the transition

between type-2 to type-1). The number of input fuzzy sets matches the number of fired rules, while there

is only one output- the type-reduced fuzzy MF. This MF is calculated using the KM algorithm (N. N. Karnik

& Mendel, 2001), see Section 5.5.1.3.3. More specifically, the inputs to the algorithm are the fuzzy sets

𝐹𝑙 and 𝑦𝑙 which are the output of the inference engine. Note that 𝑙 is the index of the active rules.

5.5.1.6.2. Defuzzifier

Since the processes (in this research they are component connectors) that are under the control of the

FLSs can only be controlled with crisp numbers, the output of the FLSs are required to provide crisp

numbers. Since the output of the type-reducer is still fuzzy sets (i.e., interval T1 FS), we need another

module to transform this fuzzy set to a crisp output. The defuzzifier transforms the type-reduced fuzzy set

into a crisp output. It is the simplest subsystem of the FLS in terms of complexity of computation; the crisp

output value is calculated as the average of the upper and lower bounds of the type-reduced set.

Figure 5.31. The output processing: aggregate interval type-2 fuzzy sets and transforms them into a crisp output.

158

5.5.1.7. Fuzzy logic control surfaces

Fuzzy logic systems are entirely defined by their fuzzy rules and their corresponding membership

functions. The normalized control surfaces regarding the running example is presented in Figure 5.32.

Note that this surface shows the output of the following equation:

 [𝑌, 𝑦𝑙 , 𝑦𝑟] = 𝑓(𝑥) (5.26)

, for all inputs 𝑥 throughout the domain of input fuzzy sets.

Figure 5.32. Output control surface (a), confidence interval (i.e., 𝑦
𝑙
, 𝑦
𝑟
) (b) and their differences (i.e., 𝑦𝑟 − 𝑦𝑙) (c).

𝑌

(a)

(b) (c)

𝑦𝑙 , 𝑦𝑟
𝑦𝑟 − 𝑦𝑙

159

5.5.1.8. Benefits of Using IT2 FLS over T1 FLS

As shown in Section 5.5.1.7, the output of IT2 FLS is a boundary and a crisp number rather than a hard-

threshold as in T1 FLS (Wu, 2012). Therefore, the control action as the output of the FLS can be more

flexible providing a boundary, see the dashed lines in Figure 5.31. For instance, if the system requires a

high performance, the decision can be made based on the upper boundary, i.e. ⌈𝑦𝑟(40,50) = 1.1809⌉.

Alternatively, if the system let say requires saving cost, the decision can be made based on the lower

boundary, i.e. ⌊𝑦𝑙(40,50) = 0.9296⌋. In addition, if the system needs to achieve a compromise in user

experience and cost, the decision can be made based on any value in the boundary. This flexibility and the

ability to handle conflicting rules are the key benefits of IT2 FLSs over T1 counterparts that motivated us

to choose them for this research.

5.5.2. Running example

We use a running example to highlight the research challenges. Let us consider a Web server (F Chauvel

et al., 2010) built from the following components: a listener component (L) reads HTTP requests at a port

and transmits them to a data server component (DS) that returns the corresponding HTTP responses; A

cache component (C) reduces the response time by caching resolved requests; A filter component (F)

detects harmful requests (e.g. SQL injections); and a dispatcher component (D) enables the combination

of several data servers. In Figure 5.33, four possible architectural configurations (also known as modes

(Hirsch, Kramer, Magee, & Uchitel, 2006)) of the Web server (i.e., Idle, Normal, Effort, and Best Effort) are

selected to illustrate this mode switching as a result of the tradeoffs between environmental conditions

(e.g., request load) and system quality (e.g. performance index). The Idle mode as a default mode only

includes one listener and one data server to handle the low workload (i.e., 𝑤 < 𝐿). As soon as the

workload increases to a certain limit (i.e., 𝐿 < 𝑤 < 𝑀), the system switches to the Normal mode. If the

workload increases even more (i.e. 𝑀 < 𝑤 < 𝐻), the system will switch to the Effort mode, where two

data servers are both cached and filtered. For heavy loads of request (i.e. 𝑤 > 𝐻), the system will switch

to the Best Effort, where a group of three data servers is cached and filtered.

Figure 5.33. Architectural mode switching in Web server (adapted from (F Chauvel et al., 2010)).

160

5.5.3. Research challenges

As shown in Figure 5.33, environmental conditions (i.e., 𝑤) or quality index of the system govern

adaptations of the system at runtime. The adaptation logic utilizes some policies (also known as

adaptation strategies (S.-W. Cheng & Garlan, 2012), actions (Sykes et al., 2008) and rules (Batista et al.,

2005)) to reason about architectural mode switching. These policies are specified in terms of event-

condition-action (ECA) rules (as in (Batista et al., 2005; Fleurey & Solberg, 2009; D Garlan et al., 2004;

Sykes et al., 2008)). However, these rules are subject to different uncertainties, which makes the

adaptation analysis error prone. For instance, a “high” workload (cf. Figure 5.33) could mean one range

of values to one person, though possibly a very different range of values to someone else, and this can

vary over time. More precisely:

 Challenge 1. Different stakeholders often recommend different adaptation policies to the same
condition resulting in rules having the same antecedents, but different consequents. As a result, rule
application leads to uncertain consequents.

 Challenge 2. Qualitative values mean different things to different people (e.g., 𝐿, 𝑀, 𝐻). If we ask
users about the parameters of the membership function (e.g., center, spread) representing the
imprecise values, we are likely to get different answers. This leads to uncertain antecedents and
consequents.

The key challenge with respect to the above approach is the ignorance of uncertainty in the adaptation

reasoning process. The uncertainty in the “adaptation rules” and “membership functions” challenges the

system ability in making right adaptation decisions. The latter challenge is described, in detail, in the next

section.

5.5.4. Overview of autonomous adaptation reasoning

In this thesis, the autonomous reasoning process, discussed in Section 5.2.2, is realized using IT2 FLS. The

background chapter (i.e., Chapter 2) contains a more detailed description of IT2 FLSs. Figure 5.34 shows a

self-adaptive software within which the reasoning modules are replaced with an IT2 FLS. The reference

model we borrowed is FORMS (Danny Weyns et al., 2010). Based on this model, the base-level software

system is under the control of the meta-level reasoner. In this thesis, we consider component connectors

that are adapted by a mode-switching mechanism (see Chapter 6). In the meta-level, we realized the IBM

reference model for autonomic systems called MAPE-K (JO Kephart & Chess, 2003). As depicted in

Figure 5.34, users specify the adaptation logic in the form of if-then rules and the environment comprises

the components that interact with the connector. The details of the autonomous reasoning are described

in Section 5.2.2.

161

Figure 5.34. High-level view of autonomous fuzzy reasoning.

We now describe the high-level behavior of the autonomic controller that we have realized for connector

adaptation. The controller monitors the performance of the connector under control as well as the

number of requests at certain observation intervals. These inputs, after smoothing, are fed to the

reasoning module (i.e., the FLS). The reasoning module derives the appropriate connector mode and feeds

that to the execution module, which enacts the mode physically to the running system by throttling

operations executable on the runtime environment. The control loop is closed by starting the next control

loop after an appropriate time has been elapsed (i.e., control interval). In Sections 5.5.5 and 5.5.6, we

propose a method for constructing the fuzzy-based adaptation reasoning mechanism and in

Section 5.5.6.4, the reasoning logic behind it will be described.

In the remainder, we describe a method for designing the adaptation reasoning operating at the heart of

the self-adaptation mechanism.

5.5.5. Adaptation knowledge elicitation

In this research, fuzzy membership functions for adaptation rules (i.e., adaptation policies) must be

derived from data that were collected from a group of users of the connector under study. The principal

stages of the method that we describe here are initially proposed in (J Mendel & Wu, 2010; JM Mendel,

Karnik, & Liang, 2000; JM Mendel, 2001) as a generic methodology and adapted for fuzzy knowledge

elicitation in several different application domains, e.g., (Jamshidi et al., 2014; Solano Martínez, John,

Hissel, & Péra, 2012; Solano Martínez, 2012). In this thesis, we extend and adapt this methodology for

adaptation knowledge elicitation.

In Section 5.5.3, we explained that because words mean different things to different people, they are

uncertain. For the formulation of adaptation policies, we use linguistic words. As a result, fuzzy sets can

be adopted for a word that has the potential to capture its uncertainties. IT2 FSs are characterized by its

FOU and, therefore, have the potential to capture word uncertainties. In this section, we explain two

methods for designing IT2 FS models for linguistic words in adaptation policies: the first for people who

are knowledgeable about fuzzy logic and the second for non-experts in fuzzy logic.

162

A number of different methodologies for collecting data from a group of experts and mapping that data

into the parameters of T1 MFs have been reported in several works, e.g., (Klir & Yuan, 1995).

Unfortunately, none of these approaches is able to transfer the uncertainties about collecting word data

from a group of experts into a T1 MF, because T1 FSs do not have enough degrees of freedom to represent

this uncertainty.

In this chapter, all methods require that:

1. A continuous scale is considered for each variable. For the metrics that we choose for adaptation

reasoning most of the times a natural scale exists, e.g. as in workload, response time, end-to-end

latency, etc.

2. A vocabulary of qualitative (linguistics) words is produced that covers the entire scale.

A notable issue with the methodology we present here is whether or not data collected on one scale for

a specific application can be rescaled on a different scale for (i.e., transferred to) another application (J

Mendel & Wu, 2010). The probability elicitation literature (e.g., O’Hagan et al. (2006)) indicates that data

collection is sensitive to scale and is application (context) dependent.

For adaptation reasoning, a designer begins by forming a vocabulary of application dependent words, one

that is thorough enough to ensure that a person will feel linguistically comfortable interacting with the

adaptation reasoner. This vocabulary must include subsets of words that each expert expects together to

cover the scale, let us say [0,10]. Redundant words and their coverage are not issues in this methodology,

although they are important issues when designing an adaptation reasoner. For example, if–then rules

are usually only created for a small subset of words that cover the whole scale in this manner, keeping

the number of rules as small as possible.

5.5.5.1. Eliciting Adaptation Knowledge from Knowledgeable Experts in Fuzzy

From a high-level perspective, the method we describe here has the following steps:

1. The data reflecting the uncertainties about a word are collected from a group of experts to form

the FOUs related to each individual linguistic.

2. An IT2 FS for a word is defined as an aggregation of FOUs that is related to the word;

3. The aggregated FOU is mathematically modeled.

Definition 31. Uncertainty about a qualitative word regarding architecture adaptation is of two kinds:

(1) intra-uncertainty, which is the uncertainty a user has about the qualitative word in an adaptation

policy; and (2) inter-uncertainty, which is the uncertainty that a group of users has about the qualitative

word used in an adaptation policy.

It is shown that intra-uncertainty about a qualitative linguistic, 𝑊, can be modeled using an IT2 FS, 𝑊 (𝑝𝑖),

where 𝑖 = 1,… , 𝑛𝑊, see (J Mendel & Wu, 2010; JM Mendel, 2001).

An example of such an FOU is depicted in Figure 5.35. The width of the FOU that is roughly provided by a

person is associated with how uncertain the person is about a specific qualitative linguistic. A thin FOU

means a person has a small amount of uncertainty, while a thick FOU means the person has a large amount

of uncertainty regarding the linguistic.

163

Figure 5.35. FOU of person 1 for the linguistic "Medium" regarding the workload.

In principle, the FOUs could be extracted from a group of experts. In practice, and specifically in the

domain of self-adaptive software, this may be very difficult to do because such an expert must be a fuzzy

expert and understand the concepts of FS, MF, and FOU. In the domain of software and specifically users

or administrators, most experts are not knowledgeable about fuzzy concepts. For such a situation, we

describe another methodology in the next section to complement this. Here, it is assumed that it is

possible to obtain such a FOU.

An IT2 FS captures “first-order uncertainties,” whereas a T2 FS that has non-uniform FOU captures first-

and second-order uncertainties, see the definitions in the background chapter (i.e., Chapter 2). Based on

our experience from collecting information from experts regarding adaptation policies, they like the

questions to be as simple as possible in order to provide their opinions. In a number of occasions where

we have asked experts to assign a weighting function to their drawn FOU, it was almost impossible to

collect appropriate data. The uncertainty that exists about the FOU is categorized as a first-order

uncertainty, and the uncertainty about the weight that might be given to each element of the FOU,

constructing a three dimensional MF, is considered to be a second-order uncertainty (Jerry M. Mendel &

John, 2002). Note in this thesis, the focus is entirely on the first-order uncertainty of a FOU. Even though

it is not known how to collect data for second-order uncertainty (J Mendel & Wu, 2010), the reasoning

based on T2 FLSs is computationally expensive and not affordable for runtime analysis in self-adaptive

software.

The FOUs regarding the adaptation rules are collected from a group of experts. It is important to collect

such FOUs from a representative group; for example, a specific software application may only involve

users, technical administrators, architects, designers and so on. An example of a FOU that is extracted

from three people (i.e., 𝑝1, 𝑝2 𝑎𝑛𝑑 𝑝3) is depicted in Figure 5.36 for the linguistics term “low” response

time. The constraints that each expert must follow when sketching their FOU are that the upper bound

cannot exceed 1, the lower bound must not be less than 0, the lower and upper bounds cannot change

direction more than one time, and the FOU cannot extend outside of the [0, 10] (or some other normalized

boundary) domain for the primary variable. Each FOU models the intra-uncertainty about a word. The

collection of FOUs models the inter-uncertainties about a word.

1x
2x

)|(1pxu Medium

164

Figure 5.36. FOUs from three experts regarding the linguistic “Medium”.

Definition 32. Inter-uncertainty about an adaptation rule linguistic can be modeled by means of an

equally weighted aggregation of each person’s word FS, 𝑊 (𝑝𝑖) (𝑖 = 1, 2, . . . , 𝑛𝑊), where

𝑊 (𝑝𝑖) = {(𝑥, 𝜇𝑊 (𝑥|𝑝𝑖)), 𝑖 = 1, 2, . . . , 𝑛𝑊}

𝜇𝑊 (𝑥|𝑝𝑖) = [𝑎𝑊 (𝑥|𝑝𝑖), 𝑏𝑊 (𝑥|𝑝𝑖)] ⊆ [0,1]
(5.27)

Suppose one begins by assuming that inter-uncertainty about a word can be modeled by means of a

weighted aggregation of each person’s word FOU, where the weight represents a degree of belief

associated with each person. This suggests that a degree of belief is known or can be provided for each

person, which may or may not be reasonable. Consider the following three possibilities:

1. All experts are equal and the same weight should be assigned to each FOU that is provided by each

person.

2. Experts are treated differently, since some experts may have more knowledge about the meaning of

a linguistic than others. For instance, an architect may be more knowledgeable about the performance

of a system, and a system administrator may know more about the external environment of the

system.

3. Experts are treated differently, except now it is possible that a subject’s credibility depends on the

value of primary variable 𝑥 ∈ 𝑋, that is, some subjects may be more knowledgeable about a word for

certain regions of the variable 𝑥 than other subjects.

Note Scenarios 2 and 3 require additional information as opposed to Scenario 1, and that additional

information will itself be uncertain, leading to even further kinds of uncertainty; hence, in this thesis

Scenario 1 is focused on exclusively.

There are several ways to aggregate a group of expert’s equally weighted FOUs. Mathematical operators

such as “union”, “intersection”, and “addition” are operators to facilitate this aggregation. However, in

this thesis, “union” is used for several reasons. First, the union operator preserves the commonalities as

well as the differences across FOUs, while the intersection preserves only the commonalities. In this way,

the intersection operator abandons a lot of useful information. Aggregation by intersection leads to an

FOU that only shows total agreement across all experts regarding the adaptation policies. If a new expert’s

FOU does not intersect the existing aggregated FOU, then the resulting FOU would be empty. Second, the

addition operator destroys the underlying requirement that the FOU of the resulting FS must be in [0, 1].

)|(iMedium pxu

1p

3p
2p

165

Therefore, the secondary MFs of 𝑊 can be expressed as:

𝜇𝑊 (𝑥) = 𝜇𝑊 (𝑥|𝑝𝑖)

𝑛𝑊

𝑖=1

= [𝑎𝑊 (𝑥|𝑝𝑖), 𝑏𝑊 (𝑥|𝑝𝑖)]

𝑛𝑊

𝑖=1

𝐿𝑀𝐹(𝑊) = 𝜇𝑊 (𝑥) = min
𝑖=1,…𝑛𝑊

𝑎𝑊 (𝑥|𝑝𝑖)

𝑈𝑀𝐹(𝑊) = 𝜇𝑊 (𝑥) = max𝑖=1,…𝑛𝑊
𝑏𝑊 (𝑥|𝑝𝑖)

(5.28)

For example, the three FOUs depicted in Figure 5.36 for the linguistic “Medium” can be aggregated as in

Figure 5.37.

Figure 5.37. Aggregation of the three FOUs regarding the linguistic “Medium”.

The aggregated FOU for the example in Figure 5.36 is depicted in Figure 5.38. Note that the aggregated

FOU is bounded from above by 𝑈𝑀𝐹("𝑀𝑒𝑑𝑖𝑢𝑚") and from below by 𝐿𝑀𝐹("𝑀𝑒𝑑𝑖𝑢𝑚"), as in Figure 5.38.

Regardless of how many experts are asked to participate in data collection, the union of their FOUs have

lower and upper bounds, see Definition 23. As more experts are added to the data, the shapes of these

boundaries may change.

Figure 5.38. Aggregated FOU regarding the linguistic “Medium”.

Figure 5.39 depicts a trapezoidal function approximation to the UMF and LMF of the FOU in Figure 5.38.

The trapezoidal function is characterized by the four parameters 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑑. The triangular function is

characterized by the three parameters 𝑒, 𝑓, 𝑎𝑛𝑑 𝑔. As the aggregated word fuzzy set 𝑊 has an FOU

associated with it, namely 𝐹𝑂𝑈(𝑊), see equation (5.28), we denote the approximated fuzzy set by �̂�

and its associated FOU by 𝐹𝑂𝑈(�̂�):

)(xu Medium

)(xu Medium

166

�̂� = {(𝑥, 𝜇�̂�(𝑥))}

𝜇�̂�(𝑥) = [𝜇�̂�(𝑥), 𝜇�̂�(𝑥)]
(5.29)

Note that the closer 𝜇�̂�(𝑥) 𝑎𝑛𝑑 𝜇�̂�(𝑥) are to the 𝜇𝑊 (𝑥)𝑎𝑛𝑑 𝜇𝑊 (𝑥) over 𝑥 , the closer 𝐹𝑂𝑈(�̂�)

approximates 𝐹𝑂𝑈(𝑊).

Figure 5.39. Trapezoidal approximation of the UMF, and triangular approximation of the LMF of the linguistic “Medium”.

In summary, the methodology starts off by extracting the FOUs from each expert (i.e., 𝑊 (𝑝𝑖)), then the

union of FOUs is calculated (i.e., 𝑊), and finally an approximation of the linguistic fuzzy set (i.e., �̂�) is

derived. This approximation utilizes data extracted from experts.

The benefits of this methodology are as follows:

 The union of the person FOUs (the data) establishes the shape of the FOU directly.

 All of the data extracted from the experts are used so that no information is lost.

 If all uncertainty disappears (i.e., all experts provide the same MF (i.e., a T1 FS), then the IT2 FS reduces

to a T1 FS model.

However, this method has its own disadvantages. This method requires experts to be knowledgeable

about fuzzy theory. For example, if the method introduces uncertainties because the experts do not

understand what an FOU is, then the method’s uncertainties become intertwined with the experts’

uncertainties about the word, and this introduces another source of uncertainty. As a result, we introduce

a more suitable methodology for extracting adaptation policy knowledge from a group of experts that in

general might not understand fuzzy theory.

5.5.5.2. Eliciting Adaptation Knowledge from Experts who are not Knowledgeable in Fuzzy

In this section, we describe a methodology for eliciting adaptation knowledge considering that the experts

may not know about the very detail of fuzzy logic and are not be able to suggest FOUs by themselves.

From a high-level perspective, the method we describe here has the following steps:

1. Interval end-point data about an adaptation policy linguistic is collected from a group of experts.

2. The mean and standard deviation are established for the collected data.

3. The mean and standard deviation statistics are mapped into a parametric T1 fuzzy set.

4. A blurring parameter is used to transform the T1 FS to the corresponding IT2 FS.

)(ˆ xu
W

)(ˆ xW

)(
ˆ

x
W

167

The interesting point here is that this approach is similar to statistical modeling in which first the

underlying probability distribution is chosen and then the parameters of that model are fitted using data

and a meaningful design method, for example the method of maximum likelihood.

5.5.5.2.1. Methodology for collecting interval end-point data

The methodology is started by determining a normalized scale and creating a vocabulary of words that

covers the entire scale. Then the following critical two steps are performed: (1) randomize the linguistics1

and (2) survey a group of experts to provide end-point data for the linguistics on the normalized scale.

To better describe the methodology, we start by explaining a concrete example of data collection for an

adaptation reasoning problem. In this example, two variables need to be specified by qualitative

linguistics, i.e., workload and response time. Linguistic variable representing the value of workload was

divided into five levels: very low (VL), low (L), medium (M), high (H), and very high (VH). Similarly, linguistic

variable representing the value of response time were divided into five levels: instantaneous (I), fast (F),

medium (M), slow (S), very slow (VS). We also asked 10 experts to locate an interval for each linguistic

label for workload and response time in [0,100]. For the labels, we received 10 different intervals from

the 10 experts. We then calculated the mean and deviations of the two ends in Table 5.5.

Table 5.5. Data regarding Workload and Response time labels.

Linguistic
Means Standard Deviations

Start (𝒂) End (𝒃) Start (𝝈𝒂) End (𝝈𝒃)

W
o

rk
lo

ad

Very low 0 27 0 8.23
Low 22 41.5 7.15 7.09

Medium 36.5 64 5.80 3.94
High 61 82.5 4.59 6.77

Very high 78 100 6.32 0

R
e

sp
o

n
se

 t
im

e
 Instantaneous 0 7.2 0 5.20

Fast 6.1 20 4.07 5.27
Medium 18.2 41.5 5.59 8.51

Slow 38.5 63.5 7.09 9.44
Very slow 60 100 7.82 0

Because the data that was requested for each linguistic was a range, and each range is defined by the two

numbers, i.e., start and end points, the survey boiled down to sample statistics for the two numbers, i.e.,

their mean and standard deviation. The two end-point standard deviations represent the uncertainties

with respect to each linguistic. Note that for each linguistic, standard deviations are not the same for the

start and end.

The data regarding workload and response time in Table 5.5 are respectively visualized in Figure 5.40 and

Figure 5.41. For each linguistic, there is a heavy solid box between two points. The solid box is located at

the mean start and end for each linguistic. The hatched box to the left of the left-hand side of the solid

box and to the right of the right-hand of it each is equal to one standard deviation, listed in Table 5.5 for

the mean start and ends, respectively.

1 Note that we reordered the linguistics in order to reduce the threat of ordering effects. More precisely, experts
cannot correlate their word-interval ends from one word to the next when it is randomized.

168

Figure 5.40. Workload linguistics with their intervals and uncertainties.

Figure 5.41. Response time linguistics with their intervals and uncertainties.

Based on the visualized data in Figure 5.40, a number of observations can be made:

1. The hatched portions of the intervals for each label represent its uncertainty.

2. Some linguistics such as “Low” (see Figure 5.40) have relatively equal uncertainty for both end points,

while most of the linguistics have unequal uncertainty for their end-points.

3. There is no gap between the mean-values of the linguistics, implying that the selection of linguistics

for the two parameters were suitable. If for a parameter there was a gap between the mean-value

regarding one or more linguistics then either another word should be inserted between them or they

should be combined.

4. Experts unanimously agree that “very low” (see Figure 5.40) and “instantaneous” (see Figure 5.41)

start at zero, and there is almost no uncertainty about this. The same observation can be made for

the linguistics “Very high” and “Very slow”.

5. The 5 linguistics are appropriately covered by the interval [0,100].

6. The intervals between the mean start and ends are not of equal size and there is more (or less) overlap

between some linguistics than between other ones.

7. It is possible to cover the [1,100] interval with four labels (by omitting “Low” in Figure 5.40 and “Fast”

in Figure 5.41) and this is only possible because of linguistic uncertainties.

8. Linguistic uncertainty is useful because it lets the [0,100] interval be covered with a smaller number

of labels than without it.

9. Linguistics mean different things to different experts.

169

Note that the interval end-point data that are collected from a group of experts are random data.

Consequently, for each linguistic interval the following four statistics can be computed: sample mean and

standard deviation of the left end, 𝑎 and 𝜎𝑎, and sample mean and standard deviation of the right end-

point, 𝑏 and 𝜎𝑏, see Table 5.5.

5.5.5.2.2. Methodology for data pruning

In this step, data that have been collected from a group of experts (see Section 5.5.5.2.1) are pre-

processed in a way that the data are pruned by omitting unnecessary and unwanted data and then some

statistics are computed for the remaining intervals. After data intervals [𝑎𝑖, 𝑏𝑖] have been collected from

a group of 𝑛 subjects (𝑖 = 1, . . . , 𝑛) for a linguistic, two major steps needs to be done: (1) pruning the 𝑛

data intervals, and (2) calculating statistics for the data intervals that remain after the pruning step.

Pre-processing the 𝑛 interval end-point data [𝑎𝑖, 𝑏𝑖] involves four stages: (1) bad data pruning, (2) outlier

pruning, (3) tolerance-limit pruning, and (4) reasonable-interval pruning. Because of the data pruning,

some of the 𝑛 interval data are discarded and there remain 𝑚 ≤ 𝑛 intervals.

Stage 1. Bad Data pruning. During data collection, some experts do not pay enough attention to the

instructions and so provide useless results. For pruning this type of useless data, the following constraints

are used:

0 ≤ 𝑎𝑖 ≤ 100

0 ≤ 𝑏𝑖 ≤ 100

𝑎𝑖 ≤ 𝑏𝑖

(5.30)

If interval ends satisfy the constraints, then an interval is accepted; otherwise, it is rejected. After bad data

pruning, there remain 𝑛′ ≤ 𝑛 data intervals.

Stage 2. Outlier pruning. Such processing uses boxplots to identify and then eliminate outliers - outliers

are points that are unusually large or small. After outlier pruning, there remain 𝑚′ ≤ 𝑛′ data intervals

with the following data statistics: 𝑎′, 𝜎𝑎′ (mean and standard deviation of the 𝑚′ left end-points), 𝑏′, 𝜎𝑏′

(mean and standard deviation of the 𝑚′ right end-points), and 𝑎𝐿
′, 𝜎𝑎𝐿′ (mean and standard deviation of

the lengths of the 𝑚′ intervals).

Stage 3. Tolerance Limit Pruning. If a data interval [𝑎𝑖 , 𝑏𝑖] and its length 𝐿𝑖 satisfy the following conditions

(Walpole, Myers, & Myers, 2011), it is accepted, otherwise it is rejected.

𝑎𝑖 ∈ [𝑎
′ − 𝑘𝜎𝑎′ , 𝑎

′ + 𝑘𝜎𝑎′]

𝑏𝑖 ∈ [𝑏
′ − 𝑘𝜎𝑏′ , 𝑏

′ + 𝑘𝜎𝑏′]

𝐿𝑖 ∈ [𝑎𝐿
′ − 𝑘𝜎𝑎𝐿′ , 𝑎𝐿

′ + 𝑘𝜎𝑎𝐿′]

(5.31)

, where 𝑘 is tolerance factor, which is determined as explained in (Walpole et al., 2011). For instance, if

𝑘 = 3.379 then we can say that with 95% confidence the given limits contain at least 95% of the expert

data intervals regarding adaptation knowledge.

After this stage, there remain 𝑚′′ ≤ 𝑚′ ≤ 𝑛 data intervals with the following data statistics: 𝑎′, 𝜎𝑎′ (mean

and standard deviation of the 𝑚′′ left end-points), 𝑏′, 𝜎𝑏′ (mean and standard deviation of the 𝑚′′ right

end-points), and 𝑎𝐿
′, 𝜎𝑎𝐿′ (mean and standard deviation of the lengths of the 𝑚′ intervals).

170

Stage 4. Reasonable-Interval Pruning. We only need to keep overlapping intervals. More formally, if there

is such a 𝑎′ ≤ 𝑚 ≤ 𝑏′ that 𝑎𝑖 < 𝑚 < 𝑏𝑖 for all 𝑖 = 1,… ,𝑚′′ then the interval is accepted otherwise it is

discarded. As a result, there finally remain 𝑚 data intervals (1 ≤ 𝑚 ≤ 𝑛).

Now we have the pruned data and we need to turn them to useful information for transformation to fuzzy

sets. To each of the 𝑚 remaining data intervals, a probability distribution is assigned. Then statistics are

calculated for each interval using the probability distribution and the interval end-points. These statistics

will be used later in the next section. According to (Dubois, Foulloy, Mauris, & Prade, 2004), uniform

probability distribution is the most appropriate distribution when we only have incomplete knowledge

about the underlying data.

If a random variable 𝑋 is uniformly distributed in [𝑎, 𝑏] then (Walpole et al., 2011):

𝑚𝑒𝑎𝑛(𝑋) = (𝑎 + 𝑏) 2⁄

𝜎(𝑋) = (𝑏 − 𝑎) √12⁄
(5.32)

For each of the data interval [𝑎𝑖, 𝑏𝑖], data statistics 𝑆1, … , 𝑆𝑚 are calculated as follows:

 𝑆𝑖 = (𝑚𝑒𝑎𝑛𝑖(𝑋), 𝜎𝑖(𝑋)) (5.33)

These statistics are then used for probability-to-fuzzy transformation in the next section.

5.5.5.2.3. Methodology for Probability to Fuzzy Transformation

The methodology for transforming the data to type-2 fuzzy sets is originally introduced in (JM Mendel,

2008) and then the enhanced version of it is presented in (J. M. Mendel & Coupland, 2012). This method

is known as the interval approach (IA). In this section, we first briefly introduce this methodology and then

present a more simplified methodology for the transformation of interval data to IT2 FSs. Note that these

methodologies only make use of triangular T1 MF, left shoulder T1 MF, and right-shoulder T1 MF.

1. Transformation using IA Approach

Step 1. Establish and Compute FS Uncertainty Measures. Although many choices are available for

uncertainty measures of a T1 FS (Klir & Yuan, 1995), the mean and standard deviation of T1 FSs are used

for this purpose, see Table 5.6.

Table 5.6. Mean and standard deviation for the T1 MFs (JM Mendel, 2008).

Name Mean and Standard Deviation

Symmetric triangle
𝑚𝑒𝑎𝑛𝑀𝐹 = (𝑎 + 𝑏) 2⁄

𝜎𝑀𝐹 = (𝑏 − 𝑎) 2√6⁄

Left-shoulder trapezoid
𝑚𝑒𝑎𝑛𝑀𝐹 = (2𝑎 + 𝑏) 3⁄

𝜎𝑀𝐹 = (
1

6
(𝑎 + 𝑏)2 + 2𝑎2) − 𝑚𝑒𝑎𝑛𝑀𝐹

2)
1
2

Right-shoulder trapezoid

𝑚𝑒𝑎𝑛𝑀𝐹 = (2𝑎 + 𝑏) 3⁄

𝜎𝑀𝐹 = (
1

6
(𝑎′ + 𝑏′)2 + 2𝑎′

2
) −𝑚𝑒𝑎𝑛′𝑀𝐹

2
)
1
2

𝑎′ = 𝐿 − 𝑏

𝑏′ = 𝐿 − 𝑎

𝑚𝑒𝑎𝑛′𝑀𝐹 = 𝐿 −𝑚𝑒𝑎𝑛𝑀𝐹

171

Step 2. Transformations of the data interval into the parameters of T1 FSs. The parameters of a T1 FS are

calculated by equating the mean and standard deviation of a T1 FS to the mean and standard deviation of

a data interval. More specifically, the following equations need to be solved:

 𝑚𝑒𝑎𝑛𝑖𝑀𝐹 = 𝑚𝑒𝑎𝑛𝑖(𝑋)
𝜎𝑖𝑀𝐹 = 𝜎𝑖(𝑋)

(5.34)

, where 𝑚𝑒𝑎𝑛𝑖𝑀𝐹 , 𝜎
𝑖
𝑀𝐹 are calculated using Table 5.6, and 𝑚𝑒𝑎𝑛𝑖(𝑋), 𝜎𝑖(𝑋) are computed using (5.32).

The resulting T1 FSs, denoted as 𝑅𝑖𝑒, are called embedded T1 FSs, see Background Chapter.

Step 3. Compute an IT2 FS Using the Union of Embedded T1 FSs. The corresponding IT2 FS �̃� can be

computed as:

�̃� = ⋃ 𝑅𝑖𝑒

𝑚
𝑖=1

(5.35)

, where 𝑅𝑖𝑒 is the 𝑖th embedded T1 FS derived in the previous step.

2. Transformation using the Blurring Parameter

Let us assume the mean values of the interval ends of the linguistic labels are 𝑎 and 𝑏 with standard

deviations 𝜎𝑎 and 𝜎𝑏 respectively. More specifically:

𝑎 = 𝑚𝑒𝑎𝑛(𝑎𝑖)
𝑏 = 𝑚𝑒𝑎𝑛(𝑏𝑖)
𝜎𝑎 = 𝜎(𝑎𝑖)
𝜎𝑏 = 𝜎(𝑏𝑖)

(5.36)

In this methodology, we only make use of triangular T1 MF, left shoulder T1 MF, and right-shoulder T1

MF. Triangular T1 MFs are constructed by connecting: 𝑙 = (𝑎 − 𝜎𝑎 , 0),𝑚 = ((𝑎 + 𝑏)/2,1), 𝑟 = (𝑏 +

𝜎𝑏 , 0). Accordingly, trapezoidal MFs are constructed by connecting: (𝑎 − 𝜎𝑎, 0), (𝑎, 1), (𝑏, 1), (𝑏 + 𝜎𝑏 , 0).

As discussed in Section 5.5.5.2.1, there are uncertainties associated with the ends and as a result the

locations of the MFs. For instance, one may imagine a triangular T1 MF in: 𝑙′ = (𝑎 − 0.4 ∗ 𝜎𝑎, 0),𝑚 =

((𝑎 + 𝑏)/2,1), 𝑟′ = (𝑏 + 0.7 ∗ 𝜎𝑏 , 0). T1 MFs cannot capture these kind of uncertainties, while IT2 MFs

can handle them suitably. In IT2 MFs, the FOU can be obtained by specifying the UMF and LMF for each

linguistics. Let us consider the blurring parameter 0 ≤ 𝛼 ≤ 1. Then, we are able to construct the FOU. For

both the triangular and trapezoidal MFs, the locations of UMF and LMF are indicated in Table 5.7.

Table 5.7. Locations of the main points of IT2 MFs.

 Triangular Trapezoidal

𝑙𝑈𝑀𝐹 = (𝑎 − (1 + 𝛼) ∗ 𝜎𝑎, 0)

𝑚𝑈𝑀𝐹 = ((𝑎 + 𝑏) 2⁄ , 1)

𝑟𝑈𝑀𝐹 = (𝑏 + (1 + 𝛼) ∗ 𝜎𝑏 , 0)

𝑙𝐿𝑀𝐹 = (𝑎 − (1 − 𝛼) ∗ 𝜎𝑎, 0)

𝑚𝐿𝑀𝐹 = ((𝑎 + 𝑏) 2⁄ , 1)

𝑟𝐿𝑀𝐹 = (𝑏 + (1 − 𝛼) ∗ 𝜎𝑏 , 0)

𝑙𝑙𝑈𝑀𝐹 = (𝑎 − (1 + 𝛼) ∗ 𝜎𝑎, 0)

𝑢𝑙𝑈𝑀𝐹 = (𝑎 − 𝛼𝜎𝑎 , 1)

𝑢𝑟𝑈𝑀𝐹 = (𝑏 + 𝛼𝜎𝑏 , 1)

𝑙𝑟𝑈𝑀𝐹 = (𝑏 + (1 + 𝛼) ∗ 𝜎𝑏 , 0)

𝑙𝑙𝐿𝑀𝐹 = (𝑎 − (1 − 𝛼) ∗ 𝜎𝑎 , 0)

𝑢𝑙𝐿𝑀𝐹 = (𝑎 + 𝛼𝜎𝑎, 1)

𝑢𝑟𝐿𝑀𝐹 = (𝑏 − 𝛼𝜎𝑏 , 1)

𝑙𝑟𝐿𝑀𝐹 = (𝑏 + (1 − 𝛼) ∗ 𝜎𝑏 , 0)

172

If we choose 𝛼 = 0, then an IT2 MF will be reduced to a T1 MF. A blurring parameter 𝛼 = 1 implements

FSs with a maximum amount of blur and the widest FOUs. One may also imagine different blurring

parameters, let say 𝛼𝐿 and 𝛼𝑅 for each ends, to derive an asymmetric blurring.

5.5.5.3. Evaluation of Adaptation Knowledge Extraction Methodology

In order to evaluate the adaptation knowledge extraction, a dataset was collected from 21 experts2 for a

vocabulary of 5 linguistics. The linguistics were randomized in order to avoid the threats regarding effects.

For all linguistics, we asked the following question:

 “What are the ends of an interval that you associate with each linguistic?
Please provide the answer on a scale of 0 to 10.”

(5.37)

All of the data were collected according to 5.5.5.2.1, were pruned according to 5.5.5.2.2 and were

processed and transformed into IT2 FSs according to the two presented methodologies in 5.5.5.2.3. Note

that the operation details of the data collection including the template for data gathering are presented

in detail in Appendix A.

Table 5.8 summarizes the collected raw data from the 21 experts in the survey. Table 5.9 summarizes how

many data intervals remained in each of the four pruning stages. Table 5.9 also gives the final left and

right end-point statistics that were used to establish the each linguistics’ FOU. These statistics are based

on the 𝑚 remaining data intervals after stage 4 of pruning.

Table 5.8. Raw data for 5 linguistics w.r.t. workload collected from 21 experts.

 Linguistics w.r.t. Workload

Experts Very low Low Medium High Very high

P1 0 2 1.5 4 3.5 6.5 6 9 8.5 10

P2 0 2.5 2 5 4 6 6 8.5 8 10

P3 0 3 2.5 4.5 4 6.5 6 8 7 10

P4 0 3.5 3 4 4 6 6 9 8.5 10

P5 0 3 2 4 3 7 7 9 8.5 10

P6 0 2 1.5 4 3.5 6.5 6.5 8 7.5 10

P7 0 3 2.5 5 4.5 6.5 6 8 8 10

P8 0 3.5 3 4.5 4 6 5.5 7 7 10

P9 0 1 1 2.5 2.5 6 5.5 8.5 8 10

P10 0 3.5 3 4 3.5 7 6.5 7.5 7 10

P11 0 11 1 2 -1 4 7 8 8 10

P12 0 0.001 1 5 5 6 6 8 100 100

P13 0 2 1 4 3 7 6 8 7 10

P14 0 1 1 2.001 2 4 4 11 9 10

2 All the experts that we asked for this experiment were PhD students in software engineering whose theses were
on topics related to software architecture, software evolution and self-adaptive software. Note that the experts
were at different stages of their PhDs and located in different countries, including Australia, Canada, Austria, Italy
and United States. To enhance their knowledge about type-2 fuzzy logic, separate training tutorials (each took
around 1 hour and through Skype) were carried out before doing experiment. This tutorial consisted of an
introduction to fuzzy theory, type-1 and type-2 fuzzy set and membership function, the concept of FOU, LMF, UMF,
embedded fuzzy sets and fuzzy logic systems. Note that since they all have experience in web-based application
development, they have a good understanding of workload and response time concerns.

173

P15 0 2 2 4 4 6 6 8 8 10

P16 0 4 3 5 5 7 6 9 8 10

P17 0 5 4 6 5 7 6 9 9 10

P18 0 6 4 7 3 8 6 9 7 10

P19 0 0.5 0.5 1.5 1.5 8.5 8.5 9.5 9.5 10

P20 0 2 1 3 3 7 6 9 9 10

P21 0 1 0.5 4 4 6 6 9 7 10

Table 5.9. Remaining data intervals and their mean and standard deviation.

Linguistic
Pruning stages Left-end Right-end

𝒏′ 𝒎′ 𝒎′′ 𝒎 𝒂 𝝈𝒂 𝒃 𝝈𝒃
Very low (VL) 20 20 19 18 0 0 2.47 1.19

Low (L) 21 19 19 11 1.59 0.66 4.23 0.61

Medium (M) 20 18 17 17 3.85 0.75 6.47 0.45

High (H) 20 20 18 18 6.14 0.38 8.47 0.53

Very high (VH) 20 20 20 20 7.98 0.80 10 0

Having applied the two transformation approaches introduced in Section 5.5.5.2.3 to the derived statistics

of the data collection, two sets of different FOUs for the workload linguistics were derived. Figure 5.42

represents the FOUs regarding the IA approach, while Figure 5.44 illustrates the FOUs as a result of a

transformation with blurring parameter. Figure 5.43 illustrates the FOUs regarding the IA approach, but

with their embedded T1 MFs. Note that the linguistics are ordered in the figures so that the diagrams start

with left-shoulder FOUs throughout interior FOUs ending with right-shoulder FOUs. Note the differences

between the interior FOUs, as in Figure 5.42 they are shaped with trapezoidal UMFs and triangular LMFs,

while in Figure 5.44 they are shaped with triangular UMFs and LMFs. Note that in this example the number

of linguistics for the workloads is quite low (i.e., 5 words) but the interval [0,10] has been covered by

them. This shows that the number of linguistics in this example is appropriate and we do not need to add

or remove existing words. However, if we need a more efficient reasoner, we can reduce the number of

linguistics to minimum level. For example, the FOUs in Figure 5.42 can be reduced to the following sub-

vocabularies:

(𝑉𝐿, 𝑉𝐻), (𝑉𝐿,𝑀, 𝑉𝐻), (𝑉𝐿, 𝐻, 𝑉𝐻), (𝑉𝐿, 𝐿,𝑀, 𝑉𝐻), (𝑉𝐿, 𝐿, 𝐻, 𝑉𝐻), (𝑉𝐿,𝑀,𝐻, 𝑉𝐻)

(5.38)

Similarly, the FOUs in Figure 5.44 can be reduced to the following sub-vocabularies:

(𝑉𝐿,𝑀, 𝑉𝐻), (𝑉𝐿, 𝐿,𝑀, 𝑉𝐻), (𝑉𝐿,𝑀,𝐻, 𝑉𝐻)

(5.39)

More specifically, each of the sub-vocabularies can be substituted as the existing words to cover the

interval between [0,10]. In the reasoning part, we describe how this reduction will result in a more

efficient reasoning procedure.

Moreover, other potential scenarios may happen in different situations. For example, in one situation, the

designer may choose a smaller number of linguistics that cannot cover the whole interval. In this case, the

designer needs to add more linguistics to the existing vocabulary to accommodate this lack of words. In

other situations, the designer may choose more than enough linguistics. As a result, some of them might

have very similar FOUs. In this case, the designer needs to discard these redundant FOUs.

174

Figure 5.42. IT2 MFs of the workload linguistics resulting from the transformation using IA approach.

Figure 5.43. IT2 MFs of the workload linguistics after the transformation using IA approach with their embedded T1 MFs.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VL L M H VH

Number of requests

Number of requests

M
em

b
er

sh
ip

 g
ra

d
e

M
em

b
er

sh
ip

 g
ra

d
e

175

Figure 5.44. IT2 MFs of the workload linguistics resulting from the transformation using blurring parameter (Blurring here is 0.5).

In order to compare the derived FOUs in an objective manner, we adopted some uncertainty measures,

which are introduced in (Wu & Mendel, 2007). Intuitively, these uncertainty measures convey the

following characteristics of the FOU of a linguistic:

 The centroid calculates the center of gravity for the FOU.

 The fuzziness (entropy) is used to quantify the amount of vagueness in the word represented by the

FOU.

 The cardinality measures the average of membership grades in the FOU.

 The variance of measures FOU’s compactness, i.e. a smaller (larger) variance means the FOU is more

(less) compact.

 The skewness is an indicator of the FOU’s symmetry. This measure is smaller than zero when the FOU

skews to the right, and is larger than zero when it skews to the left, and is equal to zero when it is

symmetrical.

For a more formal definitions and the formulas for calculating the values of these measure please refer to

(Wu & Mendel, 2007).

By an examination of the uncertainty measurement data in Table 5.10 concerning the FOUs created as a

result of the transformation methods, several observations can be made. The fuzziness of the FOUs results

from an IA approach that is higher than the ones that resulted from the blurring approach. This means

that the vagueness of the linguistics represented by the FOU that is derived based on IA approach is

higher. Similarly, the values of variance of the linguistics represented by the FOU that is derived by IA

approach is higher. This is obvious as the FOUs in Figure 5.44 are more compact than the ones in

Figure 5.42. However, the cardinality of the former FOUs are lower than the latter ones. For the other two

measures (i.e., centroid and skewness), no specific differences can be observed.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u

VL L M H VH

Number of requests

M
em

b
er

sh
ip

 g
ra

d
e

176

Table 5.10. Uncertainty measures of the IT2 FSs of the workload linguistics w.r.t. the two transformation approaches.

Transformation
Method

Linguistic
Uncertainty Measure

Centroid Fuzziness Cardinality Variance Skewness

IA

VL 1.7594 0.3650 0.2865 4.0249 8.6027

L 2.9056 0.4095 0.3489 1.5769 0.4944

M 5.0643 0.4073 0.3452 1.8448 -1.5161

H 7.3043 0.3982 0.3228 1.0712 -0.0784

VH 9.0226 0.3586 0.3045 1.2233 -1.6717

Blurring
𝜶 = 𝟎. 𝟏

VL 1.5449 0.1360 0.8069 0.8596 0.1023

L 2.8883 0.3667 0.4796 0.6363 -0.0086

M 5.1333 0.3716 0.4794 0.6681 -0.0239

H 7.3583 0.3701 0.4823 0.4367 0.0131

VH 8.7825 0.1175 0.8309 0.5261 -0.0367

Blurring
𝜶 = 𝟎. 𝟓

VL 1.5659 0.2074 0.7084 0.9640 0.3737

L 2.8899 0.3672 0.4253 0.6643 -0.0168

M 5.1349 0.3714 0.4253 0.6946 -0.0489

H 7.3567 0.3668 0.4346 0.4516 0.0243

VH 8.7666 0.1850 0.7390 0.5692 -0.1315

Blurring
𝜶 = 𝟏. 𝟎

VL 1.5561 0.3040 0.6304 1.4679 1.5235

L 2.8847 0.3669 0.3731 0.7524 -0.0423

M 5.1305 0.3638 0.3724 0.7943 -0.1488

H 7.3590 0.3671 0.3868 0.4966 0.0706

VH 8.7824 0.2741 0.6663 0.7896 -0.5138

There are also some other characteristics belonging to each of the transformation approaches. One of the

most prominent differences is the existence of a design parameter in the blurring approach. The blurring

parameter is particularly useful for the designer of adaptive systems to embed more uncertainty into the

FOUs of linguistics. Therefore, this parameter can act as one of the design parameters that provide more

flexibility to the designer of a fuzzy logic controller in order to design it in a way that better accommodates

environmental uncertainties (Sepúlveda, Castillo, Melin, Rodríguez-Díaz, & Montiel, 2007).

In the design of fuzzy logic systems, it is necessary that when all sources of uncertainty disappear, a T2

design must reduce to a T1 (N. Karnik & Mendel, 1998). The blurring parameter provides a straightforward

mechanism for this reduction. If we change 𝛼 to zero, then IT2 MF will be reduced to a T1 MF. On the

other hand, a blurring parameter 𝛼 = 1 implements FSs with maximum embedded uncertainty.

Note that forcing experts to understand the concept of a FOU certainly limits the knowledge elicitation

method to experts who either already know about fuzzy theory or are trained in fuzzy theory just before

the elicitation session. This can introduce methodological uncertainties into the elicitation method, and

as a result, linguistic uncertainties are a combination of methodological uncertainties and actual linguistic

uncertainties. These cannot be distinguished from each other because no measure for the methodological

uncertainties is available as opposed to the linguistic measures of uncertainties that we discussed earlier

in this section. Therefore, if a knowledge elicitation methodology does not need that an expert to know

anything about the concept of FOU or similar concepts in fuzzy theory, this is considered a favorable point

for that method. Note that the knowledge elicitation approach introduced in Section 5.5.5.2 does not

require such expertize.

177

5.5.6. Fuzzy logic system design for adaptation reasoning

In this section, we design and develop three different FLSs to perform the adaptation reasoning of a

component-based system introduced in Section 5.5.2. The difference between the FLSs is the level of

uncertainty that we have embedded in their membership functions. The first FLS is a T1 FLSs that has an

uncertainty of 0% , the second and the third IT2 FLSs encompass an uncertainty of 50% and 70%

respectively. The design of the MFs is based on the elicitation approach presented in Section 5.5.5.2. In

this thesis, we propose an approach to model and minimize the effects of uncertainties in self-adaptive

software by using interval type-2 FLSs.

The objective of this research is to study the feasibility as well as the implications of the use of type-2

fuzzy logic in real world self-adaptive software in general and self-adaptive software connectors in

particular. Note that the optimization of the designed FLSs is not considered. However, different levels of

uncertainty in the MFs are considered. This choice allows us to evaluate IT2 and T1 fuzzy controllers under

comparable conditions. Note that the input and output MFs are defined as trapezoidal and triangular MFs

for the two input and one output fuzzy sets.

5.5.6.1. Rule-base design

In self-adaptive systems, quantitative parameters are often classified into two classes: 1) Environmental

variables (e.g., load), which are not under the control of the application. 2) Internal quality variables (e.g.,

performance), which indicate how well the application is functioning in the environment in which they

are embedded. In the running example, linguistic variables representing the value of input parameters

were divided into three levels: low (L), medium (M), high (H). The consequent (i.e., adaptation policy) was

divided into the architectural modes of the system (i.e., Idle, Normal, Effort, and Best Effort as in

Figure 5.33). To design the fuzzy rules of the controller, we collected the data by performing a data

collection survey among 10 domain experts (see Section 5.5.5 for more details about the methodology

and the domain experts background). We used questions as follows to extract knowledge from experts:

 IF (workload is high AND performance is low), THEN (system must switch to …). (5.40)

These experts were asked to choose a consequent using one of the possible architectural modes. Not

surprisingly, different experts chose different modes for the same questions. The questions and conflicting

responses are summarized in Table 5.11. Note that in order to reduce the threat of ordering effects, we

reordered the questions.

178

Table 5.11. Questions for adaptation policies and responses.

Rule
(𝒍)

Antecedents Consequent

𝑪𝒂𝒗𝒈
𝒍 𝒄𝒂𝒗𝒈

𝒍 Work
Load

Performance Idle Normal Effort
Best

Effort

1 Low Low 1 7 2 0 [2.12779, 2.57019] 2.34908

2 Low Medium 2 8 0 0 [1.838, 2.2477] 2.04386

3 Low High 9 1 0 0 [0.95005, 1.27015] 1.11832

4 Medium Low 0 2 7 1 [2.87412, 3.34652] 3.10914

5 Medium Medium 0 4 6 0 [2.58052, 3.07552] 2.8273

6 Medium High 0 5 5 0 [2.49905, 2.9841] 2.7408

7 High Low 0 0 2 8 [3.95168, 4.14648] 4.04402

8 High Medium 0 0 4 6 [3.69036, 3.97016] 3.82634

9 High High 0 1 5 4 [3.34757, 3.70242] 3.52216

We also asked the experts to locate each linguistic label for both antecedents and consequents in the

interval [0,5]. For each linguistic labels, we received 10 intervals from the 10 experts. We then calculated

the mean and deviations of the two ends in Table 5.12. Note here, for simplicity, we assume that the

linguistics for both antecedents have the same quantification.

Table 5.12. Data regarding antecedents and consequent labels.

Linguistic
Means Standard Deviations

Start (𝒂) End (𝒃) Start (𝝈𝒂) End (𝝈𝒃)

A
n

te
ce

d

e
n

ts
 Low 0 1.87 0 0.51

Medium 1.92 3.43 0.98 0.83

High 3.93 5 0.41 0

C
o

n
se

q
u

e
n

t Idle 0 1.64 0 0.62

Normal 1.32 2.95 0.39 0.91

Effort 2.37 3.87 0.72 0.88

Best
Effort

3.64 5 0.22 0

5.5.6.2. Input membership functions design

The input fuzzy sets (regarding workload and performance) are composed by the 3 membership functions.

The membership functions are distributed in the normalized domain of the fuzzy set (i.e., in the interval

[0,5]) as illustrated in Figure 5.45 and Figure 5.46 respectively for the uncertainty level 50% and 70%

(i.e., blurring parameters 0.5, 0.7). Note that for transformation of the data presented in Table 5.12 to

these MFs, the methodology described in 5.5.5.2.3.2 have been used.

179

Figure 5.45. IT2 MFs of the antecedents’ linguistic labels (𝛼 = 0.5).

Figure 5.46. IT2 MFs of the antecedents’ linguistic labels (𝛼 = 0.7).

5.5.6.3. Output membership functions design

The output fuzzy set is composed by the 4 membership functions regarding the architectural modes (see

Figure 5.33). The membership functions are distributed in the normalized domain of the fuzzy set (i.e., in

the interval [0,5]) as illustrated in Figure 5.47. Note that for transformation of the data presented in

Table 5.12 to these MFs, the methodology described in Section 5.5.5.2.3 have been used.

Figure 5.47. IT2 MFs of the consequent’s linguistic labels.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u

M
em

b
er

sh
ip

 g
ra

d
e

M
em

b
er

sh
ip

 g
ra

d
e

M
em

b
er

sh
ip

 g
ra

d
e

180

5.5.6.4. Adaptation reasoning process using the designed FLS

The overall view of the autonomous controller for adaptation reasoning is shown in Figure 5.34. As

illustrated, the controller covers both design-time and runtime. During design-time, the aim is to design a

fuzzy controller, specify its rule-base (see Section 5.5.6.1), and derive appropriate MFs (see Section 5.5.6.2

and 5.5.6.3). At runtime, while the controller starts operating for connector self-adaptation, it keeps

monitoring quality and environmental data that may affect non-functional requirement satisfaction. The

controller continuously adjusts the system configuration with respect to runtime data that may affect

changes in the connector behavior. The key mechanism for decision making at runtime is the fuzzy

inference process. In the following, we discuss each phase in turn and describe the relevant activities.

Design-time. The approach starts at design-time when the architecture of the fuzzy controller is designed

through a feedback loop. The key point here is to perform pre-computations of costly calculations to allow

a runtime efficient adaptation reasoning based on fuzzy inference. The main reason is that fuzzy controller

need depends on a costly calculation of type-reduction algorithm (N. N. Karnik & Mendel, 2001) in order

to produce appropriate control actions. Unfortunately, IT2 FLSs, in the traditional design, can hardly satisfy

the execution time constraints normally imposed by runtime analyses because of costly centroid

calculations, which are proportional to the number of rules in the rule-base. In particular, the excessive

use of centroid calculations at runtime leads to unsatisfactory execution time. We will discuss the details

concerning the computational complexity in the evaluation section.

The rules in this work are in the form of multi-input single-output:

 𝑅𝑙: 𝐼𝐹 𝑥1 𝑖𝑠 �̃�1
𝑙 𝑎𝑛𝑑…𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 �̃�𝑝

𝑙 , 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 �̃�𝑙 (5.41)

Because the preferences of users may not be similar, many adaptation rules in the mind of users may be

conflicting. In this step, rules with the same if part are combined into a single rule. For each response that

we received from the users, we have:

 𝑅𝑙: 𝐼𝐹 𝑥1 𝑖𝑠 𝐹1
𝑙 𝑎𝑛𝑑…𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐹𝑝

𝑙 , 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝑦(𝑡𝑢
𝑙) (5.42)

, where 𝑡𝑢
𝑙 is the index for the available responses. In order to combine these conflicting rules, we use the

average of all the responses for each rule and use this as the centroid of the rule consequent. Note that

as indicated in (5.41), the rule consequents are IT2 FSs. However, when the type reduction is used, these

IT2 FSs are replaced by their centroids in the computation, so we represent them as intervals [𝑦𝑛, 𝑦
𝑛
] or

crisp values when 𝑦𝑛 = 𝑦
𝑛

. This leads to rules that have the following form:

𝑅𝑙: IF (workload (𝑥1) is �̃�𝑖1 , AND performance index (𝑥2) is �̃�𝑖2), THEN (target

mode (𝑦) is 𝐶𝑎𝑣𝑔
𝑙).

(5.43)

, where 𝐶𝑎𝑣𝑔
𝑙 is defined as:

 𝐶𝑎𝑣𝑔
𝑙 =
∑ 𝑤𝑢

𝑙 × 𝐶�̃�𝑢
𝑁𝑙
𝑢=1

∑ 𝑤𝑢
𝑙𝑁𝑙

𝑢=1

 (5.44)

, here 𝐶�̃�𝑢is the centroid of IT2 FSs �̃�𝑢, (𝑢 = 1,2,3,4), and 𝑤𝑢
𝑙 is the weight associated with 𝑢th consequent

of the 𝑙th rule (cf. Table 5.11). The centroids of the four IT2 FSs are as follows:

181

𝐶�̃�1 = [0.8232, 1.1305], 𝐶�̃�2 = [2.0917, 2.527]

𝐶�̃�3 = [2.9064, 3.4412], 𝐶�̃�4 = [4.213, 4.3228]
(5.45)

Therefore, each 𝐶𝑎𝑣𝑔
𝑙 (see Table 5.11) can be computed with the Equation (5.44). For instance, 𝐶𝑎𝑣𝑔

4 ,

which is associated to rule number 4 (cf. Table 5.11) is calculated as:

 𝐶𝑎𝑣𝑔
4 =
0 × 𝐶�̃�1 + 2 × 𝐶�̃�2 + 7 × 𝐶�̃�3 + 1 × 𝐶�̃�4

0 + 2 + 7 + 1
= [2.87412,3.34652] (5.46)

To summarize, we transform the rule base with IT2 MFs as consequents to a rule base with crisp

consequents (cf. Table 5.11) to enable runtime efficient adaptation reasoning.

Runtime. When the approach moves to runtime, its activities are inspired by the MAPE-K loop shown in

Figure 5.34. The quality data collected through monitoring must be smoothed and normalized (simply

transform to an appropriate scale) that can be used to feed the fuzzy controller. This normalization in

general depends on the scale that rule antecedents are specified. An example of such transformation can

be found in our recent publication (Jamshidi et al., 2014).

Let us imagine the normalized values regarding the workload and performance index are 𝑥1 = 2.5 𝑥2 =

3.5 respectively, see the solid lines in Figure 5.45. For 𝑥1 = 2.5, two IT2 FSs regarding the linguistics �̃�1 =

𝐿𝑜𝑤 and �̃�2 = 𝑀𝑒𝑑𝑖𝑢𝑚 with the degrees [0,0.2647] and [0.8594,0.9213] are fired. Similarly, for 𝑥2 =

3.5 , two IT2 FSs regarding the linguistics �̃�2 = 𝑀𝑒𝑑𝑖𝑢𝑚 and �̃�3 = 𝐻𝑖𝑔ℎ with the firing degrees

[0.2949,0.5875] and [0,0.4512] are fired. Consequently, four rules are fired: 𝑅2: (�̃�1, �̃�2), 𝑅
3: (�̃�1, �̃�3),

𝑅5: (�̃�2, �̃�2), 𝑅
6: (�̃�2, �̃�3), see Table 5.11. The firing intervals are then computed. For instance, the firing

interval (𝐹5) associated to the rule 𝑅5 is:

𝑓5 = 𝜇�̃�15

(𝑥1
′) ⨂𝜇�̃�25

(𝑥2
′) = 0.8594 × 0.2949 = 0.2534

𝑓
5
= 𝜇�̃�15
(𝑥1
′) ⨂𝜇�̃�25

(𝑥2
′) = 0.9213 × 0.5875 = 0.5413

(5.47)

By following similar procedure, the other firing intervals are: 𝐹2 = [0,0.1555], 𝐹3 = [0,0.1194], 𝐹6 =

[0,0.4157]. By using a center-of-set type reducer (note that the type-reducer that we use here is called

center-of-sets as given in Definition 33), the output can be obtained:

 𝑌𝐼(2.5,3.5) = [𝑦𝑙(2.5,3.5), 𝑦𝑟(2.5,3.5)] = [1.9934,3.0755] (5.48)

Definition 33. The center-of-set type reduction is computed as:

𝑌𝑐𝑜𝑠 =

∑ 𝑓𝑙 × 𝑦𝑙𝑁
𝑙=1

∑ 𝑓𝑙𝑁
𝑙=1

𝑓𝑙∈𝐹𝑙

𝑦𝑙∈𝐶
𝐺 𝑙

= [𝑦𝑙 , 𝑦𝑟]
(5.49)

, where 𝑓𝑙 ∈ 𝐹𝑙 is the firing degree of rule 𝑙 and 𝑦𝑙 ∈ 𝐶�̃�𝑙 is the centroid of the IT2 FS �̃�𝑙 (cf. Definition
30). Note 𝑦𝑙 , 𝑦𝑟 are computed by the KM algorithm (N. N. Karnik & Mendel, 2001).

The defuzzified output can then be calculated:

182

 𝑌(2.5,3.5) =
1.9934 + 3.0755

2
= 2.5345 (5.50)

Similarly, we can compute 𝑌(𝑥1, 𝑥2) for all the possible normalized values of the input parameters

(𝑥1, 𝑥2 ∈ [0,5]). The resulting hyper-surfaces 𝑌𝐼𝑇2 = 𝑓(𝑥1, 𝑥2), 𝑌
𝑇1 = 𝑓(𝑥1, 𝑥2) corresponding to the

output of the designed IT2 and T1 FLS for adaptation reasoning are shown in Figure 5.48 and Figure 5.50

respectively. Note that 𝑌𝐼𝑇2,𝑇1(𝑥1, 𝑥2) ⊆ [0,5] for any (𝑥1, 𝑥2). Due to the space limitations, we have not

discussed the T1 reasoning process, but the calculations are similar except that in the calculations we use

the T1 centroid 𝑐𝑎𝑣𝑔
𝑙 instead of the IT2 centroid 𝐶𝑎𝑣𝑔

𝑙 , see the last two columns in Table 5.11.

5.5.6.5. Fuzzy logic control surfaces

The designed fuzzy logic system for adaptation reasoning is completely defined by its membership

functions (see Sections 5.5.6.2 and 5.5.6.3) and fuzzy rules (see Section 5.5.6.1). Having performed the

reasoning process for all input values (i.e., throughout the domain of input fuzzy sets), the control surfaces

defined by Equation (5.26) are illustrated in Figure 5.48 (for uncertainty level 50%), Figure 5.49 (for

uncertainty level 70%) and Figure 5.50 (for uncertainty level 0%, i.e., control surface for T1-FLS). These

figures reveal that the higher the uncertainty level is, the larger the confidence interval would be.

Figure 5.48. Output control surface of the IT2 FLS for adaptation reasoning (𝛼 = 0.5) (a), confidence interval (i.e., 𝑦
𝑙
, 𝑦
𝑟
) (b) and

their differences (i.e., 𝑦𝑟 − 𝑦𝑙) (c).

A
rc

h
it

ec
tu

ra
l m

o
d

e

𝑦𝑙 , 𝑦𝑟 𝑦𝑟 − 𝑦𝑙

183

Figure 5.49. Output control surface of the IT2 FLS for adaptation reasoning (𝛼 = 0.7) (a), confidence interval (i.e., 𝑦
𝑙
, 𝑦
𝑟
) (b) and

their differences (i.e., 𝑦𝑟 − 𝑦𝑙) (c).

Figure 5.50. Output control surface of the T1 FLS.

5.5.7. Benefits of Using IT2 FLS over T1 FLS

The process of adaptation reasoning is a decision-making problem: choosing an appropriate mode for the

running system given the environmental and system situation. As shown in Section 5.5.6.5, the output of

the designed IT2 FLS is a boundary instead of a hard-threshold as in T1 FLSs (JM Mendel et al., 2000; Wu,

2012), compare Figure 5.48 and Figure 5.50. Therefore, as two vertical dashed lines in Figure 5.47 indicate,

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1.5

2

2.5

3

3.5

4

input2
input1

o
u
tp

u
t1

A
rc

h
it

e
ct

u
ra

l m
o

d
e

A
rc

h
it

ec
tu

ra
l m

o
d

e

𝑦𝑙 , 𝑦𝑟 𝑦𝑟 − 𝑦𝑙

184

the decision for a mode switch can be more flexible providing a boundary. For instance, if the system

requires operating with a high performance, the decision can be made based on the upper decision

boundary, i.e. 𝑦𝑟(2.5,3.5) = 3.0755. As a result, 𝑀3 = 𝐸𝑓𝑓𝑜𝑟𝑡 would be chosen. On the other hand, if

the system requires saving energy, the decision can be made based on the lower boundary, i.e.

𝑦𝑙(2.5,3.5) = 1.9934 . Accordingly, 𝑀1 = 𝐼𝑑𝑙𝑒 would be chosen. In addition, if the system needs to

achieve a compromise in performance and energy utilization, the decision can be made based on any

value between the lower and upper boundaries. Note the lower and upper decision boundary as depicted

in Figure 5.48 are for the blurring value of 𝛼 = 0.5. A different confidence interval can be derived by

changing 𝛼 . In addition, IT2 FLSs produce smoother behaviors, see the difference in Figure 5.48 and

Figure 5.50. This provides a less disruptive approach (Linda & Manic, 2011). These characteristics and the

ability to handle conflicting rules are the key benefits of IT2 FLSs over T1 FLSs that motivated us to choose

it for adaptation reasoning of component connectors in this thesis.

Until this point of this chapter, we have described our approach, i.e., RobusT2, for designing a type-2 fuzzy

logic controller, which is able to reason about connector adaptation at runtime. We can position the

RobusT2 framework in existing adaptation reasoning approaches, see Table 5.1. In the following sections,

we first evaluate some characteristics of the framework as we claimed in this thesis. We also discuss some

threats to the validity of this work. Note that this is only a primary evaluation of the framework. A

comprehensive evaluation of the framework, in a real-world context, is given in Chapter 7.

5.5.8. Experimental evaluations and validation

In this section, we present a number of experimental studies on an adaptive Web server to answer the

following research questions:

- Q1 (Effectiveness). Is it effective for avoiding rule-explosion?

- Q2 (Robustness). Is it robust against measurement noises?

5.5.8.1. Adaptation rule reduction (Q1)

Rule explosion is a major disadvantage of rule-based reasoning approaches in self-adaptive software

(Fleurey & Solberg, 2009; D Garlan et al., 2004). More specifically, rule-based reasoning suffers from

scalability issues with respect to the management of very large rule sets. In this section, we show the

effectiveness of adopting IT2 FLS in eliminating rule explosion.

We applied a rule reduction method, called SVD-QR (Liang & Mendel, 2000), to the FLS designed for

autonomous adaptation reasoning. As you may recall from Section 5.5.6.1, the initial number of rules

were 9. We applied the rule reduction to both T1 and IT2 FLS. For each of the two T1 and IT2 FLSs, we

derived 20 different designs with slightly different parameters before rule reduction. We vary 𝑚𝑈𝑀𝐹,𝐿𝑀𝐹

in triangular and 𝑢𝑙𝑈𝑀𝐹,𝐿𝑀𝐹 , 𝑢𝑟𝑈𝑀𝐹,𝐿𝑀𝐹 in trapezoidal MFs to derive the 20 different designs. Each design

of the FLSs was then rule-reduced using the SVD-QR method. Afterwards, we evaluated the performance

of the rule reduction by measuring the difference between the outputs of each rule-reduced FLSs with

corresponding original designs. We ran the two versions 10,000 times and compared their outputs using

root means square metric (RMSE):

185

 𝑅𝑀𝑆𝐸 = √
∑ (𝑌(𝑥1, 𝑥2)

(𝑖) − 𝑌𝑟(𝑥1, 𝑥2)
(𝑖))2𝑑

𝑖=1

𝑑
 (5.51)

, where 𝑌(𝑥1, 𝑥2) is the output of the original design and 𝑌𝑟(𝑥1, 𝑥2) is the output of the rule-reduced FLS.

In other words, RMSE is a measure of distance between hyper-surfaces of the original and the rule-

reduced FLS (cf. Figure 5.48). We summarize the measured RMSEs for the FLSs in Figure 5.51. The ranges

of rules after reduction over the 20 realizations are [3,4], [3,5] for T1 and IT2 respectively. We also

calculated the range of reduced rules for different FLS designs as summarized in Table 5.13.

Table 5.13. The performance of rule reduction in different scenarios.

Scenario
Setting

(# antecedents, # rules)
Rules

after reduction

1 2, 9 [3,5]

2 3, 27 [7,11]

3 4, 81 [23,31]

4 5, 243 [72,85]

5 6, 729 [221,256]

Figure 5.51. The RMSEs for the two FLS types over 20 designs.

Based on Table 5.13 and Figure 5.51, it is observed that:

 The rule reduction reduced the rules quite considerably.

 The rule reduction for adaptation reasoning was successful for both types of FLS without significant
error.

 IT2 FLSs are more robust due to the lesser mean error and lesser variation in the estimation error.

 T1 FLSs in some realizations drop more rules in comparison with the IT2 FLSs. However, as it is
reported in a number of seminal works (JM Mendel & John, 2002; JM Mendel, 2000), IT2 FLS original
designs, i.e. before rule reduction, can be designed with fewer rules.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Type-1 FLS Type-2 FLS

R
M

SE

186

5.5.8.2. Robustness testing of the reasoner (Q2)

In this chapter, we presented a framework, called RobusT2, to handle the uncertainty related to the

adaptation process of self-adaptive component connectors and we claim that the systems enhanced by

such framework are resilient against the uncertainty leaking to the reasoning engine. In this section, we

provide some experimental evidence to support this claim.

In this experiment, the robustness of a group of IT2 FLSs was examined against dynamic noise injected to

the input measurement data with amplitudes from 1% to 10%. The injected noise is independent additive

white Gaussian samples with zero mean and finite variance. This kind of noise is considered to cover the

potential disturbances in self-adaptive software (Esfahani et al., 2011). We injected noises to the both

input measurements, i.e. 𝑥1, 𝑥2. We ran RMSE measurements for each level of noise 100 times and for

each RMSE measurement, we used 10,000 data items as input. Figure 5.52 shows RMSEs for the 10 levels

of uncertainty for the original FLS with a blurring value of 𝛼 = 0.5. Figure 5.53 and Figure 5.54 show the

RMSEs for the same FLS design but with blurring values 𝛼 = 0.7, 0.95 respectively. We also measured the

RMSEs for the designed T1 FLS, see Figure 5.55.

Figure 5.52. The RMSEs for the FLS under noise.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Noise Amplitude

R
M

SE

187

Figure 5.53. The RMSEs for the FLS with blurring 0.7.

Figure 5.54. The RMSEs for the FLS with blurring 0.95.

Several observations can be drawn from the analysis of the results. The performance deteriorations when

increasing the noise level from left to right in Figure 5.52 were negligible. In other words, the distribution

of RMSEs exhibits the robustness of the IT2 FLSs when dealing with dynamic input noises. The increase in

the value of blurring from 0.5 to 0.7 led to a better performance against noise (cf. Figure 5.52 and

Figure 5.53). Interestingly, further increasing of the blurring from 0.7 to 0.95 results in performance

degradation, worsening the performance of the original design (cf. Figure 5.52 and Figure 5.54). This is

attributed to the overly wide FOUs (Linda & Manic, 2011). Therefore, selecting a proper value for the

blurring parameter when designing a controller is critical. However, determining such a value is

application-specific and there is no general-purpose benchmark. As another interesting observation, we

also noticed a much better performance of the IT2 FLS for handling input noises compared to the T1 FLS,

see the steep increase in errors in Figure 5.55.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

0

0.2

0.4

0.6

0.8

1

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Noise Amplitude

Noise Amplitude

R
M

SE

R
M

SE

188

Figure 5.55. The RMSEs for the T1 FLS.

5.5.9. Limitations and future work

In the remainder of this section, we discuss the limitations of the RobusT2 framework and some fruitful

avenues as future work. Note that we discuss the future work regarding this thesis (i.e., in the context of

RCU framework) in the conclusion chapter (i.e., Chapter 8).

Dynamic update of adaptation rules. Runtime knowledge evolution and sharing is a topic that attracted

little attention so far and is considered as an open challenge in self-adaptive software (Abbas et al., 2011).

In this research, we have not discussed the dynamic updates to the adaptation mechanism. The inference

engine chooses among a set of rules each time an adaptation cycle is performed. Therefore, it would be

feasible to add new rules to the rule base at runtime. By adaptation cycle, we refer to the time from

receiving input measurements until calculation of the output and sending it to the execution. This allows

dynamic incorporation and removal of adaptation rules and indicates another avenue of future work. A

promising approach is fuzzy rule learning (L. Wang & Mendel, 1992). Over time, the adaptation outcomes

can be captured in a repository. Then by applying runtime efficient fuzzy rule learning, for example the

WM method (L. Wang & Mendel, 1992), new rules can be learned and potentially improve the

effectiveness of the adaptation mechanism. For instance, this facility can be used to avoid mode switches

that have not historically resulted in a better system quality. The rule learning approaches can also be

applied at design-time to assist users in rule specifications.

Integration with other uncertainty control approaches. As discussed in the background, there are different

sources of uncertainty in the context of self-adaptive software. However, the approach proposed in this

chapter can only handle the uncertainties regarding incomplete user knowledge. The integration of this

approach with the existing approaches for controlling the uncertainty regarding other sources can be

considered as future work. An end-to-end solution for controlling the uncertainties makes self-adaptive

systems more resilient against noise and make them more dependable.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Noise Amplitude

R
M

SE

189

5.6. Conclusion

In this chapter, we provided an answer to RQ2 that requires the development of a framework for

reasoning about adaptation of component connectors. In this chapter, we introduced type-2 fuzzy logic

for specifying non-functional requirements in self-adaptive software. We explained how type-2 fuzzy logic

helps to model the uncertainty and impreciseness in requirements. We introduced a framework, called

RobusT2, for autonomous adaptation reasoning of component connectors, using fuzzy logic systems. We

explained each subsystem by using concrete examples. We also explained the details of the

methodologies, which we have proposed in this thesis, for adaptation knowledge elicitation and

transformation of this knowledge into fuzzy membership functions and fuzzy rules. A self-adaptation of a

component connector in a component-based system was presented and validated using the RobusT2

framework. Finally, we discussed the results and limitations of this work, some insights and short-term

future work.

Experimental results suggest that IT2 FLS can be used in this particular application. Specifically, the results

affirms that T2 FLS controllers are better than T1 counterparts in controlling uncertainties involved in self-

adaptive software, specifically measurement noise as input data. Future research for this proposed

framework would be focused on tuning and optimization of the parameters of RobusT2. The results

obtained are an additional motivation to use type-2 fuzzy logic control in other applications such as

elasticity reasoning in cloud-based software applications. We presented some primary results of this

application that is extracted from one of our papers (Jamshidi et al., 2014) as an example in this chapter.

Note that the templates for data collection as a part of our fuzzy knowledge elicitation and the operation

details for data processing to derive appropriate artifacts in FLS design (i.e., the membership function and

fuzzy rules) are given in Appendix A and Chapter 7 respectively.

190

Chapter 6

6. Adaptation Execution Mechanism for Component Connectors

“The art of progress is to preserve order amid change, and to preserve change amid order.” – Alfred

North Whitehead (1861-1947).

Contents

6.1. INTRODUCTION ... 192
6.2. ADAPTATION MECHANISMS IN SELF-ADAPTIVE SOFTWARE.. 192

6.2.1. Reflection-based mechanism ... 193
6.2.2. Aspect-oriented mechanism .. 193
6.2.3. Mode-based mechanism ... 194
6.2.4. Model-based mechanism .. 194

6.2.4.1. Architecture-based models at runtime ... 194
6.2.4.2. Variability models at runtime ... 195
6.2.4.3. Model composition at runtime ... 195
6.2.4.4. Goal-based requirement models at runtime .. 195

6.2.5. Summary of adaptation mechanism ... 196
6.3. DYNAMIC RECONFIGURATION MECHANISM FOR COMPONENT CONNECTORS .. 198

6.3.1. Connector configurations .. 198
6.3.1.1. Connector configuration ... 200
6.3.1.2. Architectural invariants for connectors .. 202
6.3.1.3. Structural constructs of component connectors .. 202
6.3.1.4. Connector composition ... 205
6.3.1.5. Connector sub-structures ... 206

6.3.2. Connector reconfigurations ... 209
6.4. ADAPTATION EFFECTUATION THROUGH DYNAMIC SOFTWARE PRODUCT LINES .. 211

6.4.1. Runtime adaptation and dynamic software product line .. 211
6.4.2. Feature models for component connectors ... 213
6.4.3. Mode-based adaptation of component connectors through feature models 216

6.5. LIMITATIONS AND THREATS TO VALIDITY .. 219
6.6. CONCLUSIONS .. 219

6.1. INTRODUCTION ... 192
6.2. ADAPTATION MECHANISMS IN SELF-ADAPTIVE SOFTWARE.. 192

6.2.1. Reflection-based mechanism ... 193
6.2.2. Aspect-oriented mechanism .. 193
6.2.3. Mode-based mechanism ... 194
6.2.4. Model-based mechanism .. 194

6.2.4.1. Architecture-based models at runtime ... 194
6.2.4.2. Variability models at runtime ... 195
6.2.4.3. Model composition at runtime ... 195
6.2.4.4. Goal-based requirement models at runtime .. 195

6.2.5. Summary of adaptation mechanism ... 196
6.3. DYNAMIC RECONFIGURATION MECHANISM FOR COMPONENT CONNECTORS .. 198

191

6.3.1. Connector configurations .. 198
6.3.1.1. Connector configuration ... 200
6.3.1.2. Architectural invariants for connectors .. 202
6.3.1.3. Structural constructs of component connectors .. 202
6.3.1.4. Connector composition ... 205
6.3.1.5. Connector sub-structures ... 206

6.3.2. Connector reconfigurations ... 209
6.4. ADAPTATION EFFECTUATION THROUGH DYNAMIC SOFTWARE PRODUCT LINES .. 211

6.4.1. Runtime adaptation and dynamic software product line .. 211
6.4.2. Feature models for component connectors ... 213
6.4.3. Mode-based adaptation of component connectors through feature models 216

6.5. LIMITATIONS AND THREATS TO VALIDITY .. 219
6.6. CONCLUSIONS .. 219

192

6.1. Introduction
In the previous chapter, we introduced a method to select from many connector configurations the one

that is most appropriate to obtain some specific performance result based on fuzzy adaptation reasoning.

In this section, we introduce a mechanism to enact the transitions from the current connector

configuration to the target configuration derived from a variability-based reasoning technique that we

borrowed from the software product line community. Considering the high heterogeneity of models and

languages involved in software connectors, this chapter introduces an approach to derive reconfiguration

actions using reasoning based on graph theory and feature models. We describe a mechanism for

transforming the feature models corresponding to the connector modes to an executable reconfiguration

plan using the principles of graph theory to derive the required reconfiguration actions. While the

contributions of Chapter 4 and Chapter 5 belong to Analysis and Planning phases (in the context of MAPE-

K control loop), the scope of this chapter, as illustrated in Figure 6.1, is to Execute the adaptation.

Figure 6.1. Scope of chapter 6.

The rest of the chapter is organized as follows. Section 6.2 reviews existing solutions that control how

adaptations are performed in software systems. Section 6.3 defines a theory for representing component

connectors based on various constructs in graph theory. Section 6.4 proposes a mechanism based on

dynamic software product lines and the theory presented in Section 6.3 to enact the target mode to the

current connector configuration at runtime.

6.2. Adaptation Mechanisms in Self-Adaptive Software

An adaptation mechanism in self-adaptive software is a component that controls how the adaptations are

actually enacted in the system. For instance, in the case of the task queue connector, the adaptation

mechanism is responsible for physically changing the channels in the connector. Note that the reasoner

is responsible for making a decision and the adaptation mechanism executes the decision. In this section,

we review existing solutions for enabling such adaptation execution.

In general, the adaptation mechanism modifies the changeable parts of the self-adaptive software system.

Each changeable part can be replaced with several options. However, the mapping between the

adaptation decision and actual reconfiguration is not one-to-one. The translation between high-level

adaptation decisions to lower-level executable adaptation actions is the key concern of adaptation

mechanism (or adaptation actuator). In this chapter, we use the terms “adaptation mechanism” and

193

“adaptation actuator” interchangeably but basically they convey the same concept of executing (or

enacting) the change on the piece of software.

There are different adaptation mechanisms, which are categorized as reflection-based mechanisms,

aspect-oriented mechanisms, mode-based and model-based mechanisms.

6.2.1. Reflection-based mechanism

Computational reflection is introduced as a way to reflect the overall architecture of a software-intensive

system (Cazzola, Savigni, Sosio, & Tisato, 1998). When this capability was put in forward, the self-adaptive

software community started to utilize this capability in order to make use of architectural configuration

information at runtime for adaptation reasoning. The critical advantage of this capability is to allow the

querying and dynamic reconfiguration of architectural elements in the underlying software. A study shows

that this capability conforms to the foundations of self-adaptive software (Andersson, de Lemos, Malek,

& Weyns, 2009) and another study reveals that this capability is gaining momentum in architecture-centric

software evolution and this trend is also increasing (Jamshidi et al., 2013).

Another advancement in this area was the introduction of component-based technology, which proposed

the notion of configurable software systems by adding, removing or replacing their constituent

components, connectors or a combination (architectural configuration) of them. A number of reflective

component models exist which support dynamic loading and unloading of components such as: FRACTAL

(Bruneton, Coupaye, Leclercq, Quéma, & Stefani, 2006), OpenCOM (Coulson, Blair, Clarke, & Parlavantzas,

2002), SOFA 2 (Bures, Hnetynka, & Plasil, 2006), OSGi (“OSGi Alliance,” 2014), EJB and so on (Crnkovic,

Sentilles, Vulgarakis, & Chaudron, 2011).

Computational reflection, component models and component-based architectures improve the

construction of adaptation mechanisms to achieve dynamic adaptive systems (Coulson et al., 2002). The

mechanisms utilize a component architecture to visualize the overall structure of the system comprising

components and connectors. These architectural elements are causally connected to actual running

components in the system, whereby changes in one result in changes in the other.

Despite the flexibility that is introduced by reflective technology, the adaptations at runtime are still

challenging. One challenge is that the reconfiguration of the adaptive software was formerly performed

by ad-hoc complex programs. This challenge is addressed by the introduction of a manipulation language

on top of component models. For instance, the FScript language for FRACTAL component model or the

Plastik language for OpenCOM component model. By adopting the languages, one can write flexible

adaptation mechanisms.

6.2.2. Aspect-oriented mechanism

Aspect-orientation (AO) was introduced to solve the problem of modularizing the crosscutting concerns

in software systems (Kiczales, 1996). Although several approaches in terms of language constructs have

been proposed to implement aspects, point-cuts and advices are common. Point-cuts are the placeholder

for advices, which are the realization of crosscutting concerns. AO can be considered as complementary

with respect to component platforms and computational reflection. Different compositional approaches

such as AO to adapt middleware platform are reviewed in (McKinley, Sadjadi, Kasten, & Cheng, 2004).

194

The mechanisms for composition that enable aspects to be woven into the software systems have been

used as adaptation mechanisms for self-adaptive software (David & Ledoux, 2006; Pawlak et al., 2004).

The ultimate goal of AO is to weave and unweave adaptation plan in the evolution process (David &

Ledoux, 2006). The idea is realized by corresponding each adaptable parts of the software to the aspects.

Then these aspects can be woven at runtime when the need for adaptation is raised (Surajbali, Coulson,

Greenwood, & Grace, 2007).

AO is an appropriate approach to realize an adaptation mechanism in self-adaptive software.

Nevertheless, some shortcomings prevent the full adoption of this mechanism. The first problem is known

as the AO evolution paradox (Tourwé, Brichau, & Gybels, 2003). This problem occurs when the aspects

and the underlying system evolve separately. The second one is known as aspect interference (Katz & Katz,

2008) and happens when several advices are woven into the same point-cut or when an advice cancels

out other advice effects.

6.2.3. Mode-based mechanism

In early development of self-adaptive software, the mechanisms for change at the architectural level were

limited. These mechanisms use predefined architectural configurations (typically called system modes)

which are hardcoded using architectural descriptions. A mechanism for adaptations were boiled down to

switching between the systems modes by changing some parameters (Hirsch et al., 2006).

A mode abstracts a specific set of services that must interact in order to perform a specific functionality

of a system (Hirsch et al., 2006). In other words, each mode corresponds to a specific behavior of a system.

A mode determines the structural constraints that determine a system configuration at runtime.

Therefore, mode switching or change of mode can be considered as a mechanism for adapting software

systems. Hirsch et al. (Hirsch et al., 2006) introduce the notion of mode and mode transition as explicit

elements of architecture description. They aim for description and verification of complex adaptive

systems. Borde et al. (Borde, Haik, & Pautet, 2009) investigate the notion of operational mode in

component-based systems to specify system behaviors and how to switch from one mode to another one

at runtime. A number of studies examine the mode change propagation protocol to enable and formally

verify the mode switch at runtime (Bertrand, Déplanche, Faucou, & Roux, 2008; Pop, Plasil, Outly,

Malohlava, & Bures, 2012; Yin, Carlson, & Hansson, 2012). The studies implement the mode switch

protocols in specific architecture description languages. The main target domain of these approaches is

resource constrained embedded systems. This adaptation mechanism, however, cannot handle

unforeseen architectural configurations.

6.2.4. Model-based mechanism

The main idea in model-based approaches is to abstract the adaptation mechanism from ad-hoc

reconfiguration scripts and reflective platforms.

6.2.4.1. Architecture-based models at runtime

Early approaches proposed the use of architectural models to control the adaptation process (Oreizy et

al., 1998). Another architecture-based approach (D Garlan et al., 2004) hardcoded the adaptation

mechanism through architecture evolution by primitive change operator and composite adaptation

strategies.

195

Recent work extends the lifetime of architectural models to runtime and uses them to derive the needed

adaptations. In this way, models at runtime (Blair et al., 2009) are used as artifacts that control

architecture-based adaptations. Moreover, they are used to verify the adaptation at runtime. Note that

other models such as behavioral or stochastic descriptions of the systems can also be used at runtime.

6.2.4.2. Variability models at runtime

Variability models in software product line (SPL) are used to model the various parts of a software product.

These variable parts are called variation points and may represent different architectural elements of a

system that may differ from one product to another product in the same family. As a result of this

capability to model the changeable parts, some approaches proposed to use SPL to model the self-

adaptive software’s underlying structure (C Cetina, Haugen, & Zhang, 2009; Fleurey & Solberg, 2009;

Perrouin & Chauvel, 2008).

In this case, an ideal association would be “a feature is a component". Therefore, adding, updating or

removing a feature would simply lead to an addition, replacement or removal of a component. The

approaches that follow this association are problematic. By definition, features are orthogonal to

themselves and to the solution space (Jean-Baptiste, Maria-Teresa, Jean-Marie, & Antoine, 2013). Such

approaches break this principle. Thereby, they are subject to feature interaction conflicts (Apel & Kästner,

2009).

The real benefit of variability models appear at runtime when dynamic SPL (DSPL) are used to derive new

products on the fly (Hallsteinsen, Hinchey, & Schmid, 2008). A DSPL is basically a SPL that is kept alive

during runtime, and then when a need for change arises, an adaptation is computed (on the basis of diff

between architectures) from the variability model that is present at runtime. The changes are then

translated into architectural model operations, which assists the real reconfiguration of the adaptive

system. However, this translation is not always straightforward and may lead to some limitations of the

derived configuration.

6.2.4.3. Model composition at runtime

A more recent approach combines the previous propositions in using architectural and variability models

at runtime, aspect oriented mechanisms and causal links (B Morin, Fleurey, & Bencomo, 2008; Parra,

Blanc, Cleve, & Duchien, 2011). In general, they use models at runtime to describe the architectural

configuration of the system and its varying parts. Dynamic aspects reify variability and model composition

transforms a configuration derived at runtime to another adapted configuration. Finally, causal links are

used to update the running system.

These approaches such as the ones presented in Section 6.2.4.2 enable model adaptations indirectly

based on adaptation plans deduced from structural differences. Thereby, those approaches suffer from

the lack of explicit tailoring of the adaptation, as they would be unable to handle the case described in

(Jean-Baptiste et al., 2013). They, on the other hand, consider features not as user visible aspects, but as

ordered transformations that can be reified at runtime to generate adaptations.

6.2.4.4. Goal-based requirement models at runtime

A majority of the work in self-adaptive software is devoted to the adoption of architectural models that

enable flexible adaptations (Jamshidi et al., 2013; D Weyns & Ahmad, 2013; Danny Weyns, Iftikhar, Malek,

& Andersson, 2012). On the other hand, much less work has been carried out in utilizing requirements

196

models for self-adaptive software (B. Cheng et al., 2009). Specifically, goal-based modeling is well suited

to representing alternative behavior when environmental changes occur (Goldsby, Sawyer, Bencomo,

Cheng, & Hughes, 2008; Lapouchnian, Yu, Liaskos, & Mylopoulos, 2006; Yu, Lapouchnian, & Liaskos, 2008).

These approaches only enable adaptation with a limited set of alternative behaviors, which should be

fixed at design-time. However, there are some more flexible approaches such as RELAX (N Bencomo &

Ramirez, 2012).

At runtime, the requirements are assessed to evaluate the conformance of the runtime behavior to the

specified requirements. As a result, a violation of requirements may trigger an adaptation. However, the

adaptation decisions may not be made based on crisp values “yes” or “no”, but it may have to be made

stochastically based on partial (dis)satisfaction of requirements (N Bencomo & Belaggoun, 2013).

6.2.5. Summary of adaptation mechanism

Table 6.1 summarizes the adaptation mechanisms, which we reviewed earlier, for enabling self-

adaptation of software systems. In this table, a check mark (√) indicates where the approach proposes

solutions or deals with the criteria, and a blank () in the opposite case.

The approaches we have reviewed in this section offer support for both design and runtime adaptations.

Some of them use variability modeling and context information as well as models at runtime, reflective

platforms, or dynamic aspects that allow them to have both source code manipulations for the design

adaptations and dynamic reconfigurations for the runtime adaptations. Some of them also use variability

models for modularizing and defining adaptation plans as well as contextualizing annotations to define

concrete events at runtime. There are also some other approaches at the code level in programming

languages that mainly focus on modularity. In addition, few of the approaches focus on architectural

modes that have been derived at design-time and will be used as a means to enable runtime adaptations.

However, there are still two important issues left unaddressed. First of all, the approaches do not offer a

process from feature modeling and architectural modes to runtime adaptations. This means that design

and runtime adaptation processes do not have many elements in common. Moreover, artifacts used for

building applications are treated in a different manner to artifacts used to achieve dynamic adaptations.

197

Table 6.1. Classification and comparison of adaptation mechanisms.

Reference

Scope
Reasoning

Mechanism
Domain

M
o

d
el

A
rc

h
it

ec
tu

re

C
o

d
e

R
eq

u
ir

e
m

en
t

(S
p

e
c)

R
ef

le
ct

io
n

-b
as

ed

A
O

M
o

d
e-

b
as

ed

M
o

d
el

-b
as

ed

M
o

b
ile

Em
b

ed
d

ed
 S

ys
te

m

Sm
ar

t-
*

R
o

b
o

ti
c

G
en

er
al

-p
u

rp
o

se

(Cazzola et al., 1998) √ √ √

(Andersson et al., 2009) √ √ √

(McKinley et al., 2004) √ √ √ √

(David & Ledoux, 2006) √ √ √ √

(Pawlak et al., 2004) √ √ √ √

(Surajbali et al., 2007) √ √ √ √

(Hirsch et al., 2006) √ √ √ √ √

(Borde et al., 2009) √ √ √ √

(Yin et al., 2012) √ √ √ √

(Perrouin & Chauvel, 2008) √ √ √

(C Cetina et al., 2009) √ √ √

(Jean-Baptiste et al., 2013) √ √ √

(Apel & Kästner, 2009) √ √ √

(B. Cheng et al., 2009) √ √ √ √

(Goldsby et al., 2008) √ √ √

(Lapouchnian et al., 2006) √ √ √

(Yu et al., 2008) √ √ √

(N Bencomo & Ramirez, 2012) √ √ √ √

(N Bencomo & Belaggoun, 2013) √ √ √

Our approach √ √ √ √

198

6.3. Dynamic Reconfiguration Mechanism for Component Connectors

While adaptation reasoning (Chapter 5) can be developed abstractly and independently of the language

and the platform with which connectors are realized, adaptation enactment has close ties to the

underlying connector model. Therefore, we needed to select a target connector model for

implementation of the change actuator. We selected Reo (Arbab, 2004), which is a coordination model

for realizing exogenous component connectors (Lau, Elizondo, & Wang, 2005), and hence, a perfect fit to

this work.

In the remainder of this chapter, we describe the reasoning mechanism for deriving adaptation actions

on top of Reo for effecting adaptation decisions. In this section, we describe the structural modeling

(Section 6.3.1) of the connector and change reasoning (Section 6.3.2) based on the principle of graph

theory to prepare the context to introduce the effectuation mechanism based on the principles of

dynamic software product lines in Section 6.4.

6.3.1. Connector configurations

A component connector, in the context of this research, corresponds to a coordination pattern (Arbab,

2004; N Oliveira & Barbosa, 2013; Nuno Oliveira & Barbosa, 2013) on architectural elements (e.g.

components) that perform I/O operations through that connector. In other words, here, the term

connector is adopted to name entities that can regulate the interaction of (potentially) heterogeneous

components. Thus, connectors must deal with exogenous coordination, handling all those aspects that lie

outside the scope of individual components (Bruni et al., 2013). This means coordination pattern are

without the knowledge of those entities. A coordination pattern is formally given as a graph of channels

whose nodes represent the points for interactions between channels. The edges of this graph are

represented with channel types and channel identifiers. To provide a concrete illustration of this

approach, we utilize the Reo coordination model (Arbab, 2004). Therefore, a channel is considered here

as a Reo channel (Arbab, 2004).

A number of component connector models exist that we reviewed in Section 6.2.1, but we decided to use

Reo, a powerful coordination language introduced by the CWI research group Foundations of Software

Engineering (SEN3). The choice for this language is very appropriate, since, for instance, Reo covers

different coordination aspects, such as synchronous vs. asynchronous communication, buffering, filtering

and data manipulation, context-dependent behavior, and mobility (Arbab, 2004). The various constraints

from different functionalities put high demands on the synchronizing aspect, a powerful feature of Reo.

Moreover, Reo has a stochastic extension (Moon, 2011) with which we can simulate and develop systems

with stochastic behaviors and incorporating performance aspects. For Reo there are also some tools for

modeling system architecture, simulating system behavior, formal operational semantic languages and

facilities to derive system models which we exploit in our approach. Reo also has a very supporting and

active research community. In summary, we believe that this choice offers the following opportunities: (i)

Due to its feature-rich models, Reo offers powerful means for describing the coordination that turns a set

of components and connectors into a coherent working application. (ii) Stochastic Reo is a good choice

for representing reliability and performance aspects as our main objectives. (iii) Proven formal semantics

used in Reo which we can extend and build the formal aspects of our contribution. (iv) Available open

source tools that we can exploit for our own purposes. (v) An active and supportive research community

that motivated us to contribute.

199

In the Reo model, channels are primitives, out of which more complex and composite component

connectors are constructed. A connector channel is directional (except one channel type) with a unique

identifier and specific semantics (i.e. coordination protocol). A channel in this model accepts an I/O

operation (data flow) on its source end and dispenses it from its sink end. Figure 6.2 illustrate the basic

channel type in the Reo coordination model. Note that Reo supports an extensible set of channels (Arbab,

2004), each exhibits a unique behavior with a well-defined semantics. However, for the purpose of this

research, we only consider the construction of component connectors based on the primitive channels

represented in Figure 6.2.

Figure 6.2. Primative connector channels.

Each channel has its own semantics as defined in Table 6.2. The 𝑆𝑦𝑛𝑐 channel transfers data from source

end to sink end whenever there is an I/O request at both ends synchronously. The 𝑆𝑦𝑛𝑐𝐷𝑟𝑎𝑖𝑛 channel

accepts data synchronously at both source and sink ends and losing it. The 𝐿𝑜𝑠𝑠𝑦𝑆𝑦𝑛𝑐 channel behaves

the same, but data may be lost whenever there is a request at the source end but there is no request at

the sink end. The 𝐹𝑖𝑙𝑡𝑒𝑟 channel is similar to 𝐿𝑜𝑠𝑠𝑦𝑆𝑦𝑛𝑐, but deterministically only when an item satisfies

the filter constraint, the channel delivers it to the sink end. In contrast to the previous channel types, a

𝐹𝐼𝐹𝑂 channel buffers data inside a memory position and when a request arrives at the sink end, it delivers

it to that end. Similarly, 𝐹𝐼𝐹𝑂(𝐹) delivers the stored item to its sink end and cleans the buffer.

Table 6.2. Primative channel behavior.

Channel Type Behavior

𝑺𝒚𝒏𝒄
Atomically gets an item from its source end 𝐴 and delivers it
to its sink end 𝐵.

𝑺𝒚𝒏𝒄𝑫𝒓𝒂𝒊𝒏
Atomically gets an item from both source and sink ends 𝐴, 𝐵
and loses it.

𝑳𝒐𝒔𝒔𝒚𝑺𝒚𝒏𝒄
Atomically gets an item from its source end 𝐴 and non-
deterministically, either delivers it to its sink end 𝐵 or loses it.

𝑭𝒊𝒍𝒕𝒆𝒓
Atomically gets an item from its source end 𝐴 and if the item
satisfies the filter constraint 𝜙 delivers it to its sink end 𝐵 and
loses it otherwise.

𝑭𝑰𝑭𝑶
Atomically gets an item from its source end 𝐴 and stores it in
its buffer.

𝑭𝑰𝑭𝑶(𝑭)
Atomically fetches the item from its buffer and delivers it to
the sink end 𝐵.

A component connector is constructed by gluing the channel ends together. In such a composed structure,

data items flow through channels and past nodes connecting them. Usually, the interacting parties supply

the data that flows through the connectors they are connected to. Note that here the interacting parties

coordinated through connectors and connected to them are components of a component-based software

system. Each connector has an interface. Such an interface comprises of the boundary nodes of a

connector: components give and take data only to and from boundary nodes.

O

200

Through connecting channel ends, different types of nodes appear as follows: (i) source node, if it

connects only source ends; (ii) sink node, if it connects only sink ends; (iii) mixed node, if it connects both

source and sink nodes.

Figure 6.3 depicts a sequencer connector, which is a composition of five channels with two different types.

It has one source node (𝐴), three sink nodes (𝑂1, 𝑂2, 𝐵) and two mixed nodes (𝑁1,𝑁2) differentiated by

grey color. Generally, mixed nodes are figuratively internal nodes in connectors and the source and sink

types are boundary nodes making the interface of a connector. In this example, the nodes {𝐴, 𝑂1, 𝑂2, 𝐵}

are the boundary nodes comprising the interface of the sequencer connector depicted in Figure 6.3.

Figure 6.3. The Sequencer connector.

Figure 6.3 represents a sample architectural configuration of a component connector that we intend to

formally characterize with the graph-based constructs in the following sections. The main intention of

doing this is to provide an appropriate level of abstraction to reason about structural changes in the

connectors.

6.3.1.1. Connector configuration

Let 𝑁, 𝐼, 𝑂, 𝐼𝑑, 𝑇, respectively, denote a set of boundary nodes comprising source (𝐼) and sink (𝑂) nodes,

channel identifiers and channel types. We also consider the internal components as a part of a connector

architectural configuration (cf. Figure 6.4). Each internal component has a name, type, a set of source

ends and sink ends known as ports. Let 𝑃, 𝐼𝑑, 𝐶𝑇 denote a set of ports, component identifiers and

component types respectively. The connector architectural configuration is represented by the following

definition as first introduced in (N Oliveira & Barbosa, 2013; Nuno Oliveira & Barbosa, 2013) as the notion

of coordination pattern and we extend it here as the notion of connector configuration for the purpose

of this research.

Definition 34. A connector configuration, 𝐶𝑖𝑑, is defined as a triple

𝐶𝑖𝑑 ≝ 〈𝐼, 𝑂, 𝑅〉

𝑅 ⊆ (𝑁 × 𝐼𝑑 × 𝑇 × 𝑁) ∪ (𝑁 × (𝑃 × 𝐼𝑑 × 𝐶𝑇 × 𝑃) × 𝑁)

𝐼 ≠ ∅, 𝑂 ≠ ∅, 𝐼 ⊆ 𝑁,𝑂 ⊆ 𝑁

(6.1)

, where 𝑅 is a graph on connector ends 𝑁 whose edges are instances of primitive channels 𝑖𝑑 ∈ 𝐼𝑑 with

specific type 𝑡 ∈ 𝑇. 𝐼 𝑎𝑛𝑑 𝑂 are the sets of source and sink ends in graph 𝑅. For example, the sequencer

can be represented as follows:

𝐶𝑠𝑒𝑞 =< {𝐴}, {𝑂1,𝑂2, 𝐵}, {(𝐴, 𝑠1, 𝑆𝑦𝑛𝑐, 𝑁1), (𝑁1, 𝑠2, 𝑆𝑦𝑛𝑐, 𝑂1),

(𝑁1, 𝑓1, 𝐹𝐼𝐹𝑂,𝑁2), (𝑁2, 𝑠3, 𝑆𝑦𝑛𝑐, 𝑂2), (𝑁2, 𝑠4, 𝑆𝑦𝑛𝑐, 𝐵)} >
(6.2)

201

For representing unidirectional channels, we need to utilize a special notation. For example, 𝐷𝑟𝑎𝑖𝑛 has

two source ends, but it has no sink ends. We use ⊡∈ 𝑁 to represent absence of I/O operations. Therefore,

a 𝐷𝑟𝑎𝑖𝑛 channel can be represented as follows:

 𝐶𝑑𝑟𝑎𝑖𝑛 =< {𝐼1, 𝐼2}, ∅, {(𝐼1, 𝑑, 𝐷𝑟𝑎𝑖𝑛,⊡), (𝐼2, 𝑑, 𝐷𝑟𝑎𝑖𝑛,⊡)} > (6.3)

Since the sets 𝐼 𝑎𝑛𝑑 𝑂 can be inferred based on 𝑅 by identifying the nodes that appear either as the first

or fourth element, the definition of connector configuration can be relaxed by dropping the sets 𝐼 𝑎𝑛𝑑 𝑂

from the triple. However, here, we use the triple as defined in Definition 34 for specifying component

connectors.

Figure 6.4. A sequencer connector with internal component.

Figure 6.4 illustrates a variation of sequencer connector, which utilizes an internal component 𝐶1 with

type 𝐶𝑇1. As a result, this connector can be formally defined as follows:

𝐶𝑠𝑒𝑞1 =< {𝐴}, {𝑂1,𝑂2, 𝑂3, 𝐵}, {(𝐴, 𝑠1, 𝑆𝑦𝑛𝑐, 𝑁1), (𝑁1, 𝑠2, 𝑆𝑦𝑛𝑐, 𝑂1),

(𝑁1, 𝑃1, 𝐶1, 𝐶𝑇1, 𝑃3, 𝑂3), (𝑁1, 𝑃1, 𝐶1, 𝐶𝑇1, 𝑃2,𝑁2), (𝑁2, 𝑠3, 𝑆𝑦𝑛𝑐, 𝑂2),

(𝑁2, 𝑠4, 𝑆𝑦𝑛𝑐, 𝐵)} >

(6.4)

As a matter of fact, internal components are architectural elements to abstract away and hide part of its

internal structure for reuse purposes. Transforming a connector to a component with the same semantics

is straightforward. For example, Figure 6.5 represents the sequencer in the form of a component. This,

component representation of a connector abstracts away the details of the connector and provides only

four ports 𝐴, 𝐵, 𝑂1,𝑂2 for other entities (i.e., connectors or component instances) to write to or read

from. The nodes belonging to 𝐼 are transformed to source ends of the component such as 𝐴. Moreover,

the nodes belonging to 𝑂 are transformed to sink ends such as 𝑂1, 𝑂2, 𝐵.

Figure 6.5. Software component corresponding to the sequencer connector.

202

6.3.1.2. Architectural invariants for connectors

In order to avoid incorrect configurations, we enforce a number of architectural invariants for component

connectors as expressed in Table 6.3.

Table 6.3. A list of architectural invariants for connector configurations.

ID Entity Invariant description

Inv1 ⊡ This port cannot be connected to other ports.

Inv2 Channel Only a single channel is allowed to connect two nodes.

Inv3 𝑰𝒅 A name can only be associated to a node, port or channel type.

Inv4 𝑰𝒅, 𝑹 A name can be used at most in two tuples in 𝑅.

Inv5 𝑰, 𝑶, 𝑹 The nodes belonging to 𝐼, 𝑂 can only be used once in tuples in 𝑅.

Inv6 𝑰, 𝑹 The nodes in 𝐼 can only be used as the first element in tuples in 𝑅.

Inv7 𝑶,𝑹
The nodes in 𝑂 can only be used as the fourth element (last
element) in tuples in 𝑅.

Inv8 𝑰, 𝑶, 𝑹
The nodes that not belong to either 𝐼 or 𝑂 must be repeated more
than one time in tuples in 𝑅.

The intention behind such an enforcement of architectural invariants is to preserve well-defined structural

properties of connectors and to ensure that suitable architectural principles are maintained as invariants

during the evolution of a given connector.

6.3.1.3. Structural constructs of component connectors

In this section, we define a number of structural constructs by adopting the inherent principles of graph

theory. We basically define the constructs that we are going to introduce in this section based on the

structures that can be formally defined as graphs. This enables us to define composed constructs based

on the composition of primary constructs. It also enables us to reason about structural changes based on

well-defined mathematical operations applied on the constructs. The structure change reasoning enables

us to reason about mode-based adaptation as we propose in Section 6.4.

Definition 35. A sub-connector, 𝑆𝐶𝑖𝑑, of connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > with reference node 𝑁, is defined
as a tuple

𝑆𝐶𝑖𝑑 ≝ 〈𝐼
′, 𝑂′, 𝑅′〉

N′ ⊆ 𝑁

𝑅′ ⊆ (𝑁′ × 𝐼𝑑 × 𝑇 × 𝑁′) ∪ (𝑁′ × (𝑃 × 𝐼𝑑 × 𝐶𝑇 × 𝑃) × 𝑁′)

𝑅′ ⊆ 𝑅

𝐼′ ⊆ 𝑁, 𝑂′ ⊆ 𝑁

(6.5)

, where 𝑅′ is a partially connected sub-graph of a connector with graph 𝑅. Note that 𝐼′ 𝑎𝑛𝑑 𝑂′ can have

no intersection with 𝐼 𝑎𝑛𝑑 𝑂 respectively. In the other direction of Definition 35, a super-connector of

𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > is a connector 𝑆𝑢𝑝𝐶𝑖𝑑 of which 𝐶𝑖𝑑 is a sub-connector.

203

This definition of the sub-connector construct gives a rise to different types of sub-connector with respect

to the boundary interfaces of connectors. We can imagine four different sub-connectors as follows:

 I-Interface sub-connector: A sub-connector with 𝐼′ ∩ 𝐼 ≠ ∅ but 𝑂′ ∩ 𝑂 = ∅. For example, 𝑆𝐶𝑠𝑒𝑞1 =<

{𝐴}, {𝑁1}, {(𝐴, 𝑠1, 𝑆𝑦𝑛𝑐, 𝑁1)} > as a sub-connector of 𝐶𝑠𝑒𝑞 as specified in (6.2).

 IO-Interface sub-connector: A sub-connector with 𝐼′ ∩ 𝐼 ≠ ∅ and 𝑂′ ∩ 𝑂 ≠ ∅. For example, 𝑆𝐶𝑠𝑒𝑞2 =

 < {𝐴}, {𝑂1}, {(𝐴, 𝑠1, 𝑆𝑦𝑛𝑐, 𝑁1), (𝑁1, 𝑠2, 𝑆𝑦𝑛𝑐, 𝑂1)} > as a sub-connector of 𝐶𝑠𝑒𝑞 as specified in

(6.2).

 O-Interface sub-connector: A sub-connector with 𝐼′ ∩ 𝐼 = ∅ but 𝑂′ ∩ 𝑂 ≠ ∅. For example, 𝑆𝐶𝑠𝑒𝑞3 =

 < {𝑁1}, {𝑂1}, {(𝑁1, 𝑠2, 𝑆𝑦𝑛𝑐, 𝑂1)} > as a sub-connector of 𝐶𝑠𝑒𝑞 as specified in (6.2).

 Internal sub-connector: A sub-connector with 𝐼′ ∩ 𝐼 = ∅ and 𝑂′ ∩ 𝑂 = ∅. For example, 𝑆𝐶𝑠𝑒𝑞4 = <

{𝑁1}, {𝑁2}, {(𝑁1, 𝑓1, 𝐹𝐼𝐹𝑂,𝑁2)} > as a sub-connector of 𝐶𝑠𝑒𝑞 as specified in (6.2).

There are also a number of special variants of sub-connector construct, which preserve different

properties of the original connector.

Definition 36. A basic construct is a special variant of sub-connector (Definition 35) that can be
replicated in order to grow the capacity of a connector without changing its behavior. This will cause
some structural change in the connector configuration by changing either of the sets in the
configuration triple (cf. Definition 34).

To be more specific, a basic construct (Definition 36) may be replicated without influencing 𝐼 𝑜𝑟 𝑂. For

example, consider a DynamicFIFO connector as illustrated in Figure 6.5. This connector is defined as

𝐶𝐷𝑦𝑛𝑎𝐹𝐼𝐹𝑂1before the change and as 𝐶𝐷𝑦𝑛𝑎𝐹𝐼𝐹𝑂2 after the change. As it is evident, there is no change in

either 𝐼 𝑎𝑛𝑑 𝑂 and just the capability of this connector is increased without changing its behavior, which

is exposed by its ports.

𝐶𝐷𝑦𝑛𝑎𝐹𝐼𝐹𝑂1 =< {𝐴}, {𝐵}, {(𝐴, 𝑓1, 𝐹𝐼𝐹𝑂, 𝐵)}

𝐶𝐷𝑦𝑛𝑎𝐹𝐼𝐹𝑂2 =< {𝐴}, {𝐵}, {(𝐴, 𝑓1, 𝐹𝐼𝐹𝑂,𝑁1), (𝑁1, 𝑓2, 𝐹𝐼𝐹𝑂, 𝐵)}
(6.6)

Figure 6.6. A DynamicFIFO connector.

In a more formal way, applying a basic construct to a connector makes the initial connector an embedded

structure into the adapted connector.

Definition 37. An embedded sub-connector 𝐸𝑆𝐶𝑖𝑑 ≝ 〈𝐼
′, 𝑂′, 𝑅′〉 of 𝐶𝑖𝑑 = 〈𝐼, 𝑂, 𝑅〉 can be determined

by an embedding function as a one-to-one function from 𝑁′ to 𝑁 such that every channel in 𝑅′
corresponds to a path in 𝑅.

In some cases, we need to define a sub-structure of a connector given that we must preserve all the nodes,

but we only need a subset of the channels connecting the nodes. This construct corresponds to a

maximum clique (“Maximum clique,” 2014) in graph theory.

204

Definition 38. A factor 𝐹𝐶𝑖𝑑 = < 𝐼′, 𝑂′, 𝑅′ > is a special kind of sub-connector of a connector 𝐶𝑖𝑑 = <
𝐼, 𝑂, 𝑅 > with reference nodes 𝑁 with the following properties:

𝑁 = 𝑁′

𝑅′ ⊆ 𝑅
(6.7)

In some circumstances, we need a construct to preserve the same channels between nodes that has been

defined in the initial connector. A sub-connector 𝐹𝐹𝐶𝑖𝑑 is an induced (or full) sub-connector of 𝐶𝑖𝑑 if it

has exactly the channels that appear in 𝐶𝑖𝑑 over the same node set.

Definition 39. A full (induced) sub-connector of 𝐶𝑖𝑑 = < 𝐼, 𝑂, 𝑅 > with reference nodes 𝑁 is a
connector 𝐹𝐹𝐶𝑖𝑑 = < 𝐼′, 𝑂′, 𝑅′ > with the following properties:

𝑁′ ⊆ 𝑁

∀(𝑛1′, 𝑖𝑑′, 𝑡′, 𝑛2′) ∈ 𝑅′: (𝑛1, 𝑖𝑑, 𝑡, 𝑛2) ∈ 𝑅 ⟺ (𝑛1′, 𝑖𝑑′, 𝑡′, 𝑛2′) ∈ 𝑅′
(6.8)

In other words, 𝐹𝐹𝐶𝑖𝑑 is an induced sub-connector of 𝐶𝑖𝑑 if it has exactly the same channels that
appear in 𝐶𝑖𝑑 over the same reference nodes 𝑁′.

We now need to define the means of traversing the constructs which we have defined for component

connectors.

Definition 40 (path in connector). A path in a connector is a sequence of channels, which connect a
sequence of nodes. A path in connectors is finite and always has a first node, called start node, and a
last node, called end node. Both of these are called terminal nodes and the other nodes are called
internal nodes of the path. A cycle is a path where the start node and end node are the same.

To be more formal, let us consider the concept in Definition 34 and more specifically Equation (6.1). Given

a connector configuration 𝐶𝑖𝑑 ≝ 〈𝐼, 𝑂, 𝑅〉, a path in this configuration is a triple:

𝑃𝐶𝑖𝑑 ≝ 〈𝐼𝑃 , 𝑂𝑃 , 𝑅𝑃〉

|𝐼𝑃| = |𝑂𝑃| = 1

𝑅𝑃 ⊆ 𝑅

(6.9)

, where 𝐼𝑃 is the start node and 𝑂𝑃 is the end node. The elements 𝑅𝑃 form an ordered list of a subset of

channels in 𝑅 in a way that only two nodes are repeated once in the channel tuples, one as the first

element and the other as the fourth element. The rest of the nodes are repeated once as first element

and once as the fourth element. If a path is a cycle, then 𝐼𝑃 = 𝑂𝑃.

Figure 6.7 represents a path in the sequencer connector in Figure 6.3. It can be represented as <

{𝐴}, {𝐵}, ((𝐴, 𝑠1, 𝑆𝑦𝑛𝑐, 𝑁1), (𝑁1, 𝑓1, 𝐹𝐼𝐹𝑂,𝑁2), (𝑁2, 𝑠4, 𝑆𝑦𝑛𝑐, 𝐵)) >.

Figure 6.7. A path in Sequencer connector.

Definition 41. The size of a connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > is the number of channels in it, denoted by |𝑅|
or ‖𝐶𝑖𝑑‖.

205

Definition 42. The length of a connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > is the size of the longest path 𝑃𝐶𝑖𝑑 in the

connector, denoted by ℓ(𝐶𝑖𝑑).
As an example the size and the length of the sequencer connector represented in Figure 6.3 is five and

three respectively.

Definition 43. For a node 𝑁, the number of channel sink endpoints that meet in the node is called the
indegree (denoted as 𝑑𝑒𝑔−(𝑁)) of the node and the number of source endpoints that meet in the node
is its outdegree (𝑑𝑒𝑔+(𝑁)).

For all nodes in 𝑖 ∈ 𝐼 (cf. Definition 34), 𝑑𝑒𝑔−(𝑖) = 0 𝑎𝑛𝑑 𝑑𝑒𝑔+(𝑖) > 0 . For all nodes in 𝑜 ∈ 𝑂 ,

𝑑𝑒𝑔+(𝑜) = 0 𝑎𝑛𝑑 𝑑𝑒𝑔−(𝑁) > 0. For the rest of nodes in 𝑛 ∈ 𝑁, 𝑑𝑒𝑔−(𝑛) > 0 𝑎𝑛𝑑 𝑑𝑒𝑔+(𝑛) > 0.

Definition 44. A connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > is linear if

|𝐼| = |𝑂| = 1

𝑓𝑜𝑟 𝑛 ∈ 𝑁, 𝑛 ∉ 𝐼, 𝑂, 𝑑𝑒𝑔+(𝑛) = 𝑑𝑒𝑔−(𝑛) = 1
(6.10)

For a linear connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 >, ℓ(𝐶𝑖𝑑) = ‖𝐶𝑖𝑑‖.

6.3.1.4. Connector composition

In this section, we define a number of operations on the constructs that we have defined already in the

previous sections to produce new connectors from the primary connector constructs. In graph theory,

there are some so-called "editing operations" (“Graph operations,” 2014) that create a new graph from

the original one by a simple, local change, such as addition or deletion of a vertex or an edge, merging and

splitting of vertices, edge contraction, etc. However, the main focus of this section is to define

compositional operations to derive a composed connector from primary ones.

Two connectors can be composed in different ways. The most intuitive way of composition is setting them

in parallel without creating any interconnection between them.

Definition 45. A parallel composition (juxtaposition) of two connectors 𝐶𝑖𝑑1 = < 𝐼1, 𝑂1, 𝑅1 >
𝑎𝑛𝑑 𝐶𝑖𝑑2 = < 𝐼2, 𝑂2, 𝑅2 > is described as follows:

𝐶𝑖𝑑1⨁𝑝𝐶𝑖𝑑2 = < 𝐼, 𝑂, 𝑅 >

𝐼 = 𝐼1 ∪ 𝐼2

𝑂 = 𝑂1 ∪ 𝑂2

𝑅 = 𝑅1 ∪ 𝑅2

(6.11)

Another intuitive way of composition is setting them in sequential order by connecting the output ports

of one connector to the input ports of the other connector.

Definition 46. A sequential composition of two connectors 𝐶𝑖𝑑1 = < 𝐼1, 𝑂1, 𝑅1 > 𝑎𝑛𝑑 𝐶𝑖𝑑2 = <
𝐼2, 𝑂2, 𝑅2 > , if |𝑂1| = |𝐼2|, is described as follows:

𝐶𝑖𝑑1⨁𝑠𝐶𝑖𝑑2 = < 𝐼, 𝑂, 𝑅 >

𝐼 = 𝐼1

𝑂 = 𝑂2

𝑅 = 𝑅1 ∪ 𝑅2

(6.12)

Parallel and sequential composition are two special cases of general definition of composition in

Definition 47.

http://en.wikipedia.org/wiki/Edge_contraction

206

Definition 47. A composition of two connectors 𝐶𝑖𝑑1 = < 𝐼1, 𝑂1, 𝑅1 > with reference nodes 𝑁1 and
𝐶𝑖𝑑2 = < 𝐼2, 𝑂2, 𝑅2 > with reference nodes 𝑁2 is described as follows:

𝐶𝑖𝑑1⨁𝐿𝐶𝑖𝑑2 = < 𝐼, 𝑂, 𝑅 >

𝐿 = (𝐿1, 𝐿2), 𝐿1 = ({𝑛1
1, 𝑛2
1},… , {𝑛1

𝑙 , 𝑛2
𝑙 }), 𝐿2 = (𝑛

1, … , 𝑛𝑙)

𝑅′ = 𝑅1 ∪ 𝑅2, 𝑅 = 𝑟𝑒𝑛𝑁(𝑅
′)

𝑟𝑒𝑛𝑁(< 𝑞, 𝑖𝑑, 𝑡, 𝑠 >) =

< (𝑞 ∈ 𝐿1
𝑙1 → 𝑛𝑙1 , 𝑞), 𝑖𝑑, 𝑡, (𝑠 ∈ 𝐿1

𝑙2 → 𝑛𝑙2 , 𝑠) >

𝑟𝑒𝑛𝑁(< 𝑞, 𝑝1, 𝑖𝑑, 𝑐𝑡, 𝑝2, 𝑠 >) =

< (𝑞 ∈ 𝐿1
𝑙1 → 𝑛𝑙1 , 𝑞), 𝑝1, 𝑖𝑑, 𝑡, 𝑝2, (𝑠 ∈ 𝐿1

𝑙2 → 𝑛𝑙2 , 𝑠) >

𝐼 = (𝐼1 ∪ 𝐼2) ∖ 𝐼3, 𝑂 = (𝑂1 ∪ 𝑂2) ∖ 𝑂3

𝑁 = ((𝑁1 ∪ 𝑁2) ∖ 𝐿1) ∪ 𝐿2

(6.13)

, where 𝐿 is an ordered list that determines the nodes, which are superimposed, as well as the substituting

nodes. 𝐿1 is the ordered list of superimposed nodes and 𝐿2 is the ordered list of substituted nodes. 𝐼3 is a

set of input boundary nodes, which belong to 𝐿1 and 𝑂3 is a set of output boundary nodes, which belong

to 𝐿1. 𝑟𝑒𝑛𝑁 is a function that is responsible for changing the labels of source and sink channel ends in 𝑅′

to produce 𝑅 . The notation (𝜑 → 𝑠, 𝑞) corresponds to McCarthy’s conditional, returning 𝑠 𝑜𝑟 𝑞 if

predicate 𝜑 evaluates to true or false, respectively.

Note that the parallel composition (Definition 45) and the sequential composition (Definition 46) are two

special cases of composition in Definition 47. In the former, 𝐿 = (∅, ∅) , and in the latter, 𝐿1 =

({𝑜1
1, 𝑖2
1}, … , {𝑜1

𝑙 , 𝑖2
𝑙 }) , where 𝑜1

𝑖 ∈ 𝑂1, 𝑖2
𝑖 ∈ 𝐼2 . As illustrated in Figure 6.8, 𝑆3 = 𝑆1⨁𝐿𝑆2, 𝐿 =

(({𝑁1,𝑁3}, {𝑁2,𝑁4}), (𝑁5,𝑁6)).

Figure 6.8. Composition of two connectors.

6.3.1.5. Connector sub-structures

In Section 6.3.1.3, we defined intuitive constructs based on component connectors, while in this section,

we intend to provide more complicated sub-structures and some properties that are defined based on

the verifiability of such structures.

207

Definition 48. A connector cut is a partition of the nodes of a connector into two or more sub-
connectors. A cut-set of the cut is the set of channels whose channel ends reside in nodes, which belong
to different subset of the partition. Channels are marked to be crossing the cut if they are in its cut-set.
Formally speaking, a cut 𝐶_𝐶𝑢𝑡 = (𝑁1, … , 𝑁𝑛) is a partition of reference nodes 𝑁 of a connector 𝐶𝑖𝑑 =
< 𝐼, 𝑂, 𝑅 > . As a result, 𝑛 sub-connectors 𝑆𝐶𝑖𝑑1 = < 𝐼1, 𝑂1, 𝑅1 >,… , 𝑆𝐶𝑖𝑑𝑛 = < 𝐼𝑛, 𝑂𝑛, 𝑅𝑛 > are
formed. Note that 𝑁 = 𝑁1 ∪ …∪ 𝑁𝑛 and 𝐶𝑢𝑡_𝑆𝑒𝑡 = 𝑅 ∖ (𝑅1 ∪…∪ 𝑅𝑛) is the channels that are cut to
form the sub-connectors. The size of a cut is |𝐶𝑢𝑡_𝑆𝑒𝑡|.

Figure 6.9 illustrates two sub-connectors, which resulted from cutting 𝑆1 in Figure 6.8. Cut-set in this

example is 𝐶𝑢𝑡𝑆𝑒𝑡 = (𝑁1, 𝑓1, 𝐹𝐼𝐹𝑂,𝑁2) and the size of the cut is one.

Figure 6.9. Sub-connectors resulting from cutting S1.

Definition 49. A connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > is called connected if every pair of nodes in 𝑁 is connected
through one or a set of channels in 𝑅 without considering their directions.

For example, the connectors in Figure 6.3 and Figure 6.4 are connected, but the connector in Figure 6.10

is not.

Figure 6.10. A disconnected connector.

Definition 50. In a connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 >, a connector partition is a set of nodes and channels
𝑃 =< 𝑁′, 𝑅′ > with the following properties:

𝑁′ ⊆ 𝑁

𝑅′ ⊆ 𝑅
(6.14)

For example, for the connector 𝑆1 in Figure 6.8, 𝑃1 =< {𝐴, 𝐵}, {(𝐴, 𝑠1, 𝑆𝑦𝑛𝑐, 𝑁1), (𝑁2, 𝑠4, 𝑆𝑦𝑛𝑐, 𝐵)} >.

Note that this partition can be disconnected as the 𝑃1 partition demonstrates. Also, note that none of the

nodes involved in the definitions of channel set 𝑅′ is part of 𝑁′. For connected partition, we need another

concept to be defined.

Definition 51. In a disconnected connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > , a connected partition is a minimum
number of connected sub-connectors 𝑆𝐶𝑖𝑑1 =< 𝐼1, 𝑂1, 𝑅1 >,… , 𝑆𝐶𝑖𝑑1 =< 𝐼𝑛, 𝑂𝑛, 𝑅𝑛 > in a way that

𝑅 = 𝑅1 ∪ …∪ 𝑅𝑛

𝐼 = 𝐼1 ∪ …∪ 𝐼𝑛

𝑂 = 𝑂1 ∪ …∪ 𝑂𝑛

(6.15)

For example, the connector in Figure 6.10 has two connected partitions.

208

Definition 52. Let connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > be a connector with reference nodes 𝑁. A structural
variant for 𝐶𝑖𝑑 is a connector 𝐶𝑖𝑑′ =< 𝐼′, 𝑂′, 𝑅′ > with the following properties:

𝐼′ = 𝐼

𝑂′ = 𝑂
(6.16)

By considering Definition 52, when 𝑅 ⊂ 𝑅′, the connector is expanded (such as Figure 6.11) and, when

𝑅′ ⊂ 𝑅, the connector is shrunk (such as Figure 6.12). A special case happens when 𝑅 ∩ 𝑅′ = ∅. This is

the case when the connector is replaced with a new set of channels, but with the same boundary nodes.

Figure 6.11. A structural variant of Sequencer connector.

Figure 6.12. A structural variant of Sequencer connector.

Definition 53. Let connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > be a connector with reference nodes 𝑁. An equivalent
variant for 𝐶𝑖𝑑 is a connector 𝐶𝑖𝑑′ =< 𝐼′, 𝑂′, 𝑅′ > with reference nodes 𝑁′ that hold the following
properties:

𝐼′ = 𝐼

𝑂′ = 𝑂

𝑅′ ≅𝐼𝑑 𝑅

𝑁′ = 𝑁

(6.17)

, where 𝑅′ ≅𝐼𝑑 𝑅 means the tuples in both sets are identical, but their 𝑖𝑑 ∈ 𝐼𝑑 might be different.

Definition 54. Let connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > be a connector with reference nodes 𝑁. An structurally
equivalent variant for 𝐶𝑖𝑑 is a connector 𝐶𝑖𝑑′ =< 𝐼′, 𝑂′, 𝑅′ > with reference nodes 𝑁′ that hold the
following properties:

𝐼′ = 𝐼

𝑂′ = 𝑂

𝑅′ ≅𝑇 𝑅

𝑁′ = 𝑁

(6.18)

, where 𝑅′ ≅𝑇 𝑅 means the tuples in both sets are identical, but their channel types 𝑡 ∈ 𝑇 might be
different.

209

6.3.2. Connector reconfigurations

The main focus of traditional architecture-centric software evolution (Ahmad, Jamshidi, & Pahl, 2014;

Jamshidi et al., 2013; A. J. Ramirez & Cheng, 2010) is the addition or removal of individual components,

rather than the reconfiguration of underlying interaction protocols. This section, however, discusses

architectural adaptations (we use reconfiguration interchangeably) of component connectors introduced

in Section 6.3.1. The focus of this section is to provide the foundation to define reconfigurations, which

affect significant parts of the connector by adopting the structures that are defined in Section 6.3.1.

We follow a more general perspective of reconfiguration of connectors here. We consider a

reconfiguration to be any transformation from a connector 𝐶𝑖𝑑 = < 𝐼, 𝑂, 𝑅 > to another connector

𝐶𝑖𝑑′ = < 𝐼′, 𝑂′, 𝑅′ > through a sequence of elementary change operations. Our aim is to build a

foundation for enabling runtime adaptation of component connectors through generic and reusable

adaptations. Later on, we define different categories of reconfiguration based on this general

interpretation of adaptation. As a specific case, we can restrict reconfigurations by ruling out the ones

that do not preserve some specific properties. For example, one can only consider structural restrictions

such as preserving boundary interfaces 𝐼 𝑜𝑟 𝑂 . As another example, one may only be interested in

reconfigurations that preserve the initial behavior of the connector. This requires an underlying semantic

model of the component connector.

Definition 55. A connector homomorphism 𝑓 from a connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > to a connector 𝐶𝑖𝑑′ =
< 𝐼′, 𝑂′, 𝑅′ >, written 𝑓: 𝐶𝑖𝑑 → 𝐶𝑖𝑑′, is a mapping 𝑓:𝑁 → 𝑁′ from reference nodes 𝑁 of 𝐶𝑖𝑑 to 𝑁′ of
𝐶𝑖𝑑′ such that (𝑛1, 𝑖𝑑, 𝑡, 𝑛2) ∈ 𝑅 implies (𝑓(𝑛1), 𝑖𝑑′, 𝑡′, 𝑓(𝑛2)) ∈ 𝑅′. 𝐶𝑖𝑑 is said to be homomorphic to
𝐶𝑖𝑑′ . If 𝑓:𝑁 → 𝑁′ is a one-to-one function whose inverse is also a homomorphism, then 𝑓 is a
isomorphism of the connectors.

Definition 56. Let connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > be a connector with reference nodes 𝑁. A structure
preserving reconfiguration 𝑟 is a connector homomorphism (Definition 55) when applied to 𝐶𝑖𝑑 ,
denoted by 𝐶𝑖𝑑 ⋅ 𝑟, yields a structural variant (Definition 52) 𝐶𝑖𝑑′ =< 𝐼′, 𝑂′, 𝑅′ > of it.

Definition 57. Let connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > be a connector with reference nodes 𝑁. A removal from
a connector 𝑟𝑒𝑚𝑜𝑣𝑒 is a reconfiguration that cuts a partition 𝑃1 =< 𝑁1, 𝑅1 > out of connector 𝐶𝑖𝑑 and
removes the orphaned nodes. Application of 𝑟𝑒𝑚𝑜𝑣𝑒 to 𝐶𝑖𝑑 is represented as 𝐶𝑖𝑑 ⋅ 𝑟𝑒𝑚𝑜𝑣𝑒(𝑃1) and
yields a new connector 𝐶𝑖𝑑′ =< 𝐼′, 𝑂′, 𝑅′ > with reference node 𝑁′.

𝑁′ ⊆ 𝑁

𝐼′ ⊆ 𝐼

𝑂′ ⊆ 𝑂

𝑅′ = 𝑅 ∖ 𝑅1

(6.19)

Let consider connector 𝑆6 in Figure 6.11 and the connector partition

𝑃𝑆6 =< {𝑁3}, {(𝑁1, 𝑓1, 𝐹𝐼𝐹𝑂,𝑁3), (𝑁3, 𝑓2, 𝐹𝐼𝐹𝑂,𝑁2)} >.

The application of the removal operation 𝑆6. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑃𝑆6) will result in connector 𝑆6′ as it is depicted in

Figure 6.13. Note that after the removal of the two channels, the node 𝑁3 becomes orphaned and as a

result it should be removed.

210

Figure 6.13. A reconfigured version of sequencer connector after application of removal.

Definition 58. Let connectors 𝐶𝑖𝑑1 = < 𝐼1, 𝑂1, 𝑅1 > and 𝐶𝑖𝑑2 = < 𝐼2, 𝑂2, 𝑅2 > be two connectors with
reference nodes 𝑁1 𝑎𝑛𝑑 𝑁2 respectively. An insertion of 𝐶𝑖𝑑2 into 𝐶𝑖𝑑1 is an special case of
composition of the two connectors in a way that a node connecting two or more channels in 𝐶𝑖𝑑1 will
be disconnected and 𝐶𝑖𝑑2 is inserted into the room created by that separation by stitching nodes in 𝐽 ⊆
𝑁1 × 𝑁2 × 𝑁. This reconfiguration is not structure preserving because the boundary nodes may be
changed by this reconfiguration. Application of 𝑖𝑛𝑠𝑒𝑟𝑡 to 𝐶𝑖𝑑1 is represented as 𝐶𝑖𝑑1 ⋅ 𝑖𝑛𝑠𝑒𝑟𝑡(𝐶𝑖𝑑2, 𝐽)
and yields a new connector 𝐶𝑖𝑑3 =< 𝐼3, 𝑂3, 𝑅3 > with reference node 𝑁3.

𝐼1 ⊆ 𝐼3

𝑂1 ⊆ 𝑂3

𝑅3 = 𝑟𝑒𝑛𝑁3(𝑅1 ∪ 𝑅2)

|𝑁3| = |𝑁1| + |𝑁2| − |𝐽| + 1

(6.20)

Let us consider the sequencer connector in Figure 6.3, a simple connector 𝐼1 as in Figure 6.14 and stitching

nodes 𝐽 = {(𝑁2, 𝐴, 𝑁3), (𝑁2, 𝐵, 𝑁4)}. The application of insertion 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟. 𝑖𝑛𝑠𝑒𝑟𝑡(𝐼1, 𝐽) would result

in a new connector 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟′, which is a variation of sequencer connector called proactive waiting

sequencer as depicted in Figure 6.15. This insertion is not structure-preserving and adds a new node 𝑖1 to

the boundary nodes of the sequencer. Moreover, as in (6.20), 8 = 6 + 3 − 2 + 1 holds for this

reconfiguration.

Figure 6.14. A simple connector.

Figure 6.15. The proactive waiting sequencer.

211

Definition 59. Let connector 𝐶𝑖𝑑 =< 𝐼, 𝑂, 𝑅 > be a connector with reference nodes 𝑁. A replacement
is a structure-preserving (Definition 56) reconfiguration 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 that replaces a partition 𝑃1 =<
𝑁1, 𝑅1 > (cf. Definition 50) of connector 𝐶𝑖𝑑 with another connector partition 𝑃2 =< 𝑁2, 𝑅2 > by
stitching nodes in 𝐽 ⊆ 𝑁1 × 𝑁2 ×𝑁3 . The application of 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 to 𝐶𝑖𝑑 is represented as 𝐶𝑖𝑑 ⋅
𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑃1, 𝑃2, 𝐽) and yields a new connector 𝐶𝑖𝑑′ =< 𝐼′, 𝑂′, 𝑅′ > with reference nodes 𝑁′.

𝑁1 ⊆ 𝑁

𝑅1 ⊆ 𝑅

𝐼′ = 𝐼, 𝑂′ = 𝑂

𝑅′ = 𝑟𝑒𝑛𝑁′((𝑅 ∪ 𝑅2) ∖ 𝑅1)

𝑁′ = (𝑁 ∪ 𝑁3) ∖ 𝑁1

(6.21)

, where each element in triple 𝐽 respectively indicates which pair of nodes from 𝑃1 and 𝑃2 are to be
joined to form a new set of nodes as in 𝑁′.

Let us consider the proactive waiting sequencer in Figure 6.15,

𝑃1 = < {𝑂1,𝑂2}, {(𝑁1, 𝑠2, 𝑆𝑦𝑛𝑐, 𝑂1), (𝑁4, 𝑠3, 𝑆𝑦𝑛𝑐, 𝑂2)} >,

𝑃2 = < {𝑂3,𝑂4}, {(𝑁5, 𝑙𝑠1, 𝐿𝑜𝑠𝑠𝑦𝑆𝑦𝑛𝑐, 𝑂3), (𝑁6, 𝑙𝑠2, 𝐿𝑜𝑠𝑠𝑦𝑆𝑦𝑛𝑐, 𝑂4)} >,

 𝐽 = {(𝑁1,𝑁5,𝑁7), (𝑁4,𝑁6, 𝑁8)}

The application of the replacement operation 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟′. 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑃1, 𝑃2, 𝐽) will result in connector

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟′′ as depicted in Figure 6.16.

Figure 6.16. The proactive waiting weak sequencer.

6.4. Adaptation Effectuation through Dynamic Software Product Lines

In this section, we first review existing work that addresses dynamic adaptation of software systems

through the concept of variability in the underlying software, which is considered as a relevant work in

the software product line community. We then use the concept of feature models to define connector

modes with the structural construct that we defined in Section 6.3.1. Finally, we propose our mode-based

adaptation mechanism based on a reasoning mechanism on feature models corresponding to the

connector mode configurations.

6.4.1. Runtime adaptation and dynamic software product line

According to the approaches reviewed in Section 6.2, a limited set of architectural configurations is

determined and associated with environmental situations. As a result, they restrict the variability space

of self-adaptive software in a dramatic way. However, the relationship between self-adaptive software

212

and its surrounding environment is not that straightforward. This relationship affects application

functionality, non-functional requirements and the inherent capability of the platform on which the

software system is running. Capturing this complex relationship with a limited set of architectural

configurations imposes a risk of overlooking important environmental situations and missing architectural

configurations (Perrouin & Chauvel, 2008).

Software Product Line (SPL) engineering is a way to deal with varying user requirements that lead to the

derivation of customized product variants. Once the product has been created, they tend to keep their

structure and behavior throughout their lifetime. However, Dynamic Software Product Lines (DSPL)

embrace software systems that are capable of modifying their own structure or behavior with respect to

environmental situations by using runtime adaptation (C Cetina, Giner, Fons, & Pelechano, 2010). This

capability of changing the structure and behavior is enabled by a traditional notion of variability in SPL.

However, as opposed to the traditional perspective, in which variants are decided for the variation points

at design-time, the variability in DSPLs is bound or unbound at runtime. Moreover, the binding decisions

on the variations may change several times in its lifetime (Hallsteinsen et al., 2008). Therefore, DSPL is

regarded as an efficient approach to build dynamic adaptive software (Hallsteinsen et al., 2008).

There are different works focusing on adaptation of software systems based on the different kinds of

software artifacts driven by the variability bindings. As a result, the relationship between variation points

and variants are also different. Trinidad et al. (Trinidad, Cortés, Peña, & Benavides, 2007) associate feature

models to component architecture for building a DSPL. The mapping is one-to-one and adaptation can be

realized by dynamic connections between specific components. However, this one-to-one mapping

contradicts the clear separation between functional and architectural dimensions. Wolfinger et al.

(Wolfinger, Reiter, Dhungana, Grunbacher, & Prahofer, 2008) propose the same sort of mechanism, but

combining it with a plug-in technique. The adaptation is enabled by loading and unloading the plug-ins at

runtime. Lee et al. (Kotonya, 2010) present their work on service-based systems. Therefore, the

adaptation is mapped to service selection with the right quality level. Perrouin et al. (Perrouin & Chauvel,

2008) clearly separate the variability space into the three dimensions functional, platform and topological.

Feature model, component repository and collaboration diagram manage the three variability spaces

respectively. Hallsteinsen et al. (Floch et al., 2006; Hallsteinsen, Stav, Solberg, & Floch, 2006) define

variability directly in the reference architecture. The architecture constitutes component, which realize

component types as variation points. Lee and Kang (Lee & Kang, 2006) introduce the notion of a binding

unit, which are used to identify architectural components by grouping features. Montero et al. (Montero,

Pena, & Ruiz-Cortes, 2008) focus on managing variability in business processes. Cetina et al. (Carlos Cetina,

Giner, Fons, & Pelechano, 2009) focus on reconfiguration of architectural models based on reasoning on

feature models.

These works are based on the clear mapping between the features and the software artifacts whether it

is a component, service, plugin or process variant. Shen et al. (Shen, Peng, Liu, & Zhao, 2011) propose a

solution of managing complex relationships between variability model and variants. They introduce a role

model to clarify this complex mapping.

213

Table 6.4. Variability binding in existing approaches.

Approach Variability Variant Relationship

(Trinidad et al., 2007) Feature model Component 1-to-1

(Wolfinger et al., 2008) Feature model Plug-in 1-to-1

(Kotonya, 2010) Feature model Service 1-to-N

(Perrouin & Chauvel, 2008) Feature model Component 1-to-N

(Hallsteinsen et al., 2006) Reference architecture Component 1-to-N

(Floch et al., 2006) Reference architecture Component 1-to-N

(Lee & Kang, 2006) Feature model Component 1-to-N

(Montero et al., 2008) Feature model Process variant 1-to-N

(C Cetina et al., 2010) Feature model Service configuration M-to-N

(Shen et al., 2011) Feature model Code M-to-N

6.4.2. Feature models for component connectors

In general, a feature is an increment in functionality of a system (Czarnecki, Helsen, & Eisenecker, 2004).

The features are typically related through a hierarchical tree structure, called feature model. This

structure has top-down optional/mandatory relationships, cross-node alternative/or relationships and

crosstree requires/excludes constraints. However, the features in feature models are inherently symbolic.

Therefore, in order to give them a precise semantics, we need to map features to other models

corresponding to the structure or behavior of a software system. In this section, we use the concepts of

connector configuration, as formally defined in Section 6.3.1, for mapping feature models to concise

representations of variability in connector configurations. Therefore, the feature models that we consider

throughout this research express connector variability, meaning that feature models are devoted to the

modeling of the variation points and their relationships in a given component connector.

Definition 60. A feature model 𝐹𝑀 = (𝐹, 𝜙) is defined as a finite set of features 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛}
and 𝜙 as a propositional logic formula over 𝐹.

An example of a feature model of the sequencer connector is represented in Figure 6.17. 𝐷𝑎𝑡𝑎_𝐼𝑛 and

𝐷𝑎𝑡𝑎_𝑂𝑢𝑡 are features that correspond to the capability of the sequencer to have ports for accepting

data and releasing the data out of the connector. The feature 𝑂𝑢𝑡𝑝𝑢𝑡 determines the output ports, which

facilitate sequential delivery of data to the corresponding entities. The feature 𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑎𝑦𝑒𝑟 determines

the protocol of interactions between the output ports. 𝐷𝑎𝑡𝑎_𝐼𝑛, 𝐷𝑎𝑡𝑎_𝑂𝑢𝑡 and 𝑂𝑢𝑡𝑝𝑢𝑡 are mandatory

features. The 𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑎𝑦𝑒𝑟 feature can be optionally selected to enhance the output interaction with

one of its alternative sub-features. The 𝑂𝑢𝑡𝑝𝑢𝑡 feature can be optionally refined with more than one

output instances maximum of five.

214

Figure 6.17. Sequencer connector feature model.

Figure 6.18. Refined sequencer connector feature model.

According to Definition 60, 𝐹 = {𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑟, 𝐷𝑎𝑡𝑎𝐼𝑛 , 𝐷𝑎𝑡𝑎𝑂𝑢𝑡 ,𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑎𝑦𝑒𝑟, 𝑆𝑖𝑚𝑝𝑙𝑒 𝐵𝑢𝑓𝑓𝑒𝑟,

𝑃𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 𝑃𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔, 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑂𝑢𝑡𝑝𝑢𝑡1,𝑂𝑢𝑡𝑝𝑢𝑡2, 𝑂𝑢𝑡𝑝𝑢𝑡3,𝑂𝑢𝑡𝑝𝑢𝑡4,𝑂𝑢𝑡𝑝𝑢𝑡5.

With respect to Definition 60, we now define the concept of configuration (that corresponds to a

connector operating mode).

Definition 61. A set of all selected features in a feature model 𝐹𝑀 = (𝐹, 𝜙) that satisfy the constraints
in 𝜙 is referred to as configuration:

𝐶𝐶 ≝ 𝑆𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚}

𝑆𝐹 ⊆ 𝐹

∀𝑓 ∈ 𝑆𝐹: 𝑓. 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒

𝑆𝐹 ⊢ 𝜙

(6.22)

For example, the current configuration of the sequencer connector 𝑆1 represented in Figure 6.19 is as

follows:

𝐶𝐶𝑆1 = {𝐷𝑎𝑡𝑎𝐼𝑛, 𝐷𝑎𝑡𝑎𝑂𝑢𝑡 ,𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑎𝑦𝑒𝑟,

𝑆𝑖𝑚𝑝𝑙𝑒 𝐵𝑢𝑓𝑓𝑒𝑟, 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑂𝑢𝑡𝑝𝑢𝑡1,𝑂𝑢𝑡𝑝𝑢𝑡2}
(6.23)

Figure 6.19. Initial configuration (mode) of sequencer connector.

215

The rules for selecting features from a feature mode that satisfy the constraints of the model can be listed

as follows:

1. If a feature is selected, its parent must also be selected.

2. If a feature is selected, all of its mandatory children in an “AND” group must be selected.

3. If a feature is selected, at least one of its children in an “OR” group must be selected.

4. If a feature is selected, exactly one of its children in an “Alternative” group must be selected.

Definition 62. Let us consider 𝐹𝑀 =< 𝐹,𝜙 > be a feature model, ⟦𝐹𝑀⟧ denotes the set of valid
configurations of the feature model 𝐹𝑀.

 ∀𝐶𝐶𝑖 ∈ ⟦𝐹𝑀⟧: 𝐶𝐶𝑖 ⊆ 𝐹 ⋀ 𝐶𝐶𝑖 ⊢ 𝜙 (6.24)

Since features in the feature model for component connectors represent a coarse-grained coordination

protocol, there is a need to determine which connector elements are represented by each feature. In the

context of this work, we assume that component connectors are defined as Definition 34. Figure 6.19

shows a sequencer connector using graphical notations, which are equivalent to its formal representation.

We map the features to connectors by the following operator.

Definition 63. The feature to connector map operator takes a feature 𝑓 ∈ 𝐹 and returns a connector
partition 𝑝 ∈ 𝑃𝐶𝑖𝑑 (cf. Definition 50) of connector 𝐶𝑖𝑑 = 〈𝐼, 𝑂, 𝑅〉 as follows:

𝐹2𝐶: 𝐹 → 𝑃

∀𝑓1, 𝑓2: 𝐹2𝐶(𝑓1) ∩ 𝐹2𝐶(𝑓2) = ∅
(6.25)

In the context of the sequencer connector 𝑆1 in Figure 6.19,

𝐹2𝐶(𝐷𝑎𝑡𝑎_𝐼𝑛) =< {𝐴}, {(𝐴, 𝑠1, 𝑆𝑦𝑛𝑐, 𝑁1)} >

𝐹2𝐶(𝑆𝑖𝑚𝑝𝑙𝑒 𝐵𝑢𝑓𝑓𝑒𝑟) =< {𝑁1,𝑁2}, {(𝑁1, 𝑓1, 𝐹𝐼𝐹𝑂,𝑁2)} >
(6.26)

Assume a need to restrict the second output port such that it is accessed after it receives an

acknowledgement from the component that is connected to the first output. The pro-active waiting

feature lets the first component acknowledge its termination and the coordination protocol to memorize

it. By choosing this feature as part of feature set in the current configuration, it yields the proactive-

waiting sequencer connector mode 𝑆8 as illustrated in Figure 6.20. In the context of 𝑆8,

𝐹2𝐶(𝑃𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔) = < {𝑁3, 𝑖1}, {(𝑁1, 𝑓1, 𝐹𝐼𝐹𝑂,𝑁3),

(𝑁3, 𝑠𝑑1, 𝑆𝑦𝑛𝑐𝐷𝑟𝑎𝑖𝑛, 𝑖1), (𝑁3, 𝑓2, 𝐹𝐼𝐹𝑂, 𝑁2)} >
(6.27)

Note that we can apply, for example, more of such basic constructs (see Definition 36) to grow this

connector up for creating more connector modes.

Figure 6.20. The “pro-active waiting” sequencer connector mode.

Consider again the sequencer connector, but with new capability. Imagine that the components

connected to the ports 𝑂1, 𝑂2 may fail for a long period of time, which leads to a deadlock in the

216

connector. The possible solution is to choose weak versions of output instead of strong counterparts. This

avoids the problem by not enforcing the components to respond when they are not working properly.

Figure 6.21 illustrates the new mode of the connector, which is called weak sequencer. Note that the

connector mode illustrated in Figure 6.21 is a structurally equivalent connector (cf. Definition 54) to the

connector shown in Figure 6.19.

Figure 6.21. The weak sequencer connector mode.

Now consider the situation in which the result of the second component is complementary with respect

to the first one. Therefore, whenever it fails, the system should proceed normally through port 𝐵 and

disregard port 𝑂2. This requirement is met by selecting the weak version of the second output resulting

in a new mode called quasi-weak sequencer shown in Figure 6.22.

Figure 6.22. The quasi-weak sequencer connector mode.

Now suppose that a new requirement forces a dependence between components in the sequence. To be

more specific, consider the second component connected to the port 𝑂2 is executed with the result of

the first component and whenever the second component is not ready to consume the result, it should

be memorized. The pro-active dependent feature meets the envisage requirement. By selecting this

feature, a new mode called pro-active dependent sequencer results as shown in Figure 6.23.

Figure 6.23. The “pro-active dependent” sequencer connector mode.

6.4.3. Mode-based adaptation of component connectors through feature models

In this section, we use the feature-based representation (see Section 6.4.2) of component connectors to

facilitate the mode-based adaptations of component connectors. Note that mode-based adaptation is the

mechanism we adopted to enable the self-adaptation process for component connectors that is proposed

in this thesis.

217

Figure 6.24 represents the process of product derivation, where artifacts are composed according to a

valid configuration, which is compliant with the feature model. The process of product derivation is

accomplished at design-time to produce a variant of a software solution among different valid variants by

resolving the variability points in the model. However, the process of variant derivation based on DSPLs is

slightly different.

Figure 6.24. Product derivation process in SPL.

The process for dynamic adaptation based on DSPL comprises two steps. As depicted in Figure 6.25, at

design-time, an initial feasible configuration of the system is derived. At runtime when the situation of

the operating environment is changed and the current configuration cannot satisfy a desired non-

functional requirement, a new configuration needs to replace the current one. In this thesis, we follow

such adaptation process. This process comprises adaptation reasoning (see Chapter 5) to find a suitable

configuration that can be enacted (the subject of this chapter) through variability resolution at runtime.

Figure 6.25. Dynamic adaptation of software system with variability model at runtime.

In some circumstances, for example when the initial requirements have been changed, the feature model

itself needs to be adapted. The change in the variability model can be quite common for software systems

whose target configurations are dynamically discovered at runtime. The change in the variability model

results in a new feature model that may be required to be resolved at runtime and as a result causes some

changes in the current configuration. In this thesis, this type of change is not considered as a part of the

adaptation process since we assume that the modes of the component connectors are entirely discovered

at design-time.

218

Figure 6.26. Dynamic adaptation of software system with dynamic variability model at runtime.

Definition 64. The Feature Configuration Model (FCM) defines a feature model, 𝐹𝐶𝑀 = (𝐹𝑐𝑚, 𝜙𝑐𝑚),
where all variabilities of the original feature model 𝐹𝑀 = (𝐹, 𝜙) are resolved and the subsequent
product derivation results in only one variant corresponding to the configuration, 𝐶𝐶 (see Definition
61), of an specific mode of the connector:

𝐹𝑐𝑚 = 𝐶𝐶 ⊆ 𝐹

𝜙𝑐𝑚 ⊢ 𝜙
(6.28)

An adaptation execution for a connector can be simply seen as set of variant substitutions for given

variation points. Let us consider that the current configuration of the running connector corresponds to

mode 𝐶𝑀𝑠 and the target configuration that is derived based on the adaptation reasoning corresponds to

𝐶𝑀𝑡. Each of these connector modes have their corresponding resolved variability models denoted by

𝐹𝐶𝑀𝑠 = (𝐹𝑠, 𝜙𝑠), 𝐹𝐶𝑀𝑡 = (𝐹𝑡 , 𝜙𝑡), see Definition 64. Because of such a definition, the key problem of

adaptation execution (see Figure 6.1) boils down to the transition from current mode to the target mode

through their corresponding feature configuration models. The added and removed features can be

identified by calculating the following equations:

𝐹𝑎𝑑𝑑 = 𝐹𝑡 − 𝐹𝑠

𝐹𝑟𝑒𝑚 = 𝐹𝑠 − 𝐹𝑡
(6.29)

Then by adopting the feature to the connector map operator, the added and removed connector

partitions 𝑝𝑎𝑑𝑑 ∈ 𝑃𝐶𝑠 , 𝑝𝑟𝑒𝑚 ∈ 𝑃𝐶𝑠 (cf. Definition 50) of connector 𝐶𝑠 = 〈𝐼, 𝑂, 𝑅𝑠〉 can be located and

respectively be added and removed from 𝐶𝑖𝑑. This results in a new connector mode 𝐶𝑡 = 〈𝐼, 𝑂, 𝑅𝑡〉 with

the following relations:

𝑝𝑎𝑑𝑑 = 𝐹2𝐶(𝐹𝑎𝑑𝑑) =< 𝑁𝑎𝑑𝑑 , 𝑅𝑎𝑑𝑑 >

𝑝𝑟𝑒𝑚 = 𝐹2𝐶(𝐹𝑟𝑒𝑚) =< 𝑁𝑟𝑒𝑚, 𝑅𝑟𝑒𝑚 >

𝑅𝑡 = 𝑅𝑠 + 𝑅𝑎𝑑𝑑 − 𝑅𝑟𝑒𝑚

(6.30)

At the execution level, we need to determine the order in which these changes have to be applied, and

maintain the consistency of the connector by checking the connectivity (to evaluate whether the condition

in Definition 49 is valid) of the connector throughout this transition. Checking this connectivity is

straightforward because it should always be possible to find a path (Definition 40) from the input nodes

𝐼 to output nodes 𝑂 by traversing the elements in 𝑅 in the current configuration of the temporal

connector.

219

6.5. Limitations and Threats to Validity

The approach for adaptation execution that we proposed in this chapter is demonstrated through the Reo

language. However, this approach is general enough as long as we can map the language structural

constructs to the graph theory constructs as we demonstrated for Reo in Section 6.3 via various

definitions. The operationalization of adaptation process that is discussed in Section 6.4 is based on tree-

based feature models that can be mapped to the structural constructs via Definition 63.

However, there are different connector models and languages in the literature (see a review of existing

connector languages in (Bruni et al., 2013; Kell, 2007)) and these are based on different theories and

technical machineries (Bliudze & Sifakis, 2007). For instance, a connector may impose a handshaking

constraint between a sender component and a receiver component (Milner's Calculus of Communicating

Systems), or it may demand for an agreement on the action to be executed next by the connected

components (Hoare's Communicating Sequential Processes). As a result, a threat to external validity of

this approach is the choice of specific connector language (i.e., Reo) used for demonstration purposes and

communicating the results of this thesis. This threat, however, is mitigated as far as possible by formally

defining general-purpose structures using graph theory and widely adopted feature models.

6.6. Conclusions

In this chapter, we have presented the execution phase of the MAPE-K loop. We have adopted two solid

and well recognized theories to enable such adaptation effectuation for component connectors, i.e.,

graph theory and variability modeling. We adopted graph theory to formally define the structure of

connectors and reason about structural changes at an appropriate level of abstraction. We also showed

how to reason about mode changes based on feature models corresponding to the modes of connectors

and use the formal structural constructs to derive adaptation actions. We have also presented the

adaptation itself as the change of a connector from one current operating mode to a new target mode.

The variability model changes of our connectors are mapped into reconfiguration actions in order to adapt

the connectors at runtime. We have based the reconfiguration on Reo that, due to its reconfiguration

properties, enables products to switch channels and structural configurations.

This chapter concludes the technical contribution of this dissertation, which started in Chapter 4 with a

learning mechanism to calibrate analytical models corresponding to the component connectors

embracing the existence of uncertainties. We have explained the adaptation reasoning to derive the right

mode for the connector given the current situation at runtime in Chapter 5. Although this section

introduces a novel structural reasoning for component connectors, and the combination of feature-based

and structural reasoning based on graph theory is new, this chapter acts as a supplementary solution

component. The next part of this dissertation discusses the advantages and limitations of the proposed

solution framework, and provides comprehensive details on the experimental evaluation and tool support

developed for this research work.

220

Chapter 7

7. Implementation and Evaluation

“The difference between theory and practice is that in theory, there is no difference between theory and

practice.” Anonymous

Contents

7.1. INTRODUCTION ... 221
7.2. AN OVERVIEW OF THE PROPOSED SOLUTION FRAMEWORK ... 222
7.3. EVALUATION CRITERIA ... 224
7.4. CASE STUDY, IMPLEMENTATION AND EXPERIMENTAL EVALUATION ... 225

7.4.1. ElasticQueue as a concrete case of self-adaptive component connectors 226
7.4.2. Architectural modes of ElasticQueue component connector .. 230
7.4.3. Tool Support: Design Components of the ElasticQueue .. 232
7.4.4. Implementation technologies of the ElasticQueue .. 235

7.4.4.1. Architectural reconfiguration challenges in the cloud .. 237
7.4.5. Controller design for ElasticQueue: an empirical perspective ... 243

7.4.5.1. Adaptation policy elicitation through survey .. 243
7.4.5.2. Survey processing ... 243

7.4.5.2.1. Fuzzy sets design (membership functions) .. 245
7.4.5.2.2. Fuzzy rules design .. 246
7.4.5.2.3. Fuzzy logic control surface ... 246

7.4.6. Experimental evaluations .. 247
7.4.6.1. Experimental setting ... 247
7.4.6.2. Results ... 248

7.5. LIMITATIONS AND THREATS TO VALIDITY .. 256
7.5.1. Limitations ... 257
7.5.2. Threats to validity .. 257

7.6. CONCLUSIONS .. 258

221

7.1. Introduction

In this chapter, we show how the three key parts of the solution framework (i.e., RCU framework) are

integrated to enable self-adaptation of component connectors through a real-world case study. To

conduct this research, we followed the guidelines of the action research methodology (Chapter 1) that

provides a rigorous set of steps focused on planning (Chapter 2, Chapter 3) and conducting the research

(Chapter 4, Chapter 5, Chapter 6) along with the evaluation of the research results (this chapter). In the

self-adaptation process, we have devised mechanisms to calibrate the runtime models as presented in

Chapter 4. After a requirement violation is detected in an updated analytical model based on monitoring

data, a decision needs to be made for what operational mode is appropriate to fix the violation. Then the

decision needs to be enacted on the running connector and the operating mode of the connector is

changed accordingly. We present the mechanisms for such decision-making and change execution in

Chapter 5 and Chapter 6 respectively. The focus of this chapter, on the other hand, is on an experimental

evaluation of these above-mentioned solution components (cf. Figure 7.1).

Figure 7.1. Scope of Chapter 7.

The main contributions of this chapter are to show the validity of the research claims we have made in

the Introduction (Chapter 1):

 How the solution components are integrated with each other to realize the feedback control loop.

 To evaluate the “computational complexity”, “stability”, and “robustness” of the adaptation

reasoning controller that enables the self-adaptation of component connectors.

 To show the “applicability” and “usability” of self-adaptive connectors in a real-world context.

The outcome of this chapter is a number of empirical and experimental results as well as proof of concepts

that results that not only demonstrate the validity of the research claims but also address RQ3 (cf. Chapter

1) that calls for evidences of real-world applicability of our solution framework, i.e., RCU.

The remainder of this chapter is organized as follows. This chapter begins with a high-level overview of

the proposed solution framework in Section 7.2. Details about the criteria for evaluating the solution

framework are presented in Section 7.3. The key section of this chapter (i.e., Section 7.4) includes details

of the case study through an empirical research. Results regarding the experimental evaluation of the

solution framework are also presented in Section 7.4. A discussion of limitations and threats to validity is

presented in Section 7.5. Finally, we conclude the chapter by reviewing the research claims and their

support in Section 7.6.

222

7.2. An Overview of the Proposed Solution Framework

An overview of our approach to enabling reliable self-adaptation of component connectors is shown in

Figure 7.2. As illustrated, the approach covers both design-time and runtime. During design-time, the aim

is to design appropriate architectural modes of the connector and verify them against expected

requirements. At runtime, while the connector starts operating, the framework monitors quality data.

The non-functional requirements are continuously verified with respect to runtime data that may reflect

changes in the environment's behavior. In the case of detected violations, a mode change is decided and

enacted accordingly. In the following, we briefly discuss each phase in turn and describe the relevant

activities.

Figure 7.2. The proposed framework.

(i) Design-Time. The approach begins at design-time when the operating modes of the connector are

determined. The key point of the design is to specify both the architecture of the connector in each mode

as well as the known properties of its enclosed elements. The architectural design is then transformed to

parametric versions of probabilistic models comprising Discrete-Time Markov Chains (DTMC) for reliability

purposes and Continuous-Time Markov Chains (CTMC) for performance purposes. Then, the probabilistic

counterpart of the architectural design is verified against expected non-functional requirements by using

parametric model checking. Different configurations resulting from different applications of

223

reconfiguration patterns are model checked in the different environment conditions for which they are

conceived. The goal is to show whether or not the different configurations can satisfy non-functional

requirements. The designer may look at the analysis results and may modify the architecture design

accordingly. We chose parametric model checking because some channel properties are not known at

design-time so they need to be specified by variable parameter.

Model-to-Model Transformation and Parametric Verification. The objective here is to enable a runtime

efficient verification that evaluates non-functional requirements of the system while it is executed. One

possibility would be to use traditional model checking to achieve this goal. In this case, at design-time, we

would model check the architectural design in the different environment conditions in which they are

intended to work. At runtime, the model can also be analyzed by the model checker in the current

environment conditions. A failure of requirement satisfaction would then drive the application of a

reconfiguration pattern. This approach, unfortunately, is unlikely to work in practice, especially because

of the imposed time required by the verification step, which may lead to unacceptably late reactions at

runtime. To make runtime analysis feasible, we apply a parametric verification approach instead of the

classical one. In this case, parametric verification is performed at design-time and a formula is generated,

which is later evaluated quite efficiently at runtime when updated real data are available. The only

imposed overhead at runtime is the substitution of variables with real value. This is a fairly scalable

approach that has been shown that its runtime overhead is practical for even large-scale models. Note

that we borrowed this quantitative verification technique (Calinescu et al., 2012) from the PhD work of

Antonio Filieri reported in (A Filieri et al., 2013; Antonio Filieri, Ghezzi, & Tamburrelli, 2011; Antonio Filieri,

2013). An overview of such parametric verification is shown in Figure 7.3.

To evaluate requirements, the architectural design is transformed into parametric Markov models. The

transformations from Reo architecture models into Markov models are performed by Reo2MC tool chain

(Moon, 2011). Regarding Markov models, parametric DTMCs are used to verify reliability properties, while

parametric DTMCs with rewards are used to verify cost properties (e.g. channel utilizations). Note that

such properties (i.e., quantifiable non-functional requirements) are expressed as formulae written in the

PCTL and CSL temporal logic and their extension is based on the concept of rewards as we described in

Chapter 2.

The parametric Markov models and the property formulae are fed into PARAM model checker (“PARAM

Model Checker,” 2013). The resulting formulae are used for two purposes. Firstly, they are used for

design-time verification of different coordination configurations. In this case, we have to make

assumptions about quality data for the parameters. The values represent the environment conditions we

predict, and for which we want to prove that appropriate modes are discovered at design-time that can

satisfy the requirements. Secondly, when no mode is able to satisfy the requirements, the designer should

change the set of connector modes. Furthermore, these formulae are used for runtime analysis and

planning to perform continuous verification and reconfiguration.

(ii) Runtime. When the procedure moves to runtime, the quality data collected through monitoring must

be transformed into values that can be used in the parametric model checker. This transformation in

general depends on the abstraction that model parameters realize on measurable data in the

environment. The transformation from monitoring data to model parameters is described in Chapter 4.

The updated parameters are used to substitute the formulae in order to verify the current satisfaction. In

case the verification detects any violations, an adaptation is decided to replace the current configuration

224

of the connector. The details of such adaptation reasoning are described in Chapter 5 of this thesis. Having

decided about the appropriate operating mode, the change to the configuration of the running connector

needs to be executed. The details of such change enactment are described in Chapter 6.

Figure 7.3. Parametric requirement verification process.

7.3. Evaluation Criteria

Since a critical solution component of our RCU framework responsible for reasoning on adaptation is a

fuzzy controller, we needed to borrow some criteria that has been typically used in control engineering

for evaluating the properties of controllers. From the perspective of control engineering, a controller

should be able to provide the following properties (Hellerstein et al., 2004):

 Stability. A control system is stable if there exists a converge point to which the system approaches.

As time tends to infinity, the distance to the equilibrium point tends to zero. In other words, when a

controlled system becomes unstable, the output of the system will not converge.

 Absence of overshooting. An overshoot occurs when the system exceeds the setpoint prior to

convergence.

 Low settling time. Settling time refers to the time required for the controlled system to reach the

setpoint.

 Robustness. A robust control system converges to the setpoint despite errors or variations in the initial

model. This property defines how well the system will react to disturbances and inaccurate feedback

measurements, as well.

These properties can be interpreted from the perspective of software engineering. The adoption of

control theory has recently become popular in software engineering community. For example, we observe

that noticeable studies have been publishing in several venues, e.g., the ACM Transactions on

Autonomous and Adaptive Systems (TAAS), the International Conference on Autonomic Computing and

Communications (ICAC), the Symposium on Software Engineering for Adaptive and Self-Managing

dDdAdDdAdD

dAdA

dAdDdAf

Lost

Lost

Lost

**

*

),,(

2

8.0
4*424*2

4*4

)4,2,4(

2

f

1}"_{":1 lostmessageRNFR

225

Systems (SEAMS), the IEEE International Conferences on Self-Adaptive and Self-Organizing Systems

(SASO), the Schloss Dagstuhl seminar on Software Engineering for Self-Adaptive Systems, and more

recently, the GI Dagstuhl Seminar "Control Theory meets Software Engineering". It is very interesting that

the most recent ACM/IEEE International Conference on Software Engineering (ICSE) in 2014, there are

two papers that focus on the adoption of control theory for solving software engineering problems, i.e.,

(Antonio Filieri et al., 2014) and (D’Ippolito et al., 2014). As a result, such control theoretic evaluation

criteria can be interpreted from the perspective of software engineering. A controller in this new

perspective should be able to provide the following properties (Antonio Filieri et al., 2014):

 Stability. Stability refers to the property that the self-adaptive system maintains the objective despite

unpredictable deviations from expected behaviors; e.g., changing workloads or hardware failures. In

addition, the system should not react to transient external changes. For example, a controller for

adjusting system resources should not react to transient load changes. Instead, such a controller

should be able to distinguish between a condition of stabilized load changing that effects performance

and a short-lived load changes that will not have a lasting effect on the system.

 Robustness to inaccurate measurements. Controlling a running system usually relies on monitoring

and/or other measurement mechanisms. Each of these might be affected by noise, or might require

a certain time to converge to a convenient accuracy. A controller should provide a reasonable

behavior even in presence of such measurement errors. Besides reducing the sensitivity to

measurement errors, robustness allows for the use of less invasive monitoring instruments,

sometimes required for high accuracy but expensive in terms of performance overhead.

Note that here we do not consider the overshooting as it is not relevant in fuzzy controllers. The settling

time is also considered in the stability analysis of the designed controller.

In this chapter, we use the above-mentioned controller properties (i.e., stability and robustness) in

conjunction with the research claims of this thesis (i.e., runtime efficiency, scalability and applicability,

see Chapter 1) as evaluation criteria to assess the validity of the solution framework proposed in this

thesis. We use a real-world connector as a case study and we use an experimental evaluation approach

to demonstrate the validity of the solution framework in the next section.

7.4. Case Study, Implementation and Experimental Evaluation

In this section, we present a real-world component connector, we call it here ElasticQueue, which is used

in many cloud-enabled software applications. We use this component connector as a case study through

which we demonstrate the validity of the research claim 4 of this thesis (i.e., real-world applicability, refer

to Introduction chapter, cf. RQ3).

The approach presented in this thesis develops a set of techniques and methods to control the

uncertainties in the self-adaptation control loop of component connectors. However, it is not evident that

these techniques and methods are actually useful in real-world settings. In order to evaluate the

applicability of our approach in a real-world context, we present a case study and a number of

experimental evaluations to provide evidence of the applicability of our approach in real-world scenarios.

226

7.4.1. ElasticQueue as a concrete case of self-adaptive component connectors

In this section, we provide a number of usage scenarios of ElasticQueue in the context of cloud

architectures. A software application running in the cloud is typically expected to handle a large number

of requests from different geographic regions. If the application is designed to process each request

synchronously, it would then result in a high response time and a bad user experience. In order to resolve

this issue, a common design pattern is to pass requests through an intermediate messaging system to

another service (a consumer service) that handles them asynchronously. This strategy helps to ensure that

the business logic in the application is not blocked while the requests are being processed.

Cloud storage such as Queues makes it possible to architect decoupled applications. Queues are powerful

because they allow for client applications to submit messages at a high rate of speed, one that may exceed

the ability of the backend server to process. As the queue size begins to grow, more resources can be

added to increase scale and therefore process messages in a timely fashion. Therefore, queues have

become a core building block of cloud architectures. This design pattern is common in most cloud-based

applications and is not limited to the arriving workloads from outside the application, it may also be used

internally for smoothing requests in different parts of the application concerning different purposes. In

this section, we review different usage scenarios of such a pattern by giving concrete examples of

applications of this pattern in the architectural design of cloud applications. Note that we have identified

these usage scenarios by systematic investigation of existing literature and our own experience in the

development of cloud-based applications.

Usage scenario 1. Competing consumers (Homer, Sharp, Brader, Narumoto, & Swanson, 2014).

The number of requests could vary significantly over time for many expected or unexpected reasons. A

sudden burst in aggregated requests from multiple tenants may cause unpredictable workloads. At peak

hours, a system may need to process many hundreds of requests per second, while at other times this

number could be very small. Additionally, the type of the process performed to handle these requests

may be highly variable. Using a single instance of the processing component (cf. Figure 7.4) may cause an

overload in the messaging system by the arrival of messages to the application. To handle this fluctuating

workload, the system can run multiple instances of the processing component. The workload needs to be

load-balanced across consumers to prevent an instance from becoming a bottleneck. In this scenario, the

elastic queue stores the messages and consumers can pick up the messages from a single point for

processing.

Figure 7.4. An instance of competing consumers in a typical cloud architecture.

227

Usage Scenario 2. Prioritized requests (Fehling, Leymann, Retter, Schupeck, & Arbitter, 2014; Homer et

al., 2014).

Applications may delegate specific tasks to other services; for example, to perform background processing

or to integrate with other applications or services. In cloud applications, a message queue is typically used

to delegate tasks to background processing. In many cases, the order in which requests are received by a

service is not important. However, in some cases it may be necessary to prioritize specific requests (cf.

Figure 7.5). These requests should be processed earlier than others of a lower priority that may have been

sent previously by the application. The elastic queue, in this scenario, plays the role of temporal storage

for each priority line.

Figure 7.5. The adoption of elastic queue in prioritized requests.

Usage scenario 3. Pipes and filters (Fehling et al., 2014; Homer et al., 2014; Medvidovic & Taylor, 2009).

An application may be required to perform a variety of tasks of varying complexity. The processing tasks

performed by each module, or the deployment requirements for each task, could change as business

requirements are amended. Some tasks might be compute-intensive and could benefit from running on

powerful hardware, while others might not require such expensive resources. Furthermore, additional

processing might be required in the future, or the order in which the tasks performed by the processing

could change. A sequence of message queues can be used to provide the infrastructure required to

implement a pipeline. An initial message queue receives unprocessed messages. As illustrated in

Figure 7.6, a component, acting as a filter, listens for a message on this queue, performs its work, and

then posts the transformed message to the next queue in the sequence. Another filter task can listen for

messages on this queue, process them, and post the results to another queue, and so on until the fully

transformed data appears in the final message in the queue. In this scenario, the elastic queue plays the

role of pipes in this architectural style.

228

Figure 7.6. An example of pipes-and-filters architecture in the cloud by exploiting elastic queues.

Usage scenario 4. Load leveling (Wilder, 2012).

Many solutions in the cloud involve running tasks that invoke services. In this environment, if a service is

subjected to intermittent heavy loads, it can cause performance or reliability issues. A service could be a

component that is part of the same solution as the tasks that utilize it, or it could be a third-party service

providing access to frequently used resources such as a cache or a storage service. If the same service is

utilized by a number of tasks running concurrently, it can be difficult to predict the volume of requests to

which the service might be subjected at any given point in time (cf. Figure 7.7). It is possible that a service

experiences peaks in demand that cause overload and is unable to respond to requests in a timely manner.

Overloading a service with a large number of concurrent requests may also result in the service failing if

it is unable to handle the contention that these requests could cause. In this scenario, the elastic queue is

responsible for leveling the requests (cf. Figure 7.7).

Figure 7.7. The adoption of elastic queue for load leveling.

Usage scenario 5. Request scheduling (Homer et al., 2014).

An application performs tasks that comprise a number of steps, some of which may invoke remote

services or access remote resources. The individual steps may be independent of each other, but they are

orchestrated by the application logic that implements the task (cf. Figure 7.8). Whenever possible, the

229

application should ensure that the task runs to completion and resolves any failures that might occur

when accessing remote services or resources. These failures could occur for a variety of reasons. For

example, the network might be down, communications could be interrupted, a remote service may be

unresponsive or in an unstable state, or a remote resource might be temporarily inaccessible—for

example, due to resource constraints. If the application detects a more permanent fault from which it

cannot easily recover, it must be able to restore the system to a consistent state and ensure integrity of

the entire end-to-end operation. In this scenario, the elastic queue facilitates the scheduling of tasks by

temporarily storing them in a reliable and manageable storage.

Figure 7.8. The adoption of elastic queue for request scheduling.

Usage scenario 6. Multi-cloud integration (Jamshidi & Pahl, 2014).

As illustrated in Figure 7.9, the integration dimension is very important when building cloud-native

applications that are distributed among different cloud environments of a hybrid cloud, or have to be

integrated with other applications (of one or several customers) hosted in different environments, on-

premises and in the cloud. The elastic queue, in this scenario, may reside on one (or both) cloud

platform(s) to enable the communications between different application layers.

Figure 7.9. An instance of integration in multi/hybrid cloud by heterogeneous components with elastic queue.

Usage scenario 7. Hybrid integration (Jamshidi & Pahl, 2014).

Figure 7.10 shows a processing functionality that experiences varying workload. This component is hosted

in an elastic cloud while the rest of an application resides in a static environment (such as an on-premise

data center). The elastic queue, in this scenario, plays an important role for integrating the different parts

of the hybrid deployment.

230

Figure 7.10. An instance of integration in hybrid cloud by connecting static layers with elastic queues.

In this section, we reviewed different real-world adoptions of different variations of the ElasticQueue

connector. The main objective of presenting such a comprehensive set of usage scenarios was to

demonstrate that such software connectors have been adopted in real domains (cf. research claim 4 in

Chapter 1). This was the main motivation in choosing ElasticQueue as a case study to evaluate our solution

framework. The other motivation behind this choice was that the cloud environment contains several

sources of uncertainty, see (Jamshidi et al., 2014).

7.4.2. Architectural modes of ElasticQueue component connector

In the experiments that we performed as a part of this case study, we only considered 5 operating modes

for ElasticQueue. The key objective of the experiments is to evaluate the research claims (see Chapter 1)

of this thesis. Table 7.1 lists the modes and their corresponding components and Figure 7.11 represents

their corresponding architectural designs.

Table 7.1. Linguistic labels to describe ElasticQueue operating mode.

ElasticQueue Mode
Interface

Component
Processing

Components

Normal 1 1

Effort 1 2

Medium Effort 1 3

High Effort 1 4

Maximum Effort 1 5

231

Figure 7.11. Five architectural modes of ElasticQueue (cf. Table 7.1).

232

7.4.3. Tool Support: Design Components of the ElasticQueue

In this section, we present different parts of the tool that we implemented to demonstrate the validity of

the research claims that we mentioned in Section 7.1. The tool that we implemented is divided into several

parts covering the different phases of the feedback control loop to enable the self-adaptation of

ElasticQueue.

Figure 7.12 illustrates these parts and how they correspond to different phases of the feedback control

loop architecture. There are six main parts: (1) ElasticQueue,is the connector that we want to adapt based

on the environmental situation (i.e., request load) and system performance (response time); (2) Load

generator, synthetically generates workload to simulate the usage pattern of a cloud-based application; (

3) Monitoring measures the metrics, which are required to decide about adaptation of the connector; (4)

Smoothing/prediction covers the process of model calibration for requirement verification and predicting

the future workload based on historical data; (5) Scaling engine takes the smoothed monitoring data as

input and produces appropriate adaptation actions according to the policies in the knowledge base; and

finally (6) Change actuator enacts the change to the running connector on the fly.

In order to have a better understanding of the tools, in this section we describe in detail the set of tools

designed and implemented around ElasticQueue that we call RobusT2Scale (Jamshidi et al., 2014). It is

important to mention that RobusT2Scale, in essence, is a concrete realization of the RobusT2 framework

(that we have described in Chapter 5) for the specific type of component connector, i.e., ElasticQueue.

The main purpose of this realization is to demonstrate that the proposed framework (in Chapter 5) can

be adopted for adapting real-world connectors.

In the following, we describe the architectural design and overview of each module and in the next section

(i.e., Section 7.4.4), we describe the implementation and technological details of the tool chain as shown

in Figure 7.12. Note that for describing each module of this realization of the RobusT2 framework, we use

specific scenario to demonstrate the details of the architectural design of that module.

Figure 7.12. Tool chain architecture.

233

ElasticQueue is a cloud service containing a web role and a (number of) worker role(s) designed with a

layered architectural style. In this sample, it represents a service that needs dynamic scaling to handle the

load being placed on it. The web role exposes a web service that adds task items to a queue. The worker

role(s) picks items off the queue and processes them. The RobusT2Scale framework is responsible for

reconfiguring the ElasticQueue connector at runtime.

Load Generator is a client-side (on-premise) application (cf. Figure 7.17) that calls the service hosted by

the ElasticQueue web role. The Load Generator is a syntactic workload generator employed to simulate

various levels of load on the ElasticQueue connector (cf. Figure 7.13).

Figure 7.13. ElasticQueue architecture – load injection scenario.

Monitoring is a web application that serves two purposes. As illustrated in Figure 7.14, it 1) serves up a

client to the user and then 2) exposes the metrics gathered by the Scaling Engine to this client via a service.

We have developed this module in a way that it can be hosted either on-premise or as a cloud hosted

application. The dashboard (cf. Figure 7.16) displays metric data, pending reconfiguration actions and the

configuration of the ElasticQueue in an easily understandable way.

0 50 100
0

500

1000

1500

0 50 100
100

200

300

400

500

0 50 100
0

1000

2000

0 50 100
0

200

400

600

0 50 100
0

500

1000

0 50 100
0

500

1000

234

Figure 7.14. ElasticQueue architecture - monitoring scenario.

Smoothing/prediction enables requirement verification at runtime and predicts short-term future usage

of the connector based on historical data collection. This module gathers historical data metrics, such as

the number of queued-up work items and the number of requests per second, from the cloud storage.

Using these metrics, it determines whether the application needs to be adapted. Note that the enabler of

this part is the model calibration mechanism as a part of RobustMC framework proposed in this thesis.

The details of the RobustMC framework are given in Chapter 4.

Scaling Engine is the part of the design that is responsible for enforcing the scaling policies. We built this

module in a way that can be hostable both on-premise and in the cloud. For this experiment, it has been

built as a console application (cf. Figure 7.18) running on-premise. The module is responsible for reasoning

about adaptation based on fuzzy reasoning. Note that the adaptation reasoning in this module is based

on the RobusT2 framework developed as a part of this thesis. The details of the RobusT2 framework and

the fuzzy reasoning is given in Chapter 5. If a need to reconfigure the ElasticQueue is determined, it calls

the Cloud Service Management API to start off this action. While we host this logic client-side on-premise.

It would also be possible to locate this logic in a cloud platform (here Windows Azure worker role) - the

scaling engine stores all its data in a cloud storage (cf. Figure 7.15).

235

Figure 7.15. ElasticQueue architecture - scaling scenario.

Change actuator enacts the change to the running connector on the fly. The key benefit of this evaluation

is that we adopt a real-world public cloud platform to demonstrate the validity of our approach rather

than an artificial simulation environment. For enacting the change, after determining the required

reconfiguration commands, this module calls the Cloud Service Management API (in this case is Azure

Service Management REST API3) to start off the reconfiguration actions. The details of the adaptation

mechanism is described in Chapter 6.

Until this point, we have described the high-level design of the tool chain in order to enable self-

adaptation of the ElasticQueue connector. In the next section, we describe the implementation details

and the technologies that we adopted to realize self-adaptive connectors.

7.4.4. Implementation technologies of the ElasticQueue

In this section, we describe the implementation view of the framework that we have realized (by

extending and adapting an existing Azure monitoring and enactor modules in MSDN code library) to

enable reliable self-adaptation of ElasticQueue as our case study in this chapter. The implementation

consists of 3 .NET solutions, each with a certain area of responsibility as follows:

1. The solution named ElasticQueue contains the projects that represent the functionalities of the

ElasticQueue. This project contains an Azure service with one Azure web role and one worker role.

The Web Role exposes a web-service with a single method that places a message on a queue. The

worker role then takes one message off the queue and processes the message accordingly.

2. The ScalingEngine solution contains two projects:

a. A console application called ScalingEngineClient (see Figure 7.18) and a Windows

Presentation Foundation (WPF) application called LoadClient (see Figure 7.17). The

ScalingEngineClient is responsible for most of the work in this experiment- it houses the

RobusT2 framework. It is responsible for continuously monitoring the queue length, the

3 http://msdn.microsoft.com/en-us/library/azure/ee460799.aspx

http://msdn.microsoft.com/en-us/library/azure/ee460799.aspx

236

requests per second performance counter as well as the current instance count. It takes

these metrics and saves them to 2 tables in Azure table storage. It also feeds them to the

RobusT2 framework to determine, based on the fuzzy reasoning, to which mode the

ElasticQueue needs to be reconfigured. If any adaptations are needed, it uses the Service

Management API to initiate the change on the cloud platform. The Service Management

API provides programmatic access to much of the functionality available through

the Management Portal. The Service Management API is a REST API. All API operations

are performed over security certificates.

b. The LoadClient is a syntactic load generator that is responsible for simulating load

patterns. It allows the user to determine the amount of load to simulate and then starts

calling the ElasticQueue end-point with the desired amount of times per second. It also

lets the user to track the current queue length through its UI as illustrated in Figure 7.17.

3. The Monitoring solution includes an ASP.NET web-application as well as a Windows Azure web

role, making it possible to host it both on-premise and in Azure. The solution also contains a

Silverlight application that is then hosted within the web role. The Monitoring service makes it

possible to watch the current state of the ElasticQueue in close to real-time. The monitoring client

uses a simple to understand UI (see Figure 7.16), allowing an end user to monitor the current

queue length, instance count as well as any adaptation actions, currently happening as well as

previously executed.

As discussed above the primary logic for adapting the ElasticQueue connector is contained in the

ScalingEngine. A number of useful visualization components are also contained in the Monitoring

application. This section will discuss the detailed implementation of both of these components of the

experiment.

The ScalingEngine, as mentioned before, is responsible for tracking the current load on the application

and then reconfiguring the ElasticQueue accordingly. To enable this it utilizes a couple of configurable

objects. First, it uses a list of MetricProvider objects. The sole responsibility of a MetricProvider is to collect

metric data from the Azure-based application. As soon as new data is obtained, it is evaluated to

determine if there is a need to reconfigure the ElasticQueue. This is done by the use of another list of

custom objects called ScalingLogicProviders, which can be thought of as the encapsulation of a scaling

rule. The metric data collected by the MetricProvider is passed to each of the defined

ScalingLogicProviders, one at a time. These then take that data collected by the MetricProvider and use

some logic to determine if there is a need to initiate an adaptation action. If this is the case, the requested

adaptation is passed to the last list of objects. They are called TimeLogicProviders and have two

responsibilities. First, they are responsible for verifying that any scaling change initiated by the

ScalingLogicProviders will keep the instance count within the configured values for the current time. If

they accept the requested scaling change, the scaling engine makes a call to the Azure Service

Management API to initiate the change. The second responsibility for the TimeLogicProviders is to initiate

any scaling change needed to stay within the configured max and min values for the current time. For

example shutting down worker instances of the ElasticQueue once the weekend has arrived (see

Figure 7.19). Calls made to the Azure Service Management API are highly privileged operations. These

calls will affect both the performance of an application as well as the costs. As such, this service needs to

be secured appropriately.

237

The other implementation issue was to avoid oscillations due to constantly adding or removing resources.

For avoiding such situations, in each control interval, the ScalingEngine checks whether there is a pending

scaling action that has not been enacted to the ElasticQueue yet. If it finds that there is a pending action,

it basically ignores (see Figure 7.20) the decisions made in this control interval and proceeds to the next

round.

The Monitoring part is a web application. This module has two responsibilities: 1) it is responsible for

serving up the monitoring data to the client, as well as 2) hosting a web service. The monitoring module

to get the necessary information from Azure Storage uses the web service. Other clients if needed also

could use the web service. The monitoring takes the data retrieved from the web service and displays it

in a visual dashboard using lists and graphs. The monitoring module is built using the Model-View-

ViewModel pattern (Microsoft, 2014).

7.4.4.1. Architectural reconfiguration challenges in the cloud

In order to reconfigure ElasticQueue in the cloud, there are some known technical challenges that we

have also faced during the experimental evaluation of this work:

 Taking action to scale on cloud platforms is exposed through the use of the Management APIs.

Through a call to this API, it is possible to change the instance count in the service configuration and

in doing so to change the number of running instances.

 When adding and removing instances, it is important to remember that the Management API is an

asynchronous API. This means that once a change has been requested, an application will need to poll

the service to determine if and when that change has taken effect.

 Applications need to ensure that rules are aware of the time delay in adding more capacity and that

they do not result in significant excess capacity being added as a result of subsequent evaluations of

rules while new instances are being started.

 The load placed on most applications is quite stochastic; however, at a higher level most applications

will display some broad trends in load.

238

Figure 7.16. Monitoring dashboard UI of RobusT2Scale.

239

Figure 7.17. Load generator UI.

240

Figure 7.18. Scaling engine UI (a reconfiguration is initiated).

241

Figure 7.19. Scaling engine UI (sensitivity to environmental data).

242

Figure 7.20. Scaling engine UI (a reconfiguration is ignored due to a pending action).

One of the key objectives of this evaluation is to show the validity of research claim 4, i.e., the real-world

applicability of the solution framework of this thesis. Therefore, we decided to evaluate the solution

framework in a real and practical environment rather than through a simulation. The key objective of this

thesis is to develop mechanisms to enable self-adaptation of component connectors. These mechanisms

should be robust against measurement noise, evaluated in a real practical environment that can provide

assurance that this evaluation is trustworthy. It is also remarkable that elastic systems on cloud platforms

contain different sources of uncertainties and this provides an appropriate real-world environment in

which we can evaluate our solution framework.

243

7.4.5. Controller design for ElasticQueue: an empirical perspective

In Chapter 5, we present a methodology for designing fuzzy logic controllers appropriate for adapting

connectors. In this section, however, we take an empirical perspective, and we describe the data

collection procedure for adaptation policy elicitation. We also elaborate on how to design the controllers

based on the collected data. The data collection is described in Section 7.4.5.1 and the controller design

comprising fuzzy membership function derivation and adaptation rule elicitation is presented in

Section 7.4.5.2.

7.4.5.1. Adaptation policy elicitation through survey

An interval type-2 fuzzy logic controller is used to perform the adaptation management of the

ElasticQueue. The controller is used to determine an operating mode for the ElasticQueue at runtime. The

design of the fuzzy logic system (adaptation rules and membership functions) is done using the knowledge

elicitation technique discussed in Chapter 5. This technique, based on surveys, allows extracting

adaptation policies from experts in the form of IF-THEN rules.

In order to design the configuration adaptation controller, a data collection was conducted in a survey

among 10 experts in cloud computing. The survey was mainly performed among the participants of the

Third National Conference on Cloud Computing and Commerce (NC4), April 2014 in Dublin, Ireland. The

participants of this survey are affiliated with: University College Cork (UCC), Athlone Institute of

Technology (AIT), University of Limerick (UL), and Dublin City University (DCU). The survey was designed

at the Irish Centre for Cloud Computing and Commerce (IC4), Ireland. The experts that we asked for this

experiment were PhD students and university professors in software engineering and cloud computing.

These experts had basic knowledge about fuzzy logic and type-2 fuzzy logic, however, for knowledge

elicitation such knowledge is not necessary as we explained in Section 5.5.5.2. Note that since they all had

experience in web-based application development, they had a good understanding of workload and

response time. For a more detailed description of the survey, we refer to Appendix A.

7.4.5.2. Survey processing

A fuzzy logic controller is completely defined by its fuzzy membership functions and rules. We present the

details of how to transform the collected data to type-2 fuzzy membership function in Section 7.4.5.2.1.

The rule elicitation is described in Section 7.4.5.2.2 and the output surface of the fuzzy controller is

presented in Section 7.4.5.2.3.

The processed results of the survey are used to define the fuzzy sets (two inputs, five MFs per input) and

the 25 rules (one MF per rule). Table 7.2 presents the processed results for Questions 1 and 2 of the survey

(mean values and standard deviation of the answers, see the survey template in Appendix A). This

information is used to define the parameters required to create the membership functions for the inputs

of the fuzzy system. Table 7.3 presents the processed results for Question 3 of the survey (summarizes

the rules defined by the experts). This information is used to define the 25 fuzzy rules.

244

Table 7.2. Processed survey results: Workload and Response time.

Linguistic
Means Standard Deviations

Start (𝒂) End (𝒃) Start (𝝈𝒂) End (𝝈𝒃)

W
o

rk
lo

ad

Very low 0 27 0 8.23
Low 22 41.5 7.15 7.09

Medium 36.5 64 5.80 3.94
High 61 82.5 4.59 6.77

Very high 78 100 6.32 0

R
e

sp
o

n
se

 t
im

e
 Instantaneous 0 7.2 0 5.20

Fast 6.1 20 4.07 5.27
Medium 18.2 41.5 5.59 8.51

Slow 38.5 63.5 7.09 9.44
Very slow 60 100 7.82 0

Table 7.3. Processed survey results: Adaptation rules.

Rule
(𝒍)

Antecedents Consequent

𝒄𝒂𝒗𝒈
𝒍

Workload
Response

time
Normal

(-2)
Effort

(-1)

Medium
Effort

(0)

High
Effort
(+1)

Maximum
Effort (+2)

1 Very low Instantaneous 7 2 1 0 0 -1.6
2 Very low Fast 5 4 1 0 0 -1.4
3 Very low Medium 0 2 6 2 0 0
4 Very low Slow 0 0 4 6 0 0.6
5 Very low Very slow 0 0 0 6 4 1.4
6 Low Instantaneous 5 3 2 0 0 -1.3
7 Low Fast 2 7 1 0 0 -1.1
8 Low Medium 0 1 5 3 1 0.4
9 Low Slow 0 0 1 8 1 1

10 Low Very slow 0 0 0 4 6 1.6
11 Medium Instantaneous 6 4 0 0 0 -1.6
12 Medium Fast 2 5 3 0 0 -0.9
13 Medium Medium 0 0 5 4 1 0.6
14 Medium Slow 0 0 1 7 2 1.1
15 Medium Very slow 0 0 1 3 6 1.5
16 High Instantaneous 8 2 0 0 0 -1.8
17 High Fast 4 6 0 0 0 -1.4
18 High Medium 0 1 5 3 1 0.4
19 High Slow 0 0 1 7 2 1.1
20 High Very slow 0 0 0 6 4 1.4
21 Very high Instantaneous 9 1 0 0 0 -1.9
22 Very high Fast 3 6 1 0 0 -1.2
23 Very high Medium 0 1 4 4 1 0.5
24 Very high Slow 0 0 1 8 1 1
25 Very high Very slow 0 0 0 4 6 1.6

245

7.4.5.2.1. Fuzzy sets design (membership functions)

The MFs has been selected to be triangular for the labels “Low” (“Fast”), “Medium” and “High” (“Slow”)

and trapezoidal for the labels “Very low” (“Instantaneous”) and “Very high” (“Very slow”).

Table 7.4. Locations of the main points of IT2 MFs.

Triangular Trapezoidal

𝑙𝑈𝑀𝐹 = (𝑎 − (1 + 𝛼) ∗ 𝜎𝑎 , 0)
𝑚𝑈𝑀𝐹 = ((𝑎 + 𝑏) 2⁄ , 1)
𝑟𝑈𝑀𝐹 = (𝑏 + (1 + 𝛼) ∗ 𝜎𝑏 , 0)
𝑙𝐿𝑀𝐹 = (𝑎 − (1 − 𝛼) ∗ 𝜎𝑎, 0)
𝑚𝐿𝑀𝐹 = ((𝑎 + 𝑏) 2⁄ , 1)
𝑟𝐿𝑀𝐹 = (𝑏 + (1 − 𝛼) ∗ 𝜎𝑏 , 0)

𝑙𝑙𝑈𝑀𝐹 = (𝑎 − (1 + 𝛼) ∗ 𝜎𝑎 , 0)
𝑢𝑙𝑈𝑀𝐹 = (𝑎 − 𝛼𝜎𝑎, 1)
𝑢𝑟𝑈𝑀𝐹 = (𝑏 + 𝛼𝜎𝑏 , 1)
𝑙𝑟𝑈𝑀𝐹 = (𝑏 + (1 + 𝛼) ∗ 𝜎𝑏 , 0)
𝑙𝑙𝐿𝑀𝐹 = (𝑎 − (1 − 𝛼) ∗ 𝜎𝑎, 0)
𝑢𝑙𝐿𝑀𝐹 = (𝑎 + 𝛼𝜎𝑎 , 1)
𝑢𝑟𝐿𝑀𝐹 = (𝑏 − 𝛼𝜎𝑏 , 1)
𝑙𝑟𝐿𝑀𝐹 = (𝑏 + (1 − 𝛼) ∗ 𝜎𝑏 , 0)

As illustrated in Figure 5.24 and Figure 5.25, we used trapezoidal MFs to represent “Very low”

(“Instantaneous”) and “Very high” (“Very slow”), and triangular MFs to represent “Low” (“Fast”),

“Medium” and “High” (“Slow”). Let 𝑎 and 𝑏 with standard deviations 𝜎𝑎 and 𝜎𝑏 , respectively, be the

mean values of the interval end-points of the linguistic labels (cf. Table 7.2). For “Low”, “Medium” and

“High” labels, the triangular T1 MF is then constructed by connecting: 𝑙 = (𝑎 − 𝜎𝑎 , 0),𝑚 = ((𝑎 +

𝑏)/2,1), 𝑟 = (𝑏 + 𝜎𝑏, 0). Accordingly, for “Very low” and “Very high” labels, the associated trapezoidal

MFs can be constructed by connecting: (𝑎 − 𝜎𝑎, 0), (𝑎, 1), (𝑏, 1), (𝑏 + 𝜎𝑏 , 0) , see dashed lines in

Figure 5.24 and Figure 5.25. As it is indicated by the standard deviations in Table 7.2, there are

uncertainties associated with the ends and the locations of the MFs. For instance, one may imagine a

triangular T1 MF in 𝑙′ = (𝑎 − 0.3 ∗ 𝜎𝑎, 0),𝑚 = ((𝑎 + 𝑏)/2,1), 𝑟′ = (𝑏 + 0.4 ∗ 𝜎𝑏 , 0).

Figure 7.21. IT2 MFs of the workload labels.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u
M

em
b

er
sh

ip
 g

ra
d

e

VL
L

M H

VH

246

Figure 7.22. IT2 MFs of the response time labels.

7.4.5.2.2. Fuzzy rules design

The survey asked the experts to associate labels to each rule as summarized in Table 7.3. Each of these

labels is now associated with a value. As different experts defined different rules, an 'average' rule is

retained. Each rule is then associated with the average of the values defined by the experts. The details

of the creation of the MFs for the rule base is explained in Chapter 5.

7.4.5.2.3. Fuzzy logic control surface

The fuzzy logic system is completely defined by its membership functions and fuzzy rules. An uncertainty

value of 𝛼 = 0.5 is considered. Figure 7.23 shows the fuzzy logic surface representing the fuzzy logic

controller designed from the survey.

Figure 7.23. Output of the IT2 FLS for elasticity reasoning.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u
M

em
b

er
sh

ip
 g

ra
d

e

I

F M S

VS

A
rc

h
it

ec
tu

ra
l M

o
d

e

247

7.4.6. Experimental evaluations

This section presents the validation of the controller developed in Section 7.4.5 for the ElasticQueue

adaptation reasoning. As we discussed earlier in the implementation section, the experimental conditions

are quite different from those in simulation and particularly regarding the control of the elastic queue in

the cloud. In this context, the ElasticQueue is controlled by cloud platforms. The ElasticQueue and its

adaptation infrastructure is implemented using .NET technologies and Microsoft Azure PaaS services, see

Section 7.4.4. The ElasticQueue makes sure that the tasks submitted to the system are processed reliably

within the specified SLA. The controller (i.e., the heart of decision making) is implemented in Matlab and

then integrated with the .NET technologies using MATLAB Builder NE for Microsoft .NET Framework.

MATLAB Builder™ NE allows creating .NET and COM components from MATLAB® programs that include

MATLAB code. This then enables integrating these components into larger .NET, COM, and Web

applications and deploying them to computers that do not have MATLAB installed using the MATLAB

Compiler Runtime (MCR) that is provided with the MATLAB Compiler™ (“MATLAB Builder NE,” 2014).

7.4.6.1. Experimental setting

The architecture of our experimental setup is depicted in Figure 7.24. The client side is JMeter, which

generates workload based on our predefined patterns. In our case, the server side is the System Under

Test (SUT), which is the ElasticQueue connector, controlled by RobusT2Scale. Here we defined test cases

in which the number of users and their usage vary according to time-dependent patterns. A workload

generated in this manner hits the SUT and triggers its controller. The controller ensures that the connector

remains elastic. Here we followed the guidelines of cloud testing, e.g. (Gambi, Hummer, Truong, &

Dustdar, 2013).

Typically, the variances in the generated workload should be large enough to warrant a scaling action. In

this work, we injected different patterns of workloads, most of which are drawn from real-world

workloads (e.g. (“Anonymized access logs,” 2001), similar patterns are also used in (Anshul Gandhi,

Harchol-Balter, Raghunathan, & Kozuch, 2012)), to explore the platform’s elasticity behavior for a range

of demand patterns. In our measurements, we use a set of six different workloads – see Figure 7.28. Across

time, some workloads show recurring cycles of growth and decrease, such as an hourly news cycle. Others

have a single burst, such as during a special event. Further, we scale the duration of the traces to 1 hour.

We evaluate RobusT2Scale against the full set of workloads (see Table 7.9). We ran the SUT on Microsoft

Azure VMs. VMs were located in the same availability zone in Ireland; see the deployment details in

Table 7.5.

Table 7.5. Deployment details of our experimental setting.

Experimental
Deployment

Units

Clients Elastic Application
Elasticity

Controller

JMeter UI BL (Scalable) DS RobusT2Scale

Specification
Desktop, Intel
Core i7 CPU,
2.8GHz, 12 GB

1 Small (A1)
Azure VM

2-6 Small (A1)
Azure VMs

1 Small (A1)
Azure VM

1 Small (A1)
Azure VM

248

Figure 7.24. Experimental setting for ElasticQueue.

7.4.6.2. Results

In this section, we present a number of experimental studies on RobusT2Scale to answer the following

research questions:

 Q1 (Scalability). What is the runtime overhead of our approach?

 Q2 (Accuracy). What is the accuracy of the employed estimation techniques and does the error of

estimation vary across different workloads?

 Q3 (Effectiveness). Is it effective for guaranteeing SLAs and minimizing cost?

 Q4 (Robustness). Is it robust against uncertainties and noises?

 Q5 (Stability). Does the controller guarantee stability property?

Runtime Performance (Q1)

A lengthy adaptation reasoning process hinders usefulness and as a result the adoption of self-adaptive

software. In order to assess the runtime overhead of the proposed fuzzy adaptation reasoning process,

we have conducted a set of experiments using simulation with different settings. In a practical setting, the

size of the rule base and the number of antecedents in each rule in any particular target system is expected

to be in the range of [10,100] and [1,3] according to (S.-W. Cheng & Garlan, 2012; Fleurey & Solberg,

2009). However, for evaluating the scalability of our approach, we vary the number of adaptation rules,

number of rule antecedents and number of linguistics in our experimental evaluations by orders of

magnitude in the range [9,1000], [2,6], [3,10] respectively. We performed the experimental evaluations

on a machine with Intel Core i7 CPU, 2.80 GHz, 12 GB memory, 64-bit Windows 7 Professional and MATLAB

R2013a.

0 50 100
0

500

1000

1500

0 50 100
100

200

300

400

500

0 50 100
0

1000

2000

0 50 100
0

200

400

600

0 50 100
0

500

1000

0 50 100
0

500

1000

249

Scalability with respect to linguistics-rules

To examine the scalability of our approach with respect to the number of linguistics (i.e., MFs) and rules,

we provided the following experimental setup. Each input domain consisted of 𝑀 MFs, where 𝑀 =

{3,4,… ,10}. We kept the left-most and right-most MFs in Figure 5.24 (and Figure 5.25) and add another

MF identical with the middle MF in Figure 5.24 (and Figure 5.25) and place the center of it in a random

number uniformly generated in [0,5] . The interval consequent of each rule was generated as two

uniformly distributed random numbers in [0,5]. Each input was discretized into 100 points and therefore

computing a control surface needs 100 × 100 = 10,000 iterations of the reasoning process. For

example, in scenario 3, the MFs (𝑀 = 5) are shown in Figure 5.24 (and Figure 5.25) and the corresponding

control surface is shown in Figure 7.23. To compare the performance of the IT2 controller with the T1

counterpart, we also recorded the computation time for baseline T1 FLSs, whose MFs were centrally

embedded in the corresponding IT2 FSs, as an example, see the dashed line in Figure 5.24 (and

Figure 5.25).

To make the results statistically meaningful, we performed 10,000 trial runs in nine different scenarios

classified by pair of linguistics-rules and measured the duration of time, beginning once inputs are ready

to feed the system and ending when the execution receives the best architecture mode to enact. The

results are shown in Figure 7.25 separated based on the scenarios, while Table 7.6 summarizes the means

of the data in each scenario. The data in Table 7.6 confirms “10× increase in the number of adaptation

rules approximately results in 10× increase in runtime” in both experiments (i.e., with and without

MATLAB optimization). The data indicates that the reasoner performs well even in large rule bases with

significantly higher rules than nominal usage (i.e., 1000 rules). It took approximately 1-190ms to decide

for a suitable architectural change, which is acceptable (S.-W. Cheng & Garlan, 2012).

Figure 7.25. Runtime performance w.r.t. # of linguistics/rules.

0

1

2

3

4

5

x 10
-3

1 2 3 4 5 6 7 8

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
(s

)

Scenarios (Experiment 2, cf. Table 7.6)

250

Table 7.6. Summary of runtime performance evaluations.

Scenario
Setting

(# linguistics, # rules)
Performance (s)

IT2 Optimized IT2 T1

1 3, 9 0.0011 0.0002 0.0010

2 4, 16 0.0019 0.0003 0.0011

3 5, 25 0.0030 0.0004 0.0012

4 6, 36 0.0044 0.0006 0.0013

5 7, 49 0.0061 0.0007 0.0014

6 8, 64 0.0080 0.0008 0.0016

7 9, 81 0.0101 0.0010 0.0017

8 10, 100 0.0126 0.0013 0.0019

9 10, 1000 0.1901 0.0100 0.0111

Scalability with respect to the number of antecedents/rules

For evaluating the scalability with respect to the number of antecedents/rules, we fixed the number of

MFs for each input domain but increased the number of input domains 𝐴 = {2,3, . . ,6} . We also

considered the highest amount of rules for each generated FLSs by generating possible combinations of

MFs of each input. Similarly, we performed 10,000 trial runs in each of the five different scenarios. The

results are shown in Figure 7.26. The means of the runtime performance in each scenario are summarized

in Table 5.13. The data in Table 7.7 confirms “3× increase in the number of rules approximately brings

about 4× increase in runtime”. This demonstrates that the reasoner performs well in large rule bases that

have twice the number of antecedents per rule than nominal usage (i.e., 6 antecedents). The memory

footprint for the largest rule base is about 1 3⁄ 𝑀𝐵, which is suitable for resource constrained systems

such as embedded systems (see Table 5.13).

Figure 7.26. Runtime performance w.r.t. # of antecedents/rules.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5

Scenarios (Experiment 3, cf. Table 7.7)

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
(s

)

251

Table 7.7. Summary of runtime performance evaluations.

Scenario
Setting

(# antecedents, # rules)

Performance (s)
without Matlab

optimization

Memory
footprint
(Bytes)

1 2, 9 0.0011 1440

2 3, 27 0.0044 6480

3 4, 81 0.0169 25920

4 5, 243 0.0631 97200

5 6, 729 0.2264 349920

Computational Complexity (Q1)

In Section 7.4.5, we designed a fuzzy-based adaptation controller using knowledge elicitation through a

survey. In the reasoning process, two steps (i.e., computing firing degrees and type-reduction) are

computationally expensive. The computational cost of the firing degrees depends on the size of the rule

base and the worst case is of the order of magnitude 𝑂(#𝑟𝑢𝑙𝑒𝑠). The computational cost of the type-

reduction is proportional to the centroid and, therefore, depends on the number of discretization of the

input variables. Table 7.8 presents the results of the centroid of the “medium” IT2 MF in Figure 7.8

calculated using the KM algorithm with different values of discretization, 𝑁. The number of iterations to

find the value of the centroid with respect to a naïve calculation before the invention of the KM algorithm

and its enhanced version. As it is evident in this table, the computational cost of the type-reduction step

(i.e., EKM) is of the order of magnitude 𝑂(~𝐿𝑜𝑔(𝑁)).

Table 7.8. Computational complexity of centroid calculation.

𝑵
KM

iterations
Enhanced KM

(EKM) iterations
𝟐𝑵iterations

4 4 1 16
16 6 1 65536
100 6 2 1.2677𝑒 + 30
256 7 2 1.1579𝑒 + 77
1024 8 3 > 8.9885𝑒 + 307

Since the fuzzy reasoning is used for software adaptation in a closed loop, an efficient way of reasoning in

frequently changing environments was desirable. In Chapter 5, we described a solution that performs a

(design-time) computationally expensive derivation of rule-consequent centroids that can be used at

runtime, when rule-firing intervals become known. The approach fits the situation in which time

consumption during controller design is not critical, but runtime reasoning is subject to tight time

constraints. Since in our approach, at design-time, calculate the centroid of each rule consequents, we

conclude that the computational costs of the activities at design-time is 𝑂(~(𝐾𝑑𝑡 + #𝑟𝑢𝑙𝑒𝑠 × 𝐿𝑜𝑔(𝑁))),

where 𝐾𝑑𝑡 is constant. However, the cost of calculating the centroid at runtime has to be paid only once.

This makes the overall computational complexity of the fuzzy reasoning process at runtime 𝑂(~(𝐾𝑟𝑡 +

#𝑟𝑢𝑙𝑒𝑠 + 𝐿𝑜𝑔(𝑁))), where 𝐾𝑟𝑡 is constant (note the use of plus instead of multiply here).

252

Workload Estimation Accuracy (Q2)

In order to evaluate the accuracy of the adopted estimation technique, we simulated different workloads

and measured the error of estimation by root relative squared error (RRSE). Figure 7.27 shows sample

data and different estimations from changing the parameters of the model. It is evident that the

estimations with different parameters result in different levels of prediction accuracy. For this sample, the

estimation with 𝛽 = 0.27, 𝛾 = 0.94 is more accurate than the other two estimations.

Figure 7.27. Predicted vs. actual workload.

We also evaluated the accuracy of the prediction techniques for different workload patterns. As it is

depicted in Figure 7.28, for different patterns (i.e., big spike, etc.), the estimator shows different

estimation errors. For three patterns, i.e., ‘slowly varying’, ‘dual phase’, ‘steep tri phase’, the relative error

and variations are quite low. The ‘large variation’ shows the large mean of error and ‘big spike’ and ‘quickly

varying’ demonstrate the largest variations.

0 10 20 30 40 50 60 70 80 90 100
-500

0

500

1000

1500

2000

Time (seconds)

N
u
m

b
e
r

o
f

h
it
s

Original data

betta=0.10, gamma=0.94, rmse=308.1565, rrse=0.79703

betta=0.27, gamma=0.94, rmse=209.7852, rrse=0.54504

betta=0.80, gamma=0.94, rmse=272.6285, rrse=0.70858

253

 Figure 7.28. Estimation errors w.r.t. workload patterns.

Effectiveness of RobusT2Scale (Q3)

With the rise of multi-tenant software such as cloud-native applications, it is more common to measure

higher percentiles of response time rather than just the average response time. The motivation behind

looking at higher percentiles is to confirm that most of the system users can access the functionalities of

that system with low response times and only a small fraction, if any, of them face slow access. As a result,

we decided to use the 95th percentile of response times, 𝒓𝒕𝟗𝟓 (Definition 65) to evaluate the

effectiveness of RobusT2Scale. This choice is motivated by recent studies (Computing, Gandhi, Dube, &

Karve, 2014; A Gandhi, 2013) which point out that 95th percentile response times is an appropriate metric

for measuring effectiveness.

Definition 65. For a given workload, we define 𝒓𝒕𝟗𝟓 as the 95𝑡ℎ percentile of response times (in
milliseconds) for requests that complete during the course of the workload.

As a benchmark for measuring the effectiveness of RobusT2Scale, we consider (1) the 95th percentile of

response time (𝑟𝑡95), which represent our SLA and (2) the weighted average number of node instances

acquired over time (𝑣𝑚̅̅ ̅̅), which determines the cost of ownership. These criteria cover the three main

aspects of elasticity comprising scalability, cost and time efficiency. The goal is to meet the response time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Big spike Dual phase Large variations Quickly varying Slowly varying Steep tri phase

0 50 100
0

500

1000

1500

0 50 100
100

200

300

400

500

0 50 100
0

1000

2000

0 50 100
0

200

400

600

0 50 100
0

500

1000

0 50 100
0

500

1000

R
o

o
t

re
la

ti
ve

 s
q

u
ar

e
d

 e
rr

o
r

254

SLA, here we assume 𝑟𝑡95 = 600𝑚𝑠, while keeping 𝑣𝑚̅̅ ̅̅ as low as possible. The drop in 𝑣𝑚̅̅ ̅̅ represents the

potential capacity to be released back to the cloud to save on costs.

To evaluate the effectiveness of RobusT2Scale, we compared our approach with two provisioning policies:

over-provisioning (here we correspond this with a connector in Maximum Effort mode throughout its

lifetime, see Table 7.1) and under-provisioning (here we correspond this with Normal mode throughout

its lifetime, see Table 7.1). A summary of the results is shown in Table 7.9. In comparison with over-

provisioning policy, RobusT2Scale has acquired less nodes, saving as much as a factor of two in cost. In

comparison with under-provisioning policy, RobusT2Scale is significantly better in terms of 𝑟𝑡95, giving a

cloud-based application a better chance to guarantee the SLAs.

Table 7.9. Comparison of the effectiveness of RobusT2Scale.

SUT Criteria
Big

spike
Dual

phase
Large

variations
Quickly
varying

Slowly
varying

Steep
tri

phase

ElasticQueue with
RobusT2Scale

𝑟𝑡95% 973ms 537ms 509ms 451ms 423ms 498ms

𝑣𝑚̅̅ ̅̅ 3.2 3.8 5.1 5.3 3.7 3.9

Over-
provisioning

𝑟𝑡95% 354ms 411ms 395ms 446ms 371ms 491ms

𝑣𝑚̅̅ ̅̅ 6 6 6 6 6 6

Under-
provisioning

𝑟𝑡95% 1465ms 1832ms 1789ms 1594ms 1898ms 2194ms

𝑣𝑚̅̅ ̅̅ 2 2 2 2 2 2

As seen in Table 7.9, the SUT with RobusT2Scale has not violated the response time SLA in any patterns

of workloads except for the “big spike”. The SUT with overprovisioning has satisfied the SLA for all the

patterns, however, by imposing a cost of up to a double amount (for ‘big spike’, but for the other patterns

the difference is less) of what has been imposed by RobusT2Scale. The SLA is never met for the SUT with

the under-provisioning.

Robustness of RobusT2Scale (Q4)

In Chapter 5, we showed that the utilized estimation approach, i.e. double exponential smoothing,

contains unavoidable errors. In this thesis, we have claimed that RobusT2Scale is resilient against input

noises, one of which is the estimation error. In this section, we provide some experimental evidence to

support this claim.

Earlier we observed that the worst estimation error happens for ‘large variation’ and ‘quickly varying’

patterns and is less than 10% of the actual workload. As a result, we injected a white noise to the input

measurement data (i.e., 𝑥1) with an amplitude of 10%. We ran RMSE measurements for each levels of

blurring, and for each measurement, we used 10,000 data items as input. Figure 7.29 shows RMSE values

for the four different blurring values. We observed two interesting points. First, the error of control output

produced by the elasticity controller is less than 0.1 for the blurring levels. Second, the error of control

output is decreased when we designed the controller with a higher blurring. A higher blurring leads to a

bigger FOU, which is a representative for the supporting levels of uncertainty. Therefore, designers should

make a choice in terms of the level of uncertainty that the controller can support. Note in some

circumstances an overly wide FOU results in performance degradations (JM Mendel, 2001). These

observations provide enough evidence that RobusT2Scale is robust against input noise. This achievement

is one of the important benefits of using IT2 FLS rather than T1 FLS for elasticity reasoning in cloud-based

software, where uncertainty in terms of noise and events are prevalent (Gambi et al., 2013).

255

Figure 7.29. RMSEs of the controller with different blurrings.

Stability Analysis of the Controller (Q5)

While FLSs are typically used in open loop decision making, in our approach, we exploit them here in a

closed loop adaptation process. There are some properties of closed loop control systems that should be

evaluated when comparing controllers for computing systems (Hellerstein et al., 2004). We analyzed the

robustness of the controller in previous section, while in this section we examine its stability. When a

controlled system becomes unstable, the output of the system will not converge, which often either incurs

a higher cost or results in a bad user experience. More concretely, by stability, here we mean that for any

bounded input over any amount of time, the output will also be bounded. This is called bounded-input-

bounded-output (BIBO) (Hellerstein et al., 2004). A system is defined to be BIBO stable if there exists a

constant 𝑘 such that for all bounded input conditions, the output absolute value never exceeds 𝑘. In other

words, as long as a stable signal is input, a stable output is guaranteed.

In control theory, it is common to use a theoretical analysis to prove that the controlled system is stable.

However, such analysis is beyond the scope of this work and we only use informal analysis based on the

control surfaces, as shown in Figure 7.23. The inputs, i.e., workload and system performance, are bounded

in (𝑥1, 𝑥2) ⊆ [0,100], and as shown in Figure 7.23, the controller output is also bounded 𝑌𝐼𝑇2(𝑥1, 𝑥2) ⊆

[−2,+2]. Since for any bounded input over any amount of time, the output is also bounded, the designed

controller satisfies the BIBO stability property. Moreover, because of the smooth control surface, small

changes in the inputs correspond to small output changes.

Effects of Conflicting Policies (Q4, Q5)

The main objective of this work is to find an approach to capture the uncertainty on expressing conflicting

adaptation policies. In this section, we discuss the effects of contrasting advices by domain experts on the

adaptation decisions and control surface to clarify such claim.

In the data collection for constructing the rule base, see Table 7.3, different domain experts had different

advices for each combination of input parameters. In Chapter 5, we provided a methodology to combine

these contrasting advices into a coherent adaptation rule. Essentially this formula provides a compromise

between the contrasting opinions and provides a mechanism to find an appropriate tradeoff by weighting

the centroids of advices based on the number of domain experts that voted for that specific advice. For

0

0.02

0.04

0.06

0.08

0.1

alpha=0.1 alpha=0.5 alpha=0.9 alpha=1.0

R
M

SE

256

instance, for the first and last rule, we can see a relatively high dispersion in the opinions, but for the third

rule, a relatively high agreement between experts can be observed.

Some other parts of the controller also affects the control output. For instance, the level of the uncertainty

that is embedded in the MFs through blurring parameter 𝛼 will be directly translated to the output

interval of the controller, i.e., [𝑦
𝑙
(𝑥1, 𝑥2), 𝑦𝑟(𝑥1, 𝑥2)]. Figure 7.30 shows the difference between the upper

layer and lower layer of the control surface for all possible inputs, i.e. 𝑦𝑟 − 𝑦𝑙 . As it is evident, for some

combinations of the inputs the boundary is larger than the other points. This is due to the uncertainty that

is embedded in the MFs. A larger 𝐽𝑥, results in a bigger output interval for that point.

Figure 7.30. Distance between decision boundaries (IT2FLS).

7.5. Limitations and Threats to Validity

In this chapter, the RobusT2 framework was evaluated though a cloud-based case study. This evaluation

is based on a typical real-world cloud-based connector without any previous knowledge of workload

requests (only real-time information of the loads is used). The principal contribution is the use of interval

type-2 fuzzy logic controllers and human expertise in operating mode of the connector:

 As far as we know, it is the first application of type-2 fuzzy logic in cloud computing and the first

experimental validation of an adaptation management system on a configuration adaptation of a

cloud-based application using 1) type-2 fuzzy logic and 2) using experience of multiple experts.

 It is an application for a cloud application, but it could be used in any elastic or adaptive application

(the parameters of the adaptation reasoning depend only on the characteristics of the

environment within which the connector is operating and the quality factors of the connector

itself)

 In this self-adaptive connector, the priority source is the response time because it is the most

performing source in SLAs.

In the remainder of this section, we discuss limitations and threats to validity of this work.

𝑦𝑟 − 𝑦𝑙

257

7.5.1. Limitations

Runtime performance. A performance evaluation shows low runtime and memory overhead of the

decision-making part of the self-adaptive loop. In order to compare our results with some benchmark, we

extracted a number of adaptation reasoning performances reported in the literature in Table 7.10. By

comparing it with the results in Section 7.4.6.2, our approach performs better by roughly an order of

magnitude. However, we cannot claim that our approach outperforms these approaches in all

circumstances because of the differences between the experimental settings. In terms of scalability,

according to Table 7.10, Rainbow (S.-W. Cheng & Garlan, 2012) also confirms “10× increase in the number

of adaptation rules approximately yields 10× increase in runtime”.

Table 7.10. A benchmark on performance for reasoning.

Rules

Adaptation Reasoning Performance (s)

Rainbow/Stitch
(S.-W. Cheng &
Garlan, 2012)

StarMX
(Asadollahi,
Salehie, &
Tahvildari,

2009)

MADAM (Geihs
et al., 2009)

10 0.017 - -

100 0.167 - 0.087

1000 1.454 2.8183 -

10000 13.730 - -

Control of noise. We evaluated the robustness of adaptation reasoning against sensory noises. We showed

that the robustness of control could improve or deteriorate depending on the blurring values as the only

design parameter for transitioning from T1 to IT2 FLS. Therefore, we can find the optimal blurring value

that makes the IT2 FLS design more resilient against dynamic noises. We also observed a better noise

control by the IT2 FLS compared with its T1 counterpart. The study of robustness against colored noises,

e.g. pink noise, can be an interesting future work.

Limited stability analysis. For analyzing the stability of the controlled system, we only provided informal

comments based on the observation of the control surfaces. A theoretical analysis to establish the BIBO

stability of the controller is left as a future work.

Limitations of design-time mode discovery. RobusT2 assumes that prior to deployment, system architects

are able to identify appropriate architectural modes that could resolve the issues that may arise at

runtime. This means that RobusT2 scope of adaptation is limited to situations that can be addressed with

a set of preconceived system modes. RobusT2 may not be able to resolve an issue that could be resolved

through runtime adaptation, simply because the domain experts have not included the appropriate

modes.

7.5.2. Threats to validity

Threat to internal validity. Regarding the internal threats, there is only one issue. RobusT2 is dependent

on the rules that are specified by a number of domain experts through an elicitation methodology. This

means that RobusT2 decision making is implicitly dependent on the selection of these domain experts and

their advices on adaptation policies. RobusT2 may not be able to adapt the system appropriately if the

expert advices are overall incorrect and sub-optimal.

258

Threat to external validity. An external threat is related to the methodology for data collection and fuzzy

rule elicitation, as the accuracy of adaptation decisions is heavily depends on the ability to specifying fuzzy

membership functions and fuzzy rules. In Chapter 5, we presented a methodology for data collection and

concrete examples to show feasibility of adaptation policy elicitation through survey. In fact, in

Section 7.4.5, we showed how the data collected via a group of users impacts the design of fuzzy controller

and how it reasons about adaptation. This is mitigated as far as possible by designing a precise data

collection protocol and well-defined template for data collection, see Appendix A.

Another external threat is the choice of analytical models (i.e., DTMC and CTMC) used for requirement

verification at runtime. As we described in Chapter 4, we focused on quantifiable non-functional

requirements, which are specified through constraints (via temporal logic PCTL and CSL, see Chapter 2)

on the analytical models. As we briefly discussed in Section 7.2, the verification of such requirements

triggers adaptations. The temporal logic that we employed (recall Chapter 2) is already able to formally

specify a fair number of non-functional requirements. However, the analytical models used for verifying

requirements may not be applicable to all quality properties of interests for component connectors.

7.6. Conclusions

In this chapter, we presented the principal findings and the results of the research evaluation. In summary,

we evaluate the RobusT2 framework’s support for adaptation management of component connectors.

We utilized the ElasticQueue as a concrete and real-world case of component connectors that require

self-adaptation in the cloud. We evaluated the efficiency, scalability, robustness and applicability of the

proposed solution. More specifically, in the RobusT2 framework we evaluated the self-adaptation process

to address the challenges in RQ1, RQ2 and RQ3 with the specific claims we made in Chapter 1:

 Research claim 1 (runtime efficiency). The activities that need to be integrated in the self-

adaptation loop are required to be time efficient. Therefore, as a part of ensuring the practicality

of the approach, we provided evidence of runtime efficiency of the adaptation process.

 Research claim 2 (scalability). It is not sufficient for the approach to be time efficient with small

models, it also needs to impose an acceptable overhead on large-scale systems, which correspond

to complex models. We ensured the scalability of the approach by investigating the computational

complexity of the approach.

 Research claim 3 (robust against dynamic uncertainty). It is desirable that the approach is resilient

against different amplitudes of noises, which resemble the reality of uncertain environments that

component connectors are operating in. We injected different levels of noise to the input

parameters of the approach and evaluated the robustness of the approach under dynamic

uncertainty.

 Research claim 4 (applicability). The approach presented in this thesis developed a set of

techniques and methods to control the uncertainties in the self-adaptation loop of component

connectors. We applied the solution proposed in this thesis to a real-world case study and

evaluated different aspects of the solution in real-world experimental settings.

259

Some additional ideas to improve the adaptation management of the component connectors have been

identified but have not been evaluated or presented in this thesis:

 To apply the adaptation management framework developed in this thesis on multi-cloud

scenarios.

 The ElasticQueue test bench operation is very constrained in terms of mode variations. We have

not considered on the fly adaptation of the modes themselves in this work. More specifically, the

adaptation strategies can be changed throughout time.

When the adaptation management survey for the ElasticQueue was presented to the experts, not all the

information about the ElasticQueue nor the adaptation management platform was presented and not all

the implementation constraints were clearly identified (before experimental validation). It could be

interesting to conduct a new survey presenting more information about the implementation of the

RobusT2 framework and the results.

260

Chapter 8

8. Conclusions

“It is more fun to arrive at a conclusion than to justify it." Malcolm Forbes (1919-1990)

Contents

8.1. CHAPTER OVERVIEW .. 261
8.2. RESEARCH SUMMARY: A REMINISCENCE .. 261

8.2.1. Research Questions Revisited .. 261
8.2.2. Research Hypothesis Revisited .. 263

8.3. RESEARCH CONTRIBUTIONS ... 264
8.4. LIMITATIONS .. 265
8.5. FUTURE WORK ... 266

261

8.1. Chapter Overview

In this chapter, we present the main conclusions of our research by highlighting the significance of this

thesis, its limitations and we discuss short-term and long-term future research directions. This chapter is

divided into four parts. First, in Section 8.2, we provide a summary of the research through revisiting the

research questions and the hypothesis of this thesis. In Section 8.3, we discuss the core contributions of

this research. In Section 8.4, we point out limitations and short-term directions for future research. Finally,

we suggest the long-term future work opened up by the research, drawing the thesis to a close.

8.2. Research Summary: A Reminiscence

This section starts by returning to the research questions defined at the beginning of the thesis in Chapter

1. The answers to the questions, which have emerged throughout the research and presented in the core

contribution chapters are presented and discussed. The section then revisits the research hypothesis by

examining the results of the case study and experimental evaluations presented in Chapter 7 to see

whether they support the original hypothesis.

8.2.1. Research Questions Revisited
In this thesis, we enable the reliable and dependable self-adaptation of component connectors in

unreliable environments with imperfect monitoring facilities by providing: (a) techniques for robust model

calibration, (b) a mechanism for robust adaptation reasoning, and (c) tool support that allows an end-to-

end application of the developed techniques.

In this section, we revisit the research questions presented in Chapter 1 and we discuss the answers to

each that have appeared throughout the thesis.

The first research question is:

Research Question 1 (RQ1). How to estimate the parameters (i.e., calibrate) of the analytical models at

runtime that we employ for non-functional requirement verification of component connectors in the

presence of noisy monitoring data?

Chapter 4 proposes mechanisms for model calibration in the presence of uncertainty. In Chapter 4, we

presented the analytical models through which we model the component connector behavior. We also

proposed mechanisms to calibrate the unknown parameters of the models at runtime. The key

contribution here is that the mechanisms are capable of carefully determining the parameters even in the

presence of uncertainty. The proposed method is comprehensively evaluated with a thorough discussion

of the results.

Therefore, the ability of the model calibration mechanisms to handle and robustly control the

uncertainties in the monitoring data provides an explicit answer for this research question, i.e., RQ1. Since

the model calibration can estimate unknown parameters of the analytical models at runtime, we can

ensure that the non-functional requirement verification that ultimately triggers the adaptation actions

provides a reliable mechanism for enabling self-adaptation of connectors.

262

The second research question is:

Research Question 2 (RQ2). How to reason about adaptation and derive appropriate configurations for

component connectors at runtime in the presence of noisy measurements and imprecise objectives?

Chapter 5 describes in detail the design, implementation and experimental validation of the adaptation

reasoning that we have devised for component connectors. In this chapter, we proposed the RobusT2

framework to realize the adaptation reasoning using a type-2 fuzzy logic system. This chapter presented

the application of type-2 fuzzy logic control developed in this research for adaptation reasoning. The

developed RobusT2 framework has the following features: 1) It combines the input end-to-end response

performance and number of requests to the connector that it controls in the decision of operating mode

changes of the connector; 2) it combines the opinions from different experts, so that an acceptable

decision boundary can be obtained; 3) it provides an interval decision, so that a flexible decision can be

made based on a design tradeoff between the internal situation of the connectors and their

environmental conditions. This chapter also presented experimental evaluations of the framework.

Once the decision for mode change has been made, a change needs to be enacted to the running

connector. Chapter 6 presents a mechanism to enact the transitions from the current connector

configuration to the target configuration. Considering the high heterogeneity of models involved in

connectors, this chapter introduced an approach to derive a reconfiguration plan using reasoning based

on graph theory and feature models. We described a mechanism for transforming these feature models

corresponding to the connector modes to an executable reconfiguration plan. Note that this chapter is

not a core contribution chapter, but rather acts as an operationalization part of the framework.

Therefore, the proposed methodology for designing fuzzy logic controllers and the integration of the

designed type-2 fuzzy logic controllers in the feedback control loop to decide about mode change at

runtime provides an explicit answer to this research question, i.e., RQ2. Since the type-2 fuzzy logic

controllers are capable of combining different opinions of multiple users to produce reliable output in the

presence of noisy inputs, we can ensure that the integration of the controllers as the decision makers for

the self-adaptive connectors enable reliable adaptation.

The third and final research question is:

Research Question 3 (RQ3). How well can our approach for model calibration and adaptation reasoning

in the feedback control loop ensure the reliability of the self-adaptation of component connectors in a

real-world unreliable environment?

Chapter 7 reports an end-to-end evaluation of individual research components and provides an overall

validation of the proposed framework. In this chapter, we showed how the three key parts of the RCU

framework are integrated to enable self-adaptation of component connectors through a real-world case

study. To conduct this research, we followed the guidelines of the action research methodology (Chapter

1) that provides a rigorous set of steps focused on planning (Chapter 2, Chapter 3) and conducting the

research (Chapter 4, Chapter 5, Chapter 6) along with the evaluation of the research results (Chapter 7).

Therefore, in this chapter, we focused on an experimental evaluation of the adaptation management of

component connectors in the RCU framework. In general, we demonstrated the validity of the research

claims (i.e., runtime efficiency, scalability, robustness and applicability) of this thesis through experimental

evaluations. The experimental results in this chapter provided a positive answer to RQ3.

263

8.2.2. Research Hypothesis Revisited
In this section, we revisit the research hypothesis presented in Chapter 1, which is repeated here:

The application of parameter estimation for calibrating models for non-functional requirement

verification, in the presence of imprecise monitoring data and fuzzy logic in adaptation reasoning, and

the integration of the two in self-adaptation process enables component connectors to become robust

against uncertainty in the surrounding environment.

The first part of the hypothesis concerns reliable model calibration for the sake of non-functional

requirement verification considering that the monitoring data are inherently uncertain. This thesis has

demonstrated how adopting stochastic techniques (i.e., Bayesian and Markov Chain Monte Carlo)

provides a more accurate parameter estimation, with thorough experimental evaluations presented in

Chapter 4. As discussed in Chapter 4, some classes of monitoring data contain unstable measurement

noise. Therefore, it is of course impossible to claim that all uncertainties in monitoring data can be

handled. However, this thesis demonstrates that if we assume that the monitoring data contains missing

data and stable measurement noise, the technique that we proposed in Chapter 4 can provide a reliable

estimation of unknown parameters of the analytical models.

The second part of the hypothesis concerns the use of fuzzy logic to reason about mode changes of

component connectors considering that different users specify the adaptation policies and they may not

have a unified opinion about the policies. Chapter 5 of this thesis demonstrates a methodology to elicit

user opinions at design-time and transforms them into type-2 fuzzy membership functions. A fuzzy logic

controller is designed to enable decision-making about such adaptations at runtime. Thus, this clause of

the hypothesis is supported by the solution framework presented in this thesis.

The final part of the hypothesis concerns the integration of the two mechanisms and the application of

the developed solution to real-world connectors. Chapter 7 of this thesis demonstrates the applicability

of the developed solution framework for enabling self-adaptation of real-world software connectors in an

inherently unreliable environment with many different sources of uncertainties. The experimental

evaluations that we have reported in Chapter 7 reveal that the developed solution enables a dependable

and robust adaptation of the connectors in unreliable environments. Thus, this clause of the hypothesis

is also supported by the research presented in this thesis.

Chapter 1 describes the research methodology that we have followed to conduct the research presented

in this thesis. The heterogeneous nature of the software engineering discipline impedes the widespread

adoption of a single research methodology (K Welsh, 2010). Because of the analytical and synthetic nature

of this research, we followed the principles of the design-science paradigm. The evaluation of the artifacts

(i.e., solution framework and its comprising analytical techniques and mechanisms) are mostly performed

through controlled experiments. Controlled experiments provide a better understanding of the problem,

and feedback to improve the mechanisms has been obtained so far throughout research. Experiments

also explain the contributions of the mechanism when compared to existing practices. In Chapters 4 and

5, we make use of experimental evaluations to more objectively validate the claimed benefits of this thesis

within the more detailed case study as presented in Chapter 7. The outcomes of the case study with the

experimental results lead to an overall conclusion that the hypothesis is substantially supported.

264

8.3. Research Contributions

The principal contribution of this thesis is an approach for enabling the self-adaptation of component

connectors considering uncertainties including measurement noises and users’ conflicting opinions about

adaptation policies. This main contribution incorporates several parts:

 A set of stochastic techniques to facilitate model calibration as a part of runtime verification task in

the feedback control loop of self-adaptive component connectors. The proposed stochastic approach

is able to update the unknown parameters of the models at runtime even in the presence of

incomplete and noisy observations.

 A general methodology based on fuzzy logic for deciding the adaptations that adjust the configuration

of component connectors to the appropriate operating mode. The methodology enables a systematic

development of a fuzzy logic controller that can determine the right operating mode for connectors.

This methodology provides a means of defining adaptation policies in a way such that different

opinions of the users about the policies can be incorporated. The derived fuzzy controllers can decide

about the operating mode based on a tradeoff of the user-specified policies.

 The evaluation of the adaptation reasoning by applying the solution to enable self-adaptation of some

real-world connectors.

As we have reviewed in Chapter 3, some research has recently started to address the challenges posed by

uncertainty in self-adaptive software. In the state-of-the-art chapter in this thesis, we systematically

pointed out areas that have been covered by existing work and areas that are left open. The approach

presented in this thesis is the first systematic method for incorporating uncertainty regarding multiple

user opinions about adaptation policies.

In addition to this primary contribution, this work makes a couple of secondary contributions that are also

significant:

 Systematic identification of different sources of uncertainty present in the feedback control loop of

elastic systems and characterization of them using a well-known taxonomy. We discussed challenges

to manage the impact of uncertainty on elastic software systems. We focused on elastic systems

because connectors play a central role in elastic systems and our main concern was to demonstrate

that there is a need for controlling uncertainty in a real domain where connectors have been adopted

as an essential entity.

 Findings on the experimental evaluations of the approach based on the development of several

prototype tools on practical platforms. These prototypes have demonstrated how the approach

presented in this thesis can be applied to practical environments that leverage component

connectors.

 In addition to these general results on validity, they have allowed us to explore how various aspects

of our approach can be automated, such as the architectural mode change in component connectors.

At the same time, this implementation has revealed areas where significant research challenges still

remain, such as incorporating uncertainty related to the change enactment in connectors. More

specifically, the implementation on practical environments revealed that for the same change the

time that it takes to enact the change (i.e., change execution latency) on the connectors takes

different times depending on some situational parameters affecting the platform such as the usage

pattern, network connection, platform availability and many other reasons.

265

8.4. Limitations

Although some significant results of our approach have been demonstrated, it is important to pinpoint

the limitations of this thesis. In this section, we point out a number of notable limitations, which remain

for immediate future work. Such short-term future research would enhance the support of the hypothesis

of this thesis.

The empirical work justifying the real-world applicability of this approach consists of only 1 case study

in elastic cloud-based application and a couple of experimental evaluations.

We have argued that the case study presented in this thesis (see the evaluation chapter) provides strong

evidence of the applicability of our approach in a practical domain. We have given particularly careful

attention to experimentally evaluate the “scalability”, “accuracy”, “effectiveness”, “robustness” and

“stability” of the solution to strengthen this claim. However, experimental evaluations have their

limitations, and in attempting to generalize from the results of the experimental evaluations, we can go

only up to certain point. Future empirical evaluations of the approach to other types of connectors that

we have not considered in this research or other types of architecturally significant software would be of

great help in evaluating the scope of our results.

More specifically, regarding the experimental evaluations that we have performed and reported in

Chapter 7, we have the following limitations:

1. Limited workload patterns. We considered six different workload patterns. However, in

production environments, workload may change in many unpredictable ways.

2. Evaluations with different connector type. Our experimental evaluation is limited to ElasticQueue.

For this type of connector, although popular in the cloud domain, there are many different

varieties of connectors in practice in different domains.

3. Evaluations with different platforms. Although the solution we introduced in this thesis is

independent of a specific platform, we only evaluated the RCU framework on Microsoft Azure.

The approach requires design-time discovery of appropriate operating modes, but it may not be

effective in cases where modes that can resolve issues regarding specific situations are not defined.

The solution that we proposed in this thesis assumes that prior to deployment, system architects are able

to identify appropriate architectural modes that could resolve the issues that may arise at runtime. This

means that the connectors’ scope of adaptation is limited to situations that can be addressed with a set

of preconceived operating modes. The solution may not be able to resolve an issue that could be resolved

through runtime adaptation, simply because the domain experts have not included the appropriate

mode(s).

The approach effectiveness is dependent on the users’ specification of the adaptation policies.

The solution is also dependent on the rules that are specified by a number of domain experts through an

elicitation methodology. This means that the decisions that are made by our solution framework are

implicitly dependent on the selection of these domain experts and their advices on adaptation policies.

Our solution framework may not be able to adapt the connectors appropriately if the expert advices are

incorrect and sub-optimal.

266

The approach requires tool support in order to be adopted for practical use, but such tool support may

not be available on some platforms.

The approach for enabling the self-adaptation of component connectors we have presented in this thesis

is inherently dependent on two particular facilities in order to be practical: I. Monitoring, II. Enactment.

To evaluate the approach and to show that the approach is actually implementable, we developed

prototype tools that support key elements of our solution. While demonstrating the validity of the

approach in principle is one goal of this thesis work, actually applying the approach to different types of

connectors on different platforms requires monitoring facilities that retrieve runtime data and an

enactment module to execute changes. This is not a limitation of our approach in principle, but it is beyond

the scope of this thesis. Further tool development would be necessary to make the approach adoptable

by practitioners on different platforms.

8.5. Future Work

Throughout the development of the work for this thesis, we have intermittently noted some areas in

which further investigation would be necessary for clarifying wider open issues or advancing the state of

knowledge regarding certain aspects. In this section, we enumerate some major future areas of work

where we believe a number of significant research challenges remain and as a result, several perspectives

for long-term work can be anticipated:

Integration with other uncertainty control approaches. There are different sources of uncertainty in the

context of self-adaptive software. However, the approach proposed in this thesis can only handle

uncertainties regarding measurement noise and conflicting user opinions regarding adaptation policies.

We believe that the integration of this approach with the existing approaches for controlling uncertainty

regarding other sources has potential to be the basis of further investigations. We believe that an end-to-

end solution for controlling the uncertainties makes self-adaptive systems more resilient against noise

and makes them more dependable.

Dynamic update of adaptation rules. Runtime knowledge evolution and sharing is a topic that has

attracted less attention so far and is considered as an open challenge in self-adaptive software (Abbas et

al., 2011). In this thesis, we have not discussed dynamic updates to the adaptation mechanism. The

inference engine chooses from a set of rules each time an adaptation cycle is performed. Therefore, it

would be feasible to add new rules to the rule base at runtime. By adaptation cycle, we mean the time

from receiving input measurements until the calculation of the output and sending it for execution. This

allows dynamic incorporation and removal of adaptation rules and indicates another avenue of future

work. A promising approach is fuzzy rule learning (L. Wang & Mendel, 1992). Over time, the adaptation

outcomes can be captured in a repository. Then, by applying runtime efficient fuzzy rule learning, for

example the WM method (L. Wang & Mendel, 1992), new rules can be learned and potentially improve

the effectiveness of the adaptation mechanism. For instance, this facility can be used to avoid mode

switches that have not historically resulted in better system quality. The rule learning approaches can also

be applied at design-time to assist users in rule specifications.

Change of user opinion over time. Uncertainty not only comes from the multiplicity of stakeholders, but

also from changes in their preferences over time. Users may change their opinions about adaptation

policies over time due to several reasons. For example, they may change their opinions based on the

267

effectiveness of the controller that has been designed based on their initial opinions. This change

introduce another type of uncertainty which is related to the user’s lack of knowledge. The development

of mechanisms to incorporate such uncertainty is considered a future direction of this research.

Dynamic switch between adaptation strategies. In this work, we consider that only one set of adaptation

rules will be determined by the users. However, one generalization of the work is to determine different

sets of adaptation policies at design-time and switch between them at runtime. As illustrated in the upper

right part of Figure 8.1, the strategies derive the adaptation policies that themselves determine the

adaptation actions based on the reasoning process. The decision for when to switch between strategies

and switch to what strategy needs its own reasoning mechanism.

Figure 8.1. Dynamic switch between adaptation strategies.

Extending the requirements engineering framework to explicitly accommodate uncertainty. In this

thesis, we have provided a solution for dynamically changing architectural modes of software connectors

based on environmental and internal situations of the connectors, considering the traditional

interpretation of Zave and Jackson’s (Zave & Jackson, 1997) requirements engineering framework to

enable dynamic adaptation as described in details in (Calinescu et al., 2012). However, one potential

direction of this work can be an extension of this traditional framework to explicitly account for

uncertainty. In order to make it clearer, we are going to briefly discuss the principles of an extended

architectural requirements engineering framework. Zave and Jackson (Zave & Jackson, 1997) have

conceptualized requirements engineering in the sense of this framework as:

 (𝕊,𝔻) ⊢ ℝ (8.1)

where 𝔻 is a set of domain assumptions, 𝕊 is the specification that satisfies the set of requirements ℝ.

0 50 100
0

500

1000

1500

0 50 100
100

200

300

400

500

0 50 100
0

1000

2000

0 50 100
0

200

400

600

0 50 100
0

500

1000

0 50 100
0

500

1000

268

A requirement in this framework is a prescriptive statement about the desired phenomena in the

environment and it obviously should not refer to phenomena in the specification. In the traditional

interpretation of this framework (Chopra, 2012), the satisfaction of the statement (8.1) has binary nature

– i.e., it is satisfied or falsified. We call a requirement satisfiable, if at runtime we can verify if the

requirement is satisfied for particular instances. On the other hand, we call a requirement falsifiable, if at

runtime we can verify that the requirement is violated. There are some special requirements that are

neither satisfiable nor falsifiable. These requirements are called vague. There are also some requirements

that are either non-satisfiable or non-falsifiable.

In order to have a legitimate requirement, one should be able to provide evidence that shows that

requirements are both satisfiable and falsifiable upon specific environmental states. Chopra (Chopra,

2012) argues that imprecise requirements are vague. However, we now provide evidence that imprecise

or adaptive (Luciano Baresi et al., 2010) requirements that are relaxed (Whittle et al., 2009) or become

reflective (Nelly Bencomo, Whittle, Sawyer, Finkelstein, & Letier, 2010) are not vague. As illustrated in

Figure 8.2, 𝛼–cuts (JM Mendel & John, 2002) can be used to precisely determine the intervals that satisfy

or violate the requirement, e.g., 𝑅 = {𝑥|𝜇𝑅(𝑥) ≥ 0.18}
𝛼=0.18 determines the three zones as indicated in

Figure 8.2 – note that 𝛼 = 0 is the default choice. Therefore, Chopra’s claim about the vagueness of

imprecise requirements is not accurate as, opposed to his argument, the violation zones can be identified

precisely without any vagueness associated with them.

Figure 8.2. Satisfied and violated intervals in an imprecise requirement.

Although T1 FSs provide flexibility in requirements specification, such FSs have limited capabilities for

handling uncertainty with this type of fuzzy sets (JM Mendel, 2007). Here, by handling uncertainty, we

specifically mean the capability for specifying and minimizing the effects of such uncertainty. Of course,

there are different sources of uncertainty for self-adaptive architectures (Esfahani & Malek, 2013) and

they require different approaches to handle them. As indicated in Figure 8.3, IT2 FSs are able to model

the uncertainty in the membership function by blurring the fixed membership functions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trapmf, P=[0.5 2 3 3.5]

𝛼

Satisfied Violated Violated

M
em

b
er

sh
ip

 g
ra

d
e

269

Figure 8.3. Blurring of T1-FS to build an IT2-FS.

We argue that Zave and Jackson’s framework must be extended to explicitly handle uncertainty. We

believe that uncertainties should be considered as first-class citizens. As indicated in equation (8.2) below,

𝕊𝐼 is the system specification by considering the internal uncertainty associated with it. 𝔻𝐸 shows the

domain assumptions with environmental uncertainty and ℝ is the set of imprecise requirements with

uncertain meanings in its specification. In contrast to traditional requirements in the Zave and Jackson

framework, the requirements in this setting are adaptive and flexible by nature. While traditional

prescriptive requirements are either satisfied or violated, imprecise requirements would be verified at a

satisfaction degree (Luciano Baresi et al., 2010; Whittle et al., 2009) in the presence of uncertainty. The

specification and management of these requirements provides a way to trade these requirements off

against each other at runtime. The notation ⊨ (note the difference with ⊢ in Equation (8.1)) indicates that

satisfaction verification can be performed at runtime as opposed to the traditional view, which is solely

an offline activity. For instance, we use IT2 FS and the reasoning based on this type of theory:

 (𝕊𝐼 , 𝔻𝐸) ⊨ ℝ (8.2)

Such a framework, if developed in the future, can accommodate different sources of uncertainty in self-

adaptive software that stem from unreliable entities (i.e., environment, human, mathematical techniques,

or separation of concerns) and consequently leads to a more dependable solution that potentially has a

better chance for widespread adoption. We consider the development of such an extended requirements

engineering framework as a potential and fruitful future direction of this thesis.

Extending to other application domains. The final front for extending this work is application of RCU to

other application domains. We have already done this for the problem of dynamically adjusting queues in

cloud computing. However, multiple other application domains can be extended to benefit from the

contributions of this thesis. One notable example is the problem of network applications in ubiquitous

environments (Inverardi et al., 2010). In the domain of networked ubiquitous computing, heterogeneous

devices need to detect services discoverable in the ubiquitous networked environments and adapt their

own communication protocols to interoperate with them, since networked applications are realized on

different middleware (Inverardi, Spalazzese, & Tivoli, 2011). Because the ubiquitous environments

contains many sources of uncertainty, the approaches dynamically adjust protocols such as the proposal

in (Di Marco, Inverardi, & Spalazzese, 2013) that requires explicit consideration of the impact of

uncertainty on the device interoperability decisions. As a result, the RCU framework can naturally be an

appropriate fit to this problem.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trapmf, P=[0.5 2 3 3.5]

M
em

b
er

sh
ip

 g
ra

d
e

270

Bibliography

Abbas, N., Andersson, J., & Weyns, D. (2011). Knowledge evolution in autonomic software product lines.
In Proceedings of the 15th International Software Product Line Conference on - SPLC ’11. Accessed:
06/25/2014. http://dl.acm.org/citation.cfm?id=2019177 (p. 1). New York, New York, USA: ACM
Press.

Ahmad, A., Jamshidi, P., & Pahl, C. (2014). Classification and comparison of architecture evolution reuse
knowledge-a systematic review. Journal of Software: Evolution and Process. Accessed: 07/03/2014.
http://onlinelibrary.wiley.com/doi/10.1002/smr.1643/full.

Amin, A., Colman, A., & Grunske, L. (2012). An Approach to Forecasting QoS Attributes of Web Services
Based on ARIMA and GARCH Models. In 2012 IEEE 19th International Conference on Web Services.
Accessed: 06/30/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6257792 (pp. 74–
81). IEEE.

Andersson, J., de Lemos, R., Malek, S., & Weyns, D. (2009). Reflecting on self-adaptive software systems.
In 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems.
Accessed: 06/10/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5069072 (pp. 38–
47). IEEE.

Anonymized access logs. (2001). Accessed: 09/23/2014. ftp://ftp.ircache.net/Traces/.

Apel, S., & Kästner, C. (2009). An Overview of Feature-Oriented Software Development. Journal of
Object Technology. Accessed: 02/12/2014.
http://www.jot.fm/issues/issue_2009_07/column5/index.

Arbab, F. (2004). Reo: a channel-based coordination model for component composition. Mathematical
Structures in Computer Science. Accessed: 06/28/2014.
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=223762, 14(3), 329–
366.

Ardagna, D., Ghezzi, C., & Mirandola, R. (2008). Rethinking the use of models in software architecture. In
Quality of Software Architectures. Models and Architectures. Accessed: 02/11/2014.
http://link.springer.com/chapter/10.1007/978-3-540-87879-7_1.

Arora, S., Sampath, P., & Ramesh, S. (2012). Resolving uncertainty in automotive feature interactions. In
2012 20th IEEE International Requirements Engineering Conference (RE). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6345807 (pp. 21–30). IEEE.

Asadollahi, R., Salehie, M., & Tahvildari, L. (2009). StarMX: A framework for developing self-managing
Java-based systems. In 2009 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems. Accessed: 05/26/2014.
http://www.uwspace.uwaterloo.ca/handle/10012/4728 (pp. 58–67). IEEE.

271

Aughenbaugh, J. (2006). Managing uncertainty in engineering design using imprecise probabilities and
principles of information economics. Accessed: 12/16/2013.
http://westinghouse.marc.gatech.edu/Members/jaughenbaugh/papers_presentations/aughenbau
gh_jason_m_200608_phd.pdf. Georgia Institute of Technology.

Aughenbaugh, J. M., & Paredis, C. J. J. (2006). The Value of Using Imprecise Probabilities in Engineering
Design. Journal of Mechanical Design. Accessed: 06/13/2014.
http://link.aip.org/link/?JMDEDB/128/969/1, 128(4), 969.

Autili, M., Cortellessa, V., Di Ruscio, D., Inverardi, P., Pelliccione, P., & Tivoli, M. (2011). EAGLE:
engineering software in the ubiquitous globe by leveraging uncErtainty. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of software
engineering - SIGSOFT/FSE ’11. Accessed: 06/16/2014. http://dl.acm.org/citation.cfm?id=2025199
(p. 488). New York, New York, USA: ACM Press.

Autili, M., Cortellessa, V., & Ruscio, D. Di. (2012). Integration architecture synthesis for taming
uncertainty in the digital space. In Large-Scale Complex IT Systems. Development, Operation and
Management. Accessed: 06/29/2014. http://link.springer.com/chapter/10.1007/978-3-642-34059-
8_6.

Aziz, A., Sanwal, K., Singhal, V., & Brayton, R. (1996). Verifying continuous time Markov chains. Computer
Aided Verification. Accessed: 02/03/2014. http://link.springer.com/chapter/10.1007/3-540-61474-
5_75.

Baier, C., & Katoen, J. (2008). Principles of model checking. Accessed: 02/03/2014.
http://mitpress.mit.edu/books/principles-model-checking. Cambridge, Massachusetts: The MIT
Press.

Baresi, L. (2006). Toward Open-World Software: Issue and Challenges. Computer. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1707632, 39(10), 36–43.

Baresi, L., & Ghezzi, C. (2010). The disappearing boundary between development-time and run-time. In
Proceedings of the FSE/SDP workshop on Future of software engineering research - FoSER ’10.
Accessed: 06/30/2014. http://dl.acm.org/citation.cfm?id=1882367 (p. 17). New York, New York,
USA: ACM Press.

Baresi, L., Pasquale, L., & Spoletini, P. (2010). Fuzzy Goals for Requirements-Driven Adaptation. In 2010
18th IEEE International Requirements Engineering Conference. Accessed: 06/18/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5636887 (pp. 125–134). IEEE.

Batista, T., Joolia, A., & Coulson, G. (2005). Managing dynamic reconfiguration in component-based
systems. Software Architecture. Accessed: 02/12/2014.
http://link.springer.com/chapter/10.1007/11494713_1.

Becker, S., Koziolek, H., & Reussner, R. (2007). Model-Based performance prediction with the palladio
component model. In Proceedings of the 6th international workshop on Software and performance

272

- WOSP ’07. Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=1217006 (p. 54). New York,
New York, USA: ACM Press.

Bencomo, N., & Belaggoun, A. (2013). Supporting decision-making for self-adaptive systems: from goal
models to dynamic decision networks. Requirements Engineering: Foundation for Software Quality.
Accessed: 01/27/2014. http://link.springer.com/chapter/10.1007/978-3-642-37422-7_16.

Bencomo, N., Grace, P., Flores, C., Hughes, D., & Blair, G. (2008). Genie: supporting the model driven
development of reflective, component-based adaptive systems. In Proceedings of the 13th
international conference on Software engineering - ICSE ’08. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1368207 (p. 811). New York, New York, USA: ACM Press.

Bencomo, N., & Ramirez, A. (2012). RELAXing Claims: Coping With Uncertainty While Evaluating
Assumptions at Run Time. Model Driven Engineering Languages and Systems. Accessed:
02/12/2014. http://hal.inria.fr/hal-00718997/.

Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., & Letier, E. (2010). Requirements reflection. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - ICSE ’10.
Accessed: 06/02/2014. http://dl.acm.org/citation.cfm?id=1810329 (Vol. 2, p. 199). New York, New
York, USA: ACM Press.

Bennani, M., & Menasce, D. A. (2005). Resource Allocation for Autonomic Data Centers using Analytic
Performance Models. In Second International Conference on Autonomic Computing (ICAC’05).
Accessed: 05/26/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1498067 (pp. 229–
240). IEEE.

Bertrand, D., Déplanche, A.-M., Faucou, S., & Roux, O. H. (2008). A Study of the AADL Mode Change
Protocol. In 13th IEEE International Conference on Engineering of Complex Computer Systems
(iceccs 2008). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4492905 (pp. 288–293). IEEE.

Bertsekas, D., & Tsitsiklis, J. (2002). Introduction to probability. Belmont, Mass: Athena Scientific.

Bianculli, D., Filieri, A., Ghezzi, C., & Mandrioli, D. (2014). Incremental Syntactic-Semantic Reliability
Analysis of Evolving Structured Workflows. Proceedings of the 6th International Symposium On
Leveraging Applications of Formal Methods Verification and Validation (ISoLA 2014). Accessed:
07/03/2014. http://people.svv.lu/bianculli/pubs/bfgm-isola2014.pdf.

Billingsley, P. (1961). Statistical Methods in Markov Chains. The Annals of Mathematical Statistics.
Accessed: 07/03/2014. http://www.jstor.org/stable/10.2307/2237603, 32(1), 12–40.

Bladt, M., & Sorensen, M. (2005). Statistical inference for discretely observed Markov jump processes.
Journal of the Royal Statistical Society: Series B (Statistical Methodology). Accessed: 07/03/2014.
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2005.00508.x/full, 67(3), 395–410.

Blair, G., Bencomo, N., & France, R. B. (2009). Models@ run.time. Computer. Accessed: 06/08/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5280648, 42(10), 22–27.

273

Bliudze, S., & Sifakis, J. (2007). The algebra of connectors. In Proceedings of the 7th ACM & IEEE
international conference on Embedded software - EMSOFT ’07. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1289935 (p. 11). New York, New York, USA: ACM Press.

Bolstad, W. (2011). Understanding computational Bayesian statistics. Wiley.

Borde, E., Haik, G., & Pautet, L. (2009). Mode-based reconfiguration of critical software component
architectures. In 2009 Design, Automation & Test in Europe Conference & Exhibition. Accessed:
07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090838 (pp. 1160–1165).
IEEE.

Briand, L., & van der Hoek, A. (2014). Companion Proceedings of the 36th International Conference on
Software Engineering. http://dl.acm.org/citation.cfm?id=2591062. ACM.

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., & Stefani, J.-B. (2006). The FRACTAL component
model and its support in Java. Software: Practice and Experience. Accessed: 06/30/2014.
http://onlinelibrary.wiley.com/doi/10.1002/spe.767/abstract, 36(11-12), 1257–1284.

Bruni, R., Melgratti, H., & Montanari, U. (2013). A Survey on Basic Connectors and Buffers. Formal
Methods for Components and Objects. Accessed: 02/05/2014.
http://link.springer.com/chapter/10.1007/978-3-642-35887-6_3.

Bures, T., Hnetynka, P., & Plasil, F. (2006). SOFA 2.0: Balancing Advanced Features in a Hierarchical
Component Model. In Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1691359 (pp. 40–48). IEEE.

Calinescu, R., Ghezzi, C., Kwiatkowska, M., & Mirandola, R. (2012). Self-adaptive software needs
quantitative verification at runtime. Communications of the ACM. Accessed: 06/23/2014.
http://dl.acm.org/citation.cfm?id=2330686, 55(9), 69.

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., & Tamburrelli, G. (2011). Dynamic QoS
Management and Optimization in Service-Based Systems. IEEE Transactions on Software
Engineering. Accessed: 06/11/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5611553, 37(3), 387–409.

Calinescu, R., Johnson, K., & Rafiq, Y. (2011). Using observation ageing to improve markovian model
learning in QoS engineering. In Proceeding of the second joint WOSP/SIPEW international
conference on Performance engineering - ICPE ’11. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1958823 (p. 505). New York, New York, USA: ACM Press.

Calinescu, R., & Kwiatkowska, M. (2009). Using quantitative analysis to implement autonomic IT
systems. In 2009 IEEE 31st International Conference on Software Engineering. Accessed:
06/02/2014. http://dl.acm.org/citation.cfm?id=1555026 (pp. 100–110). IEEE.

Cámara, J., Moreno, G. A., & Garlan, D. (2014). Stochastic game analysis and latency awareness for
proactive self-adaptation. In Proceedings of the 9th International Symposium on Software

274

Engineering for Adaptive and Self-Managing Systems - SEAMS 2014. Accessed: 06/16/2014.
http://works.bepress.com/gabriel_moreno/23/ (pp. 155–164). New York, New York, USA: ACM
Press.

Cavallo, B., Di Penta, M., & Canfora, G. (2010). An empirical comparison of methods to support QoS-
aware service selection. In Proceedings of the 2nd International Workshop on Principles of
Engineering Service-Oriented Systems - PESOS ’10. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1808899 (p. 64). New York, New York, USA: ACM Press.

Cazzola, W., Savigni, A., Sosio, A., & Tisato, F. (1998). Architectural reflection: Bridging the gap between
a system and its architectural specification. REF’98. Accessed: 02/12/2014.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.388.2958.

Cetina, C., Giner, P., Fons, J., & Pelechano, V. (2009). Using Feature Models for Developing Self-
Configuring Smart Homes. In 2009 Fifth International Conference on Autonomic and Autonomous
Systems. Accessed: 07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4976601
(pp. 179–188). IEEE.

Cetina, C., Giner, P., Fons, J., & Pelechano, V. (2010). Designing and prototyping dynamic software
product lines: techniques and guidelines. In Software Product Lines: Going Beyond. Accessed:
06/18/2014. http://link.springer.com/chapter/10.1007/978-3-642-15579-6_23.

Cetina, C., Haugen, Ø., & Zhang, X. (2009). Strategies for variability transformation at run-time.
Proceedings of the 13th International Software Product Line Conference. Accessed: 02/12/2014.
http://dl.acm.org/citation.cfm?id=1753245.

Chan, A. (2008). Dynamic QoS Adaptation for Mobile Middleware. IEEE Transactions on Software
Engineering. Accessed: 06/21/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4547430, 34(6), 738–752.

Chauvel, F., Barais, O., Borne, I., & Jezequel, J.-M. (2008). Composition of Qualitative Adaptation Policies.
In 2008 23rd IEEE/ACM International Conference on Automated Software Engineering. Accessed:
07/03/2014. http://dl.acm.org/citation.cfm?id=1642998 (pp. 455–458). IEEE.

Chauvel, F., Song, H., & Chen, X. (2010). Using qos-contracts to drive architecture-centric self-
adaptation. Research into Practice – Reality and Gaps. Accessed: 02/12/2014.
http://link.springer.com/chapter/10.1007/978-3-642-13821-8_9.

Chen, B., Peng, X., Yu, Y., & Zhao, W. (2014). Uncertainty handling in goal-driven self-optimization –
Limiting the negative effect on adaptation. Journal of Systems and Software. Accessed:
06/05/2014. http://www.sciencedirect.com/science/article/pii/S0164121214000065, 90, 114–127.

Cheng, B., Sawyer, P., Bencomo, N., & Whittle, J. (2009). A goal-based modeling approach to develop
requirements of an adaptive system with environmental uncertainty. Model Driven Engineering
Languages and Systems. Accessed: 01/26/2014. http://link.springer.com/chapter/10.1007/978-3-
642-04425-0_36.

275

Cheng, S., & Garlan, D. (2007). Handling uncertainty in autonomic systems. ASE. Accessed: 12/16/2013.
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/IWLU07-HandlingUncertainties-pub.pdf.

Cheng, S.-W., & Garlan, D. (2012). Stitch: A language for architecture-based self-adaptation. Journal of
Systems and Software. Accessed: 06/11/2014.
http://www.sciencedirect.com/science/article/pii/S0164121212000714, 85(12), 2860–2875.

Cheng, S.-W., Garlan, D., & Schmerl, B. (2006). Architecture-based self-adaptation in the presence of
multiple objectives. In Proceedings of the 2006 international workshop on Self-adaptation and self-
managing systems - SEAMS ’06. Accessed: 06/16/2014. http://dl.acm.org/citation.cfm?id=1137679
(p. 2). New York, New York, USA: ACM Press.

Cheung, L., Roshandel, R., Medvidovic, N., & Golubchik, L. (2008). Early prediction of software
component reliability. In Proceedings of the 13th international conference on Software engineering
- ICSE ’08. Accessed: 06/03/2014. http://dl.acm.org/citation.cfm?id=1368104 (p. 111). New York,
New York, USA: ACM Press.

Cheung, R. (1980). A User-Oriented Software Reliability Model. IEEE Transactions on Software
Engineering. Accessed: 06/21/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1702709, SE-6(2), 118–125.

Chopra, A. K. (2012). The Meaning of Requirements and Adaptation. arXiv Preprint arXiv:1209.1551.
Accessed: 07/03/2014. http://arxiv.org/abs/1209.1551, 12. Software Engineering.

Ciancone, A., Filieri, A., & Drago, M. (2011). KlaperSuite: an integrated model-driven environment for
reliability and performance analysis of component-based systems. Objects, Models, Components,
Patterns. Accessed: 02/02/2014. http://link.springer.com/chapter/10.1007/978-3-642-21952-8_9.

Computing, A., Gandhi, A., Dube, P., & Karve, A. (2014). Adaptive, Model-driven Autoscaling for Cloud
Applications. Usenix.org. Accessed: 06/30/2014.
https://www.usenix.org/system/files/conference/icac14/icac14-paper-gandhi.pdf.

Cooray, D., Malek, S., Roshandel, R., & Kilgore, D. (2010). RESISTing reliability degradation through
proactive reconfiguration. In Proceedings of the IEEE/ACM international conference on Automated
software engineering - ASE ’10. Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=1859011
(p. 83). New York, New York, USA: ACM Press.

Cortellessa, V., Marco, A. Di, & Inverardi, P. (2007). Integrating performance and reliability analysis in a
non-functional MDA framework. Fundamental Approaches to Software Engineering. Accessed:
02/11/2014. http://link.springer.com/chapter/10.1007/978-3-540-71289-3_6.

Coulson, G., Blair, G. S., Clarke, M., & Parlavantzas, N. (2002). The design of a configurable and
reconfigurable middleware platform. Distributed Computing. Accessed: 07/03/2014.
http://link.springer.com/article/10.1007/s004460100064, 15(2), 109–126.

276

Crnkovic, I., Sentilles, S., Vulgarakis, A., & Chaudron, M. R. V. (2011). A Classification Framework for
Software Component Models. IEEE Transactions on Software Engineering. Accessed: 05/26/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5587419, 37(5), 593–615.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2004). Staged configuration using feature models. Software
Product Lines. Accessed: 03/14/2014. http://link.springer.com/chapter/10.1007/978-3-540-28630-
1_17.

D’Ippolito, N., Braberman, V., Kramer, J., Magee, J., Sykes, D., & Uchitel, S. (2014). Hope for the best,
prepare for the worst: multi-tier control for adaptive systems. In Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014. Accessed: 06/16/2014.
http://www.doc.ic.ac.uk/~das05/icse2014appendix.pdf (pp. 688–699). New York, New York, USA:
ACM Press.

David, P., & Ledoux, T. (2006). An aspect-oriented approach for developing self-adaptive fractal
components. Software Composition. Accessed: 02/12/2014.
http://link.springer.com/chapter/10.1007/11821946_6.

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research. Information
Systems Journal. Accessed: 05/27/2014. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-
2575.2004.00162.x/full, 14(1), 65–86.

Di Marco, A., Inverardi, P., & Spalazzese, R. (2013). Synthesizing self-adaptive connectors meeting
functional and performance concerns. In 2013 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). Accessed: 06/10/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6595500 (pp. 133–142). IEEE.

Diaconis, P., & Ylvisaker, D. (1979). Conjugate priors for exponential families. The Annals of Statistics.
Accessed: 03/28/2014. http://projecteuclid.org/euclid.aos/1176344611.

Dobson, S., Zambonelli, F., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., … Schmidt, N. (2006). A
survey of autonomic communications. ACM Transactions on Autonomous and Adaptive Systems.
Accessed: 06/11/2014. http://dl.acm.org/citation.cfm?id=1186782, 1(2), 223–259.

Dubois, D., Foulloy, L., Mauris, G., & Prade, H. (2004). Probability-possibility transformations, triangular
fuzzy sets, and probabilistic inequalities. Reliable Computing. Accessed: 02/18/2014.
http://link.springer.com/article/10.1023/B:REOM.0000032115.22510.b5.

Eder, K., Villegas, N., Trollmann, F., Pelliccione, P., Muller, H. A., Schneider, D., … Perini, A. (2013).
Assurance Using Models at Runtime for Self-Adaptive Software Systems. Springer, Berlin, LNCS.
Accessed: 02/11/2014.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.3457&rep=rep1&type=pdf.

Eliassen, F., Gjørven, E., Eide, V. S. W., & Michaelsen, J. A. (2006). Evolving self-adaptive services using
planning-based reflective middleware. In Proceedings of the 5th workshop on Adaptive and
reflective middleware (ARM ’06) - ARM '06. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1175856 (p. 1). New York, New York, USA: ACM Press.

277

Elkhodary, A., Esfahani, N., & Malek, S. (2010). FUSION: a framework for engineering self-tuning self-
adaptive software systems. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering - FSE ’10. Accessed: 06/16/2014.
http://dl.acm.org/citation.cfm?id=1882296 (p. 7). New York, New York, USA: ACM Press.

Engels, G., & Bencomo, N. (2014). Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. http://dl.acm.org/citation.cfm?id=2593929.
ACM.

Epifani, I., Ghezzi, C., Mirandola, R., & Tamburrelli, G. (2009). Model evolution by run-time parameter
adaptation. In 2009 IEEE 31st International Conference on Software Engineering. Accessed:
06/02/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5070513 (pp. 111–121). IEEE.

Esfahani, N., Elkhodary, A., & Malek, S. (2013). A Learning-Based Framework for Engineering Feature-
Oriented Self-Adaptive Software Systems. IEEE Transactions on Software Engineering. Accessed:
06/11/2014. http://dl.acm.org/citation.cfm?id=2521631, 39(11), 1467–1493.

Esfahani, N., Kouroshfar, E., & Malek, S. (2011). Taming uncertainty in self-adaptive software. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering - SIGSOFT/FSE ’11. Accessed: 06/16/2014.
http://cs.gmu.edu/~smalek/papers/esecfse2011.pdf (p. 234). New York, New York, USA: ACM
Press.

Esfahani, N., & Malek, S. (2013). Uncertainty in self-adaptive software systems. Software Engineering for
Self-Adaptive Systems II. Accessed: 12/15/2013. http://link.springer.com/chapter/10.1007/978-3-
642-35813-5_9.

Esfahani, N., Malek, S., & Razavi, K. (2013). GuideArch: Guiding the exploration of architectural solution
space under uncertainty. In 2013 35th International Conference on Software Engineering (ICSE).
Accessed: 06/03/2014. http://dl.acm.org/citation.cfm?id=2486795 (pp. 43–52). IEEE.

Famelis, M., Salay, R., & Chechik, M. (2012). Partial models: Towards modeling and reasoning with
uncertainty. In 2012 34th International Conference on Software Engineering (ICSE). Accessed:
07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6227159 (pp. 573–583). IEEE.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., & Arbitter, P. (2014). Cloud Computing Patterns.
Springer. Accessed: 07/03/2014. http://link.springer.com/content/pdf/10.1007/978-3-7091-1568-
8.pdf. Vienna: Springer Vienna.

Filieri, A. (2013). Model based verification and adaptation of software systems@ runtime.
http://www.politesi.polimi.it/handle/10589/74321. Politecnico di Milano.

Filieri, A., Ghezzi, C., Grassi, V., & Mirandola, R. (2010). Reliability analysis of component-based systems
with multiple failure modes. Component-Based Software Engineering. Accessed: 02/03/2014.
http://link.springer.com/chapter/10.1007/978-3-642-13238-4_1.

278

Filieri, A., Ghezzi, C., Leva, A., & Maggio, M. (2012). Reliability-driven dynamic binding via feedback
control. In 2012 7th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). Accessed: 05/26/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224390 (pp. 43–52). IEEE.

Filieri, A., Ghezzi, C., & Tamburrelli, G. (2011). Run-time efficient probabilistic model checking. In
Proceeding of the 33rd international conference on Software engineering - ICSE ’11. Accessed:
06/02/2014. http://dl.acm.org/citation.cfm?id=1985840 (p. 341). New York, New York, USA: ACM
Press.

Filieri, A., Ghezzi, C., & Tamburrelli, G. (2012). A formal approach to adaptive software: continuous
assurance of non-functional requirements. Formal Aspects of Computing. Accessed: 01/27/2014.
http://link.springer.com/article/10.1007/s00165-011-0207-2.

Filieri, A., Hoffmann, H., & Maggio, M. (2014). Automated design of self-adaptive software with control-
theoretical formal guarantees. In Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014. Accessed: 06/16/2014.
http://dl.acm.org/citation.cfm?doid=2568225.2568272 (pp. 299–310). New York, New York, USA:
ACM Press.

Filieri, A., Tamburrelli, G., & Ghezzi, C. (2013). Supporting Self-adaptation via Quantitative Verification
and Sensitivity Analysis at Run Time. IEEE Transactions on Software Engineering. Accessed:
05/29/2014. http://www.iste.uni-
stuttgart.de/fileadmin/user_upload/iste/zss/publications/supplementaryMaterial/2013-TSE-WM-
PaperReviewCopy.pdf.

Fleurey, F., & Solberg, A. (2009). A domain specific modeling language supporting specification,
simulation and execution of dynamic adaptive systems. Model Driven Engineering Languages and
Systems. Accessed: 02/12/2014. http://link.springer.com/chapter/10.1007/978-3-642-04425-0_47.

Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., & Gjorven, E. (2006). Using architecture models
for runtime adaptability. IEEE Software. Accessed: 06/30/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1605180, 23(2), 62–70.

Fredericks, E., DeVries, B., & Cheng, B. (2014). AutoRELAX: automatically RELAXing a goal model to
address uncertainty. Empirical Software Engineering. Accessed: 05/30/2014.
http://link.springer.com/article/10.1007/s10664-014-9305-0.

Fredericks, E. M., DeVries, B., & Cheng, B. H. C. (2014). Towards run-time adaptation of test cases for
self-adaptive systems in the face of uncertainty. In Proceedings of the 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems - SEAMS 2014. Accessed:
06/10/2014. http://dl.acm.org/citation.cfm?doid=2593929.2593937 (pp. 17–26). New York, New
York, USA: ACM Press.

Fredericks, E. M., Ramirez, A. J., & Cheng, B. H. C. (2013). Towards run-time testing of dynamic adaptive
systems. In 2013 8th International Symposium on Software Engineering for Adaptive and Self-

279

Managing Systems (SEAMS). Accessed: 06/10/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6595504 (pp. 169–174). IEEE.

Gallotti, S., & Ghezzi, C. (2008). Quality prediction of service compositions through probabilistic model
checking. Quality of Software Architectures. Models and Architectures. Accessed: 02/02/2014.
http://link.springer.com/chapter/10.1007/978-3-540-87879-7_8.

Gambi, A., Hummer, W., Truong, H.-L., & Dustdar, S. (2013). Testing Elastic Computing Systems. IEEE
Internet Computing. Accessed: 07/02/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6682972, 17(6), 76–82.

Gambi, A., Toffetti, G., & Pezzè, M. (2010). Protecting SLAs with surrogate models. In Proceedings of the
2nd International Workshop on Principles of Engineering Service-Oriented Systems - PESOS ’10.
Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=1808900 (p. 71). New York, New York,
USA: ACM Press.

Gandhi, A. (2013). Dynamic Server Provisioning for Data Center Power Management. Accessed:
06/30/2014. http://reports-archive.adm.cs.cmu.edu/anon/anon/home/ftp/usr0/ftp/2013/CMU-
CS-13-110.pdf. Carnegie Mellon University.

Gandhi, A., Harchol-Balter, M., Raghunathan, R., & Kozuch, M. A. (2012). AutoScale: Dynamic, Robust
Capacity Management for Multi-Tier Data Centers. ACM Transactions on Computer Systems.
Accessed: 06/02/2014. http://dl.acm.org/citation.cfm?id=2382556, 30(4), 1–26.

Garlan, D. (2010). Software engineering in an uncertain world. In Proceedings of the FSE/SDP workshop
on Future of software engineering research - FoSER ’10. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1882389 (p. 125). New York, New York, USA: ACM Press.

Garlan, D., Cheng, S., Huang, A., Schmerl, B., & Steenkiste, P. (2004). Rainbow: architecture-based self-
adaptation with reusable infrastructure. Computer. Accessed: 06/23/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1350726, 37(10), 46–54.

Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjorven, E., … Stav, E. (2009). A comprehensive
solution for application-level adaptation. Software: Practice and Experience. Accessed: 07/03/2014.
http://onlinelibrary.wiley.com/doi/10.1002/spe.900/abstract, 39(4), 385–422.

Gelernter, D., & Carriero, N. (1992). Coordination languages and their significance. Communications of
the ACM. Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=376083, 35(2), 97–107.

Georgas, J. C., Hoek, A. van der, & Taylor, R. N. (2009). Using Architectural Models to Manage and
Visualize Runtime Adaptation. Computer. Accessed: 07/03/2014.
http://cat.inist.fr/?aModele=afficheN&cpsidt=22088650, 42(10), 52–60.

Georgas, J. C., & Taylor, R. N. (2008). Policy-based self-adaptive architectures: Policy-based self-adaptive
architectures: a feasibility study in the robotics domain. In Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems - SEAMS ’08. Accessed:

280

06/16/2014. http://dl.acm.org/citation.cfm?id=1370038 (p. 105). New York, New York, USA: ACM
Press.

Georgiadis, I., Magee, J., & Kramer, J. (2002). Self-organising software architectures for distributed
systems. In Proceedings of the first workshop on Self-healing systems - WOSS ’02. Accessed:
06/11/2014. http://dl.acm.org/citation.cfm?id=582135 (p. 33). New York, New York, USA: ACM
Press.

Ghezzi, C., Pinto, L. S., Spoletini, P., & Tamburrelli, G. (2013). Managing non-functional uncertainty via
model-driven adaptivity. In 2013 35th International Conference on Software Engineering (ICSE).
Accessed: 06/02/2014. http://dl.acm.org/citation.cfm?id=2486794 (pp. 33–42). IEEE.

Ghezzi, C., & Sharifloo, A. (2013). Dealing with Non-Functional Requirements for Adaptive Systems via
Dynamic Software Product-Lines. Software Engineering for Self-Adaptive Systems II. Accessed:
02/12/2014. http://link.springer.com/chapter/10.1007/978-3-642-35813-5_8.

Ghezzi, C., & Sharifloo, A. M. (2011). Verifying Non-functional Properties of Software Product Lines:
Towards an Efficient Approach Using Parametric Model Checking. In 2011 15th International
Software Product Line Conference. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6030058 (pp. 170–174). IEEE.

Ghezzi, C., & Tamburrelli, G. (2009). Predicting performance properties for open systems with KAMI.
Architectures for Adaptive Software Systems. Accessed: 02/12/2014.
http://link.springer.com/chapter/10.1007/978-3-642-02351-4_5.

Glinz, M. (2005). Rethinking the notion of non-functional requirements. Proc. Third World Congress for
Software Quality. Accessed: 02/21/2014.
http://www.ptidej.net/course/log3410/fall11/Lectures/Article_5.pdf.

Gmach, D., Krompass, S., Scholz, A., Wimmer, M., & Kemper, A. (2008). Adaptive quality of service
management for enterprise services. ACM Transactions on the Web. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1326569, 2(1), 1–46.

Gokhale, S. (2007). Architecture-Based Software Reliability Analysis: Overview and Limitations. IEEE
Transactions on Dependable and Secure Computing. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4099190, 4(1), 32–40.

Goldsby, H. J., Sawyer, P., Bencomo, N., Cheng, B. H. C., & Hughes, D. (2008). Goal-Based Modeling of
Dynamically Adaptive System Requirements. In 15th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ecbs 2008). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4492385 (pp. 36–45). IEEE.

Graph operations. (2014). Accessed: 09/23/2014. http://en.wikipedia.org/wiki/Graph_operations.

Grunske, L. (2008). Specification patterns for probabilistic quality properties. In Proceedings of the 13th
international conference on Software engineering - ICSE ’08. Accessed: 07/03/2014.

281

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4814114 (p. 31). New York, New York, USA:
ACM Press.

Hagras, H. (2007). Type-2 FLCs: A New Generation of Fuzzy Controllers. IEEE Computational Intelligence
Magazine. Accessed: 07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4195040,
2(1), 30–43.

Hallsteinsen, S., Hinchey, M., & Schmid, K. (2008). Dynamic Software Product Lines. Computer. Accessed:
05/26/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4488260, 41(4), 93–95.

Hallsteinsen, S., Stav, E., Solberg, A., & Floch, J. (2006). Using Product Line Techniques to Build Adaptive
Systems. In 10th International Software Product Line Conference (SPLC’06). Accessed: 06/26/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1691586 (pp. 141–150). IEEE.

Hansson, H., & Jonsson, B. (1994). A logic for reasoning about time and reliability. Formal Aspects of
Computing. Accessed: 07/03/2014. http://link.springer.com/article/10.1007/BF01211866, 6(5),
512–535.

Heaven, W., Sykes, D., Magee, J., & Kramer, J. (2009). A case study in goal-driven architectural
adaptation. Software Engineering for Self-Adaptive Systems. Accessed: 02/12/2014.
http://link.springer.com/chapter/10.1007/978-3-642-02161-9_6.

Hellerstein, J., Diao, Y., Parekh, S., & Tilbury, D. (2004). Feedback control of computing systems.
Hoboken, NJ: John Wiley & Sons.

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design science in information systems research. MIS
Quarterly. Accessed: 12/15/2013. http://dl.acm.org/citation.cfm?id=2017217.

Hielscher, J., & Kazhamiakin, R. (2008). A framework for proactive self-adaptation of service-based
applications based on online testing. Towards a Service-Based Internet. Accessed: 02/12/2014.
http://link.springer.com/chapter/10.1007/978-3-540-89897-9_11.

Hirsch, D., Kramer, J., Magee, J., & Uchitel, S. (2006). Modes for software architectures. Software
Architecture. Accessed: 02/12/2014. http://link.springer.com/chapter/10.1007/11966104_9.

Hoff, P. (2009). A first course in Bayesian statistical methods. Springer.

Homer, A., Sharp, J., Brader, L., Narumoto, M., & Swanson, T. (2014). Cloud Design Patterns: Prescriptive
Architecture Guidance for Cloud Applications. Microsoft.

Immonen, A., & Niemelä, E. (2007). Survey of reliability and availability prediction methods from the
viewpoint of software architecture. Software & Systems Modeling. Accessed: 07/03/2014.
http://link.springer.com/article/10.1007/s10270-006-0040-x, 7(1), 49–65.

Inamura, Y. (2006). Estimating continuous time transition matrices from discretely observed data.
Accessed: 04/03/2014. https://www.boj.or.jp/en/research/wps_rev/wps_2006/wp06e07.htm/.
Japan.

282

Inverardi, P., Issarny, V., & Spalazzese, R. (2010). A theory of mediators for eternal connectors.
Leveraging Applications of Formal Methods, Verification, and Validation. Accessed: 06/29/2014.
http://link.springer.com/chapter/10.1007/978-3-642-16561-0_25.

Inverardi, P., Spalazzese, R., & Tivoli, M. (2011). Application-layer connector synthesis. Formal Methods
for Eternal Networked Software Systems. Accessed: 06/29/2014.
http://link.springer.com/chapter/10.1007/978-3-642-21455-4_5.

Jafry, Y., & Schuermann, T. (2004). Measurement, estimation and comparison of credit migration
matrices. Journal of Banking & Finance. Accessed: 02/12/2014.
http://www.sciencedirect.com/science/article/pii/S0378426604001037.

Jamshidi, P., Ahmad, A., & Pahl, C. (2014). Autonomic resource provisioning for cloud-based software. In
Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems - SEAMS 2014. Accessed: 06/16/2014.
http://dl.acm.org/citation.cfm?doid=2593929.2593940 (pp. 95–104). New York, New York, USA:
ACM Press.

Jamshidi, P., Ghafari, M., Ahmad, A., & Pahl, C. (2013). A Framework for Classifying and Comparing
Architecture-centric Software Evolution Research. In 2013 17th European Conference on Software
Maintenance and Reengineering. Accessed: 06/28/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498478 (pp. 305–314). IEEE.

Jamshidi, P., & Pahl, C. (2014). Cloud Migration Patterns - Supplementary Materials. Accessed:
09/23/2014. http://www.computing.dcu.ie/~pjamshidi/Materials/CMP.html.

Jean-Baptiste, L., Maria-Teresa, S., Jean-Marie, G., & Antoine, B. (2013). Modeling dynamic adaptations
using augmented feature models. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing - SAC ’13. Accessed: 05/29/2014. http://dl.acm.org/citation.cfm?id=2480690 (p. 1734).
New York, New York, USA: ACM Press.

JMeter. (2014). Accessed: 09/23/2014. http://jakarta.apache.org/jmeter/.

Kalekar, P. (2004). Time series forecasting using Holt-Winters exponential smoothing. Kanwal Rekhi
School of Information Technology. Accessed: 03/28/2014.
http://www.it.iitb.ac.in/~praj/acads/seminar/04329008_ExponentialSmoothing.pdf.

Karnik, N., & Mendel, J. (1998). Introduction to type-2 fuzzy logic systems. In 1998 IEEE International
Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat.
No.98CH36228). Accessed: 06/13/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=686240 (Vol. 2, pp. 915–920). IEEE.

Karnik, N., & Mendel, J. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems.
Accessed: 06/13/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=811231, 7(6), 643–
658.

283

Karnik, N. N., & Mendel, J. M. (2001). Centroid of a type-2 fuzzy set. Information Sciences. Accessed:
07/03/2014. http://www.sciencedirect.com/science/article/pii/S002002550100069X, 132(1-4),
195–220.

Katz, E., & Katz, S. (2008). Incremental analysis of interference among aspects. In Proceedings of the 7th
workshop on Foundations of aspect-oriented languages - FOAL ’08. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1394500 (pp. 29–38). New York, New York, USA: ACM Press.

Kell, S. (2007). Rethinking software connectors. In International workshop on Synthesis and analysis of
component connectors in conjunction with the 6th ESEC/FSE joint meeting - SYANCO ’07. Accessed:
07/01/2014. http://dl.acm.org/citation.cfm?id=1294918 (pp. 1–12). New York, New York, USA:
ACM Press.

Kephart, J., & Chess, D. (2003). The vision of autonomic computing. Computer. Accessed: 06/01/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055, 36(1), 41–50.

Kephart, J., & Das, R. (2007). Achieving Self-Management via Utility Functions. IEEE Internet Computing.
Accessed: 07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4061119, 11(1), 40–
48.

Kiczales, G. (1996). Aspect-oriented programming. ACM Computing Surveys. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=242420, 28(4es), 154–es.

Kitano, H. (2004). Biological robustness. Nature Reviews. Genetics. Accessed: 05/28/2014.
http://www.nature.com/nrg/journal/v5/n11/abs/nrg1471.html, 5(11), 826–37.

Klein, G. (2007). Flexecution as a Paradigm for Replanning, Part 1. IEEE Intelligent Systems. Accessed:
07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4338498, 22(5), 79–83.

Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic. Upper Saddle River, New Jersey: Prentice Hall.

Kotonya, G. (2010). Combining Service-Orientation with Product Line Engineering. IEEE Software.
Accessed: 05/28/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5406497, 27(3), 35–
41.

Kramer, J., & Magee, J. (2007). Self-Managed Systems: an Architectural Challenge. In Future of Software
Engineering (FOSE ’07). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221625 (pp. 259–268). IEEE.

Kwiatkowska, M. (2007). Quantitative verification. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering - ESEC-FSE ’07. Accessed: 06/16/2014.
http://dl.acm.org/citation.cfm?id=1287688 (p. 449). New York, New York, USA: ACM Press.

Kwiatkowska, M., Norman, G., & Parker, D. (2007). Stochastic model checking. Formal Methods for
Performance Evaluation. Accessed: 02/04/2014. http://link.springer.com/chapter/10.1007/978-3-
540-72522-0_6.

284

Kwiatkowska, M., Norman, G., & Parker, D. (2010). Advances and challenges of probabilistic model
checking. In 2010 48th Annual Allerton Conference on Communication, Control, and Computing
(Allerton). Accessed: 07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5707120
(pp. 1691–1698). IEEE.

Lapouchnian, A., Yu, Y., Liaskos, S., & Mylopoulos, J. (2006). Requirements-driven design of autonomic
application software. In Proceedings of the 2006 conference of the Center for Advanced Studies on
Collaborative research - CASCON ’06. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1188976 (p. 7). New York, New York, USA: ACM Press.

Lau, K., Elizondo, P., & Wang, Z. (2005). Exogenous connectors for software components. Component-
Based Software Engineering. Accessed: 06/18/2014.
http://link.springer.com/chapter/10.1007/11424529_7.

Lee, J., & Kang, K. (2006). A Feature-Oriented Approach to Developing Dynamically Reconfigurable
Products in Product Line Engineering. In 10th International Software Product Line Conference
(SPLC’06). Accessed: 07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1691585
(pp. 131–140). IEEE.

Leitner, P., Michlmayr, A., Rosenberg, F., & Dustdar, S. (2010). Monitoring, Prediction and Prevention of
SLA Violations in Composite Services. In 2010 IEEE International Conference on Web Services.
Accessed: 06/21/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5552763 (pp. 369–
376). IEEE.

Lemos, R. De, Giese, H., & Müller, H. (2013). Software engineering for self-adaptive systems: A second
research roadmap. Software Engineering for for Self-Adaptive Systems II. Accessed: 12/15/2013.
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1.

Letier, E., Stefan, D., & Barr, E. T. (2014). Uncertainty, risk, and information value in software
requirements and architecture. In Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014. Accessed: 06/10/2014.
http://www0.cs.ucl.ac.uk/staff/e.letier/publications/2014-ICSE-Uncertainty.pdf (pp. 883–894).
New York, New York, USA: ACM Press.

Letier, E., & van Lamsweerde, A. (2004). Reasoning about partial goal satisfaction for requirements and
design engineering. ACM SIGSOFT Software Engineering Notes. Accessed: 06/01/2014.
http://dl.acm.org/citation.cfm?id=1029905, 29(6), 53.

Liang, Q., & Mendel, J. M. (2000). Designing interval type-2 fuzzy logic systems using an SVD-QR method:
Rule reduction. International Journal of Intelligent Systems. Accessed: 07/03/2014.
http://onlinelibrary.wiley.com/doi/10.1002/1098-111X(200010)15:10%3C939::AID-
INT3%3E3.0.CO;2-G/abstract, 15(10), 939–957.

Linda, O., & Manic, M. (2011). Uncertainty-Robust Design of Interval Type-2 Fuzzy Logic Controller for
Delta Parallel Robot. IEEE Transactions on Industrial Informatics. Accessed: 06/02/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6009194, 7(4), 661–670.

285

Littlewood, B. (1975). A Reliability Model for Systems with Markov Structure. Applied Statistics.
Accessed: 07/03/2014. http://www.jstor.org/stable/10.2307/2346564, 24(2), 172.

Liu, X. (Frank), Azmoodeh, M., & Georgalas, N. (2007). Specification of Non-functional Requirements for
Contract Specification in the NGOSS Framework for Quality Management and Product Evaluation.
In Fifth International Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007). Accessed:
07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4273474 (pp. 7–7). IEEE.

Liu, X., & Yen, J. (1996). An analytic framework for specifying and analyzing imprecise requirements. In
Proceedings of IEEE 18th International Conference on Software Engineering. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=227738 (pp. 60–69). IEEE Comput. Soc. Press.

Load Runner. (2014). Accessed: 09/23/2014. http://www8.hp.com/us/en/software-
solutions/loadrunner-load-testing/.

Marzolla, M., & Mirandola, R. (2010). Performance aware reconfiguration of software systems.
Computer Performance Engineering. Accessed: 02/12/2014.
http://link.springer.com/chapter/10.1007/978-3-642-15784-4_4.

MATLAB Builder NE. (2014). Accessed: 09/23/2014.
http://www.mathworks.co.uk/products/netbuilder/index.html.

Maximum clique. (2014). Accessed: 09/23/2014.
http://en.wikipedia.org/wiki/Maximum_clique#Definitions.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., & Cheng, B. H. C. (2004). Composing adaptive software.
Computer. Accessed: 06/18/2014. http://di.ufpe.br/~redis/middleware/mckinley-
composition04.pdf, 37(7), 56–64.

Medvidovic, N., & Taylor, R. (2009). Software architecture: foundations, theory, and practice. Wiley.

Mendel, J. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy
Systems. Accessed: 07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=873577,
8(5), 535–550.

Mendel, J. (2001). Uncertain rule-based fuzzy logic system: introduction and new directions. Prentice
Hall.

Mendel, J. (2007). Type-2 fuzzy sets and systems: an overview. Computational Intelligence Magazine,
IEEE. Accessed: 02/05/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4197699.

Mendel, J. (2008). Encoding Words Into Interval Type-2 Fuzzy Sets Using an Interval Approach. IEEE
Transactions on Fuzzy Systems. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4607249, 16(6), 1503–1521.

Mendel, J. (2009). Enhanced Karnik--Mendel Algorithms. IEEE Transactions on Fuzzy Systems. Accessed:
06/16/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4505357, 17(4), 923–934.

286

Mendel, J., Hagras, H., & John, R. (2010). Standard background material about interval type-2 fuzzy logic
systems that can be used by all authors. IEEE Computational Intelligence Society. Accessed:
02/05/2014.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.4195&rep=rep1&type=pdf.

Mendel, J., & John, R. (2002). Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems.
Accessed: 06/12/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=995115, 10(2), 117–
127.

Mendel, J., Karnik, N., & Liang, Q. (2000). Connection admission control in ATM networks using survey-
based type-2 fuzzy logic systems. IEEE Transactions on Systems, Man and Cybernetics, Part C
(Applications and Reviews). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=885114, 30(3), 329–339.

Mendel, J. M., & Coupland, S. (2012). Enhanced Interval Approach for Encoding Words Into Interval
Type-2 Fuzzy Sets and Its Convergence Analysis. IEEE Transactions on Fuzzy Systems. Accessed:
07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6086759, 20(3), 499–513.

Mendel, J. M., & John, R. I. (2002). Footprint of Uncertainty and Its Importance to Type-2 Fuzzy Sets.
Actapress.com. Accessed: 02/15/2014.
http://www.actapress.com/PaperInfo.aspx?PaperID=26102&reason=500.

Mendel, J. M., John, R. I., & Liu, F. (2006). Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE
Transactions on Fuzzy Systems. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4016089, 14(6), 808–821.

Mendel, J., & Wu, D. (2010). Perceptual computing: aiding people in making subjective judgments. John
Wiley & Sons.

Metzger, A., Sammodi, O., & Pohl, K. (2013). Accurate proactive adaptation of service-oriented systems.
Assurances for Self-Adaptive Systems. Accessed: 02/11/2014.
http://link.springer.com/chapter/10.1007/978-3-642-36249-1_9.

Microsoft. (2014). Model View ViewModel. http://en.wikipedia.org/wiki/Model_View_ViewModel.

Montero, I., Pena, J., & Ruiz-Cortes, A. (2008). Representing Runtime Variability in Business-Driven
Development Systems. In Seventh International Conference on Composition-Based Software
Systems (ICCBSS 2008). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4464029 (pp. 228–231). IEEE.

Moon, Y. (2011). Stochastic models for quality of service of component connectors. Accessed:
02/06/2014. https://openaccess.leidenuniv.nl/handle/1887/17975.

Moon, Y., Arbab, F., & Silva, A. (2011). Stochastic Reo: a Case Study. ENTCS. Accessed: 02/06/2014.
https://www.duo.uio.no/bitstream/handle/123456789/8998/TR409.pdf?sequence=1#page=90.

287

Morandini, M., Penserini, L., & Perini, A. (2008). Towards goal-oriented development of self-adaptive
systems. In Proceedings of the 2008 international workshop on Software engineering for adaptive
and self-managing systems - SEAMS ’08. Accessed: 06/16/2014.
http://dl.acm.org/citation.cfm?id=1370021 (p. 9). New York, New York, USA: ACM Press.

Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., & Solberg, A. (2009). Models@ Run.time to Support
Dynamic Adaptation. Computer. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5280651, 42(10), 44–51.

Morin, B., Fleurey, F., & Bencomo, N. (2008). An aspect-oriented and model-driven approach for
managing dynamic variability. Model Driven Engineering Languages and Systems. Accessed:
06/18/2014. http://link.springer.com/chapter/10.1007/978-3-540-87875-9_54.

Müller, H., Pezzè, M., & Shaw, M. (2008). Visibility of control in adaptive systems. In Proceedings of the
2nd international workshop on Ultra-large-scale software-intensive systems - ULSSIS ’08. Accessed:
07/03/2014.
http://www.researchgate.net/publication/228670531_Visibility_of_control_in_adaptive_systems/f
ile/3deec5171b4a937da9.pdf (pp. 23–26). New York, New York, USA: ACM Press.

Narayanan, D., & Satyanarayanan, M. (2003). Predictive Resource Management for Wearable
Computing. In Proceedings of the 1st international conference on Mobile systems, applications and
services - MobiSys ’03. Accessed: 06/12/2014. http://dl.acm.org/citation.cfm?id=1189041 (pp.
113–128). New York, New York, USA: ACM Press.

Oliveira, N., & Barbosa, L. (2013). Reconfiguration mechanisms for service coordination. Web Services
and Formal Methods. Accessed: 02/05/2014. http://link.springer.com/chapter/10.1007/978-3-642-
38230-7_9.

Oliveira, N., & Barbosa, L. S. (2013). On the reconfiguration of software connectors. In Proceedings of the
28th Annual ACM Symposium on Applied Computing - SAC ’13. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=2480712 (p. 1885). New York, New York, USA: ACM Press.

Oreizy, P., Medvidovic, N., & Taylor, R. (1998). Architecture-based runtime software evolution. In
Proceedings of the 20th International Conference on Software Engineering. Accessed: 06/28/2014.
http://dl.acm.org/citation.cfm?id=302181 (pp. 177–186). IEEE Comput. Soc.

OSGi Alliance. (2014). Accessed: 09/23/2014. http://www.osgi.org/Main/HomePage.

Papadopoulos, G., & Arbab, F. (1998). Coordination models and languages. Advances in Computers.
Accessed: 12/14/2013. http://www.sciencedirect.com/science/article/pii/S0065245808602089.

PARAM Model Checker. (2013). Accessed: 09/23/2014. http://www.avacs.org/tools/param/.

Park, S. (2009). Reinforcement learning-based dynamic adaptation planning method for architecture-
based self-managed software. In 2009 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems. Accessed: 05/26/2014.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5069076 (pp. 76–85). IEEE.

288

Parra, C., Blanc, X., Cleve, A., & Duchien, L. (2011). Unifying design and runtime software adaptation
using aspect models. Science of Computer Programming. Accessed: 05/30/2014.
http://tel.archives-ouvertes.fr/tel-00583444/, 76(12), 1247–1260.

Patikirikorala, T., Colman, A., Han, J., & Wang, L. (2012). A systematic survey on the design of self-
adaptive software systems using control engineering approaches. In 2012 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). Accessed:
06/10/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224389 (pp. 33–42). IEEE.

Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-Aubry, F., & Martelli, L. (2004). JAC: an aspect-
based distributed dynamic framework. Software: Practice and Experience. Accessed: 07/03/2014.
http://onlinelibrary.wiley.com/doi/10.1002/spe.605/abstract, 34(12), 1119–1148.

Perez-Palacin, D., & Mirandola, R. (2014). Uncertainties in the modeling of self-adaptive systems. In
Proceedings of the 5th ACM/SPEC international conference on Performance engineering - ICPE ’14.
Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?doid=2568088.2568095 (pp. 3–14). New
York, New York, USA: ACM Press.

Perrouin, G., & Chauvel, F. (2008). Modeling the variability space of self-adaptive applications. 2nd
Dynamic Software Product Lines Workshop. Accessed: 02/12/2014. http://hal.inria.fr/inria-
00456531/.

Pfleeger, S. (1995). Experimental design and analysis in software engineering. Annals of Software
Engineering. Accessed: 02/12/2014. http://link.springer.com/article/10.1007/BF02249052.

Pham, H. (2006). System software reliability. London: Springer.

Pinsky, M., & Karlin, S. (2010). An introduction to stochastic modeling. Elsevier.

Pohl, K. (2010). Requirements engineering: fundamentals, principles, and techniques. Accessed:
02/01/2014. http://dl.acm.org/citation.cfm?id=1869735. Springer.

Poladian, V., Garlan, D., Shaw, M., Satyanarayanan, M., Schmerl, B., & Sousa, J. (2007). Leveraging
Resource Prediction for Anticipatory Dynamic Configuration. In First International Conference on
Self-Adaptive and Self-Organizing Systems (SASO 2007). Accessed: 06/10/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4274905 (pp. 214–223). IEEE.

Poladian, V., Sousa, J., Garlan, D., & Shaw, M. (2004). Dynamic configuration of resource-aware services.
In Proceedings. 26th International Conference on Software Engineering. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1317482 (pp. 604–613). IEEE Comput. Soc.

Pop, T., Plasil, F., Outly, M., Malohlava, M., & Bures, T. (2012). Property networks allowing oracle-based
mode-change propagation in hierarchical components. In Proceedings of the 15th ACM SIGSOFT
symposium on Component Based Software Engineering - CBSE ’12. Accessed: 06/24/2014.
http://dl.acm.org/citation.cfm?id=2304753 (p. 93). New York, New York, USA: ACM Press.

289

Ramamoorthy, C. V. (1966). The analytic design of a dynamic look ahead and program segmenting
system for multiprogrammed computers. In Proceedings of the 1966 21st national conference on -.
Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=810702 (pp. 229–239). New York, New
York, USA: ACM Press.

Ramirez, A., & Cheng, B. (2012). Relaxing claims: Coping with uncertainty while evaluating assumptions
at run time. Model Driven Engineering Languages and Systems. Accessed: 01/27/2014.
http://link.springer.com/chapter/10.1007/978-3-642-33666-9_5.

Ramirez, A. J., & Cheng, B. H. C. (2010). Design patterns for developing dynamically adaptive systems. In
Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems - SEAMS ’10. Accessed: 06/16/2014. http://dl.acm.org/citation.cfm?id=1808990 (pp. 49–
58). New York, New York, USA: ACM Press.

Ramirez, A. J., Jensen, A. C., & Cheng, B. H. C. (2012). A taxonomy of uncertainty for dynamically
adaptive systems. In 2012 7th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). Accessed: 06/10/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224396 (pp. 99–108). IEEE.

Ramirez, A. J., Jensen, A. C., Cheng, B. H. C., & Knoester, D. B. (2011). Automatically exploring how
uncertainty impacts behavior of dynamically adaptive systems. In 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011). Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=2190127 (pp. 568–571). IEEE.

Ramirez, A. J., Knoester, D. B., Cheng, B. H. C., & McKinley, P. K. (2009). Applying genetic algorithms to
decision making in autonomic computing systems. In Proceedings of the 6th international
conference on Autonomic computing - ICAC ’09. Accessed: 06/11/2014.
http://dl.acm.org/citation.cfm?id=1555258 (p. 97). New York, New York, USA: ACM Press.

Ramirez, A. J., Knoester, D. B., Cheng, B. H. C., & McKinley, P. K. (2010). Plato: a genetic algorithm
approach to run-time reconfiguration in autonomic computing systems. Cluster Computing.
Accessed: 07/03/2014. http://link.springer.com/article/10.1007/s10586-010-0122-y, 14(3), 229–
244.

Roshandel, R., Medvidovic, N., & Golubchik, L. (2007). A Bayesian model for predicting reliability of
software systems at the architectural level. Software Architectures, Components, and Applications.
Accessed: 02/02/2014. http://link.springer.com/chapter/10.1007/978-3-540-77619-2_7.

Salay, R., Chechik, M., & Horkoff, J. (2012). Managing requirements uncertainty with partial models. In
2012 20th IEEE International Requirements Engineering Conference (RE). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6345804 (pp. 1–10). IEEE.

Salehie, M., & Tahvildari, L. (2012). Towards a goal-driven approach to action selection in self-adaptive
software. Software: Practice and Experience. Accessed: 06/10/2014.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1066/full, 42(2), 211–233.

290

Salfner, F., Lenk, M., & Malek, M. (2010). A survey of online failure prediction methods. ACM Computing
Surveys. Accessed: 06/15/2014. http://dl.acm.org/citation.cfm?id=1670680, 42(3), 1–42.

Sato, N., & Trivedi, K. (2007). Stochastic modeling of composite web services for closed-form analysis of
their performance and reliability bottlenecks. Service-Oriented Computing–ICSOC 2007. Accessed:
02/11/2014. http://link.springer.com/chapter/10.1007/978-3-540-74974-5_9.

Sepúlveda, R., Castillo, O., Melin, P., Rodríguez-Díaz, A., & Montiel, O. (2007). Experimental study of
intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Information Sciences.
Accessed: 07/03/2014. http://www.sciencedirect.com/science/article/pii/S002002550600332X,
177(10), 2023–2048.

Serugendo, G., Fitzgerald, J., Romanovsky, A., & Guelfi, N. (2007). A generic framework for the
engineering of self-adaptive and self-organising systems. In Software Engineering for Self-Adaptive
Systems. Accessed: 02/12/2014. http://link.springer.com/chapter/10.1007%2F978-3-642-02161-
9_3.

Shen, L., Peng, X., Liu, J., & Zhao, W. (2011). Towards feature-oriented variability reconfiguration in
dynamic software product lines. Top Productivity through Software Reuse. Accessed: 06/18/2014.
http://link.springer.com/chapter/10.1007/978-3-642-21347-2_5.

Smith, C., & Williams, L. (2002). Performance solutions: a practical guide to creating responsive, scalable
software. Accessed: 02/11/2014. http://ftp.cmg.org/proceedings/2001/1299.pdf. Addison-Wesley
Professional.

Solano Martínez, J. (2012). Energy management of a hybrid electric vehicle: an approach based on type-2
fuzzy logic. http://www.banrepcultural.org/blaavirtual/tesis/colfuturo/energy-management-of-a-
hybrid-electric-vehicle. University of Franche-Comté.

Solano Martínez, J., John, R. I., Hissel, D., & Péra, M.-C. (2012). A survey-based type-2 fuzzy logic system
for energy management in hybrid electrical vehicles. Information Sciences. Accessed: 09/16/2014.
http://www.sciencedirect.com/science/article/pii/S0020025511006529, 190, 192–207.

Strelioff, C., Crutchfield, J., & Hübler, A. (2007). Inferring Markov chains: Bayesian estimation, model
comparison, entropy rate, and out-of-class modeling. Physical Review E. Accessed: 07/03/2014.
http://pre.aps.org/abstract/PRE/v76/i1/e011106, 76(1), 011106.

Surajbali, B., Coulson, G., Greenwood, P., & Grace, P. (2007). Augmenting reflective middleware with an
aspect orientation support layer. In Proceedings of the 6th international workshop on Adaptive and
reflective middleware held at the ACM/IFIP/USENIX International Middleware Conference - ARM
’07. Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=1376781 (pp. 1–6). New York, New
York, USA: ACM Press.

Sykes, D., Corapi, D., Magee, J., Kramer, J., Russo, A., & Inoue, K. (2013). Learning revised models for
planning in adaptive systems. In 2013 35th International Conference on Software Engineering
(ICSE). Accessed: 06/02/2014. http://dl.acm.org/citation.cfm?id=2486797 (pp. 63–71). IEEE.

291

Sykes, D., Heaven, W., Magee, J., & Kramer, J. (2007). Plan-directed architectural change for
autonomous systems. In Proceedings of the 2007 conference on Specification and verification of
component-based systems 6th Joint Meeting of the European Conference on Software Engineering
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering - SAVCBS ’07.
Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=1292318 (pp. 15–21). New York, New
York, USA: ACM Press.

Sykes, D., Heaven, W., Magee, J., & Kramer, J. (2008). From goals to components: a combined approach
to self-management. In Proceedings of the 2008 international workshop on Software engineering
for adaptive and self-managing systems - SEAMS ’08. Accessed: 06/16/2014.
http://dl.acm.org/citation.cfm?id=1370020 (p. 1). New York, New York, USA: ACM Press.

Sykes, D., Heaven, W., Magee, J., & Kramer, J. (2010). Exploiting non-functional preferences in
architectural adaptation for self-managed systems. In Proceedings of the 2010 ACM Symposium on
Applied Computing - SAC ’10. Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=1774180
(p. 431). New York, New York, USA: ACM Press.

Tesauro, G. (2007). Reinforcement Learning in Autonomic Computing: A Manifesto and Case Studies.
IEEE Internet Computing. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4061117, 11(1), 22–30.

Tourwé, T., Brichau, J., & Gybels, K. (2003). On the existence of the AOSD-evolution paradox. SPLAT:
Software Engineering Properties of Languages for Aspect Technologies. Accessed: 06/18/2014.
http://scholar.google.com/scholar?q=On+the+existence+of+the+AOSD+evolution+paradox&btnG=
&hl=en&as_sdt=0%2C5#0.

Trinidad, P., Cortés, A., Peña, J., & Benavides, D. (2007). Mapping Feature Models onto Component
Models to Build Dynamic Software Product Lines. DSPL. Accessed: 06/18/2014.
http://www.lsi.us.es/~trinidad/docs/trinidad07-dspl.pdf.

Walpole, R., Myers, R., & Myers, S. (2011). Probability and Statistics for Engineers and Scientists (9th
Edition). industrialventilation.net. Accessed: 02/17/2014. http://www.amazon.com/Probability-
Statistics-Engineers-Scientists-Edition/dp/0321629116.

Wang, L., & Mendel, J. (1992). Generating fuzzy rules by learning from examples. IEEE Transactions on
Systems, Man, and Cybernetics. Accessed: 06/16/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=199466, 22(6), 1414–1427.

Wang, W.-L., Pan, D., & Chen, M.-H. (2006). Architecture-based software reliability modeling. Journal of
Systems and Software. Accessed: 06/11/2014.
http://www.sciencedirect.com/science/article/pii/S0164121205001421, 79(1), 132–146.

Welsh, K. (2010). Design-Time and Run-Time Requirements Modelling for Adaptive Systems. Accessed:
06/14/2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.557291.

292

Welsh, K., Sawyer, P., & Bencomo, N. (2011a). Run-time resolution of uncertainty. In 2011 IEEE 19th
International Requirements Engineering Conference. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6051673 (pp. 355–356). IEEE.

Welsh, K., Sawyer, P., & Bencomo, N. (2011b). Towards requirements aware systems: Run-time
resolution of design-time assumptions. In 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6100125 (pp. 560–563). IEEE.

Weyns, D., & Ahmad, T. (2013). Claims and evidence for architecture-based self-adaptation: a systematic
literature review. Software Architecture. Accessed: 06/18/2014.
http://link.springer.com/chapter/10.1007/978-3-642-39031-9_22.

Weyns, D., Iftikhar, M. U., Malek, S., & Andersson, J. (2012). Claims and supporting evidence for self-
adaptive systems: A literature study. In 2012 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). Accessed: 06/10/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6224395 (pp. 89–98). IEEE.

Weyns, D., Malek, S., & Andersson, J. (2010). FORMS: a formal reference model for self-adaptation. In
Proceeding of the 7th international conference on Autonomic computing - ICAC ’10. Accessed:
06/16/2014. http://dl.acm.org/citation.cfm?id=1809078 (p. 205). New York, New York, USA: ACM
Press.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H. C., & Bruel, J.-M. (2009). RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In 2009 17th IEEE International
Requirements Engineering Conference. Accessed: 06/30/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5328591 (pp. 79–88). IEEE.

Wilder, B. (2012). Cloud Architecture Patterns. Oreilly.

Witten, I., & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques (2 edition.).
Morgan Kaufmann.

Wolfinger, R., Reiter, S., Dhungana, D., Grunbacher, P., & Prahofer, H. (2008). Supporting Runtime
System Adaptation through Product Line Engineering and Plug-in Techniques. In Seventh
International Conference on Composition-Based Software Systems (ICCBSS 2008). Accessed:
05/30/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4464006 (pp. 21–30). IEEE.

Woodside, C. M., & Litoiu, M. (2008). Performance Model Estimation and Tracking Using Optimal Filters.
IEEE Transactions on Software Engineering. Accessed: 06/21/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4515874, 34(3), 391–406.

Wu, D. (2012). On the Fundamental Differences Between Interval Type-2 and Type-1 Fuzzy Logic
Controllers. IEEE Transactions on Fuzzy Systems. Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6145645, 20(5), 832–848.

293

Wu, D., & Mendel, J. M. (2007). Uncertainty measures for interval type-2 fuzzy sets. Information
Sciences. Accessed: 07/03/2014.
http://www.sciencedirect.com/science/article/pii/S002002550700357X, 177(23), 5378–5393.

Yang, H., De Roeck, A., Gervasi, V., Willis, A., & Nuseibeh, B. (2012). Speculative requirements:
Automatic detection of uncertainty in natural language requirements. In 2012 20th IEEE
International Requirements Engineering Conference (RE). Accessed: 07/03/2014.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6345795 (pp. 11–20). IEEE.

Yang, Q.-L., Lv, J., Tao, X.-P., Ma, X.-X., Xing, J.-C., & Song, W. (2013). Fuzzy Self-Adaptation of Mission-
Critical Software Under Uncertainty. Journal of Computer Science and Technology. Accessed:
07/03/2014. http://link.springer.com/article/10.1007/s11390-013-1321-9, 28(1), 165–187.

Yen, J., & Tiao, W. (1997). A systematic tradeoff analysis for conflicting imprecise requirements. In
Proceedings of ISRE ’97: 3rd IEEE International Symposium on Requirements Engineering. Accessed:
07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=566845 (pp. 87–96). IEEE
Comput. Soc. Press.

Yin, H., Carlson, J., & Hansson, H. (2012). Towards mode switch handling in component-based multi-
mode systems. In Proceedings of the 15th ACM SIGSOFT symposium on Component Based Software
Engineering - CBSE ’12. Accessed: 07/03/2014. http://dl.acm.org/citation.cfm?id=2304766 (p. 183).
New York, New York, USA: ACM Press.

Yu, Y., Lapouchnian, A., & Liaskos, S. (2008). From goals to high-variability software design. Foundations
of Intelligent Systems. Accessed: 02/12/2014. http://link.springer.com/chapter/10.1007/978-3-
540-68123-6_1.

Zadeh, L. (1965). Fuzzy sets. Information and Control. Accessed: 05/26/2014.
http://www.sciencedirect.com/science/article/pii/S001999586590241X, 8(3), 338–353.

Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate reasoning—I.
Information Sciences. Accessed: 06/19/2014.
http://www.sciencedirect.com/science/article/pii/0020025575900365, 8(3), 199–249.

Zave, P., & Jackson, M. (1997). Four dark corners of requirements engineering. ACM Transactions on
Software Engineering and Methodology. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=237434, 6(1), 1–30.

Zhao, D. (2011). Supervised adaptive dynamic programming based adaptive cruise control. In 2011 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). Accessed:
07/03/2014. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5967371 (pp. 318–323). IEEE.

Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Padala, P., & Shin, K. (2009). What does control
theory bring to systems research? ACM SIGOPS Operating Systems Review. Accessed: 07/03/2014.
http://dl.acm.org/citation.cfm?id=1496922, 43(1), 62.

1

Appendix A. The Survey Template

Section I. Contact details

Name __

Affiliation __

Email __

Section II. Expert knowledge

Section II aim to extract expert knowledge to design the adaptation management system for the

ElasticQueue shown in Figure 8.4.

Figure 8.4. ElasticQueue adaptation management with a fuzzy controller.

The objectives of the adaptation management for this ElasticQueue are:

1. Tasks are put into the queue for processing

2. The processing components pick up the tasks from the queue to process them

3. In high loads, the fuzzy controller regulates the number of processing components to meet the

response time SLA

4. In low load, the fuzzy controller regulates the number of processing components to decrease the

incurred costs

2

A fuzzy controller is used to determine the operating mode of the ElasticQueue to reach the objectives.

Figure 8.4 presents the fuzzy logic controller, and Table 1 explains its inputs and outputs.

Table 8.1. FLS input–output description.

Input/output Description

Load Number of requests received at the ElasticQueue end point

Response time The difference in time that a task is received at the ElasticQueue end point and the
time that it has been processed by the processing component

Mode The operating mode of the ElasticQueue

Section II.1 Linguistic label localization

The purpose of this part of the survey is to locate linguistic labels to determine intervals. This information

will be used to construct the fuzzy sets and associated membership functions. The following example

demonstrates how to complete this section.

Example 1:

Table 2 summarizes the assigned values to four linguistic labels representing the load to the ElasticQueue

with maximum normalized value of 100 (concurrent requests/sec). Obviously these values could be

different in the opinion of different people.

Table 8.2. Linguistic labels to describe workload.

Workload Start (𝒂) End (𝒃)

Very low 0 20
Low 15 40

Medium 35 65
High 60 90

Very high 85 100

It can be inferred from Table 8.2 that the person completing this table thinks that:

 A low workload is between 15 and 40 (requests/sec)

 A load of 40 (requests/sec) could be considered low as well as medium

3

Question 1. Load to the ElasticQueue

Please use your own experience, thoughts and preferences to complete Table 8.3 using values of the Load

as defined in Table 8.1.

Table 8.3. Linguistic labels to describe Load.

Workload Start (𝒂) End (𝒃)

Very low 0
Low

Medium
High

Very high 100

Question 2. Response time of the ElasticQueue

Please use your own experience, thoughts and preferences to complete Table 8.4 using values of the

Response time as defined in Table 8.1.

Table 8.4. Linguistic labels to describe Response time.

Response time Start (𝒂) End (𝒃)

Instantaneous 0
Fast

Medium
Slow

Very slow 100

Section II.2 Rules definition

The FLS presented in the upper part of Figure 8.4 and described in Table 8.1 takes the inputs and processes

them to produce outputs using the fuzzy rules and the linguistic labels in Table 7.1. These rules are

summarized in Table 8.6.

The following examples demonstrate how to complete this section. However, they are only examples.

Please feel free to modify your answers.

Example 2: If Load is “High” and Response time is “Slow” then the mode of the ElasticQueue is

_____________?

 The ElasticQueue has less processing components than is needed and the queue is relatively

overloaded.

 It is necessary to rapidly increase the computing powers (i.e., the processing components) of the

ElasticQueue

If Load is “High” and Response time is “Slow” then the mode of the ElasticQueue is “High-Effort”.

Example 3: If Load is “Medium” and Response time is “Fast” then the mode of the ElasticQueue is

_____________?

4

 The ElasticQueue meet the SLA

 It is necessary to hold the output power in the ElasticQueue

If Load is “Medium” and Response time is “Fast” then the mode of the ElasticQueue is “Effort”.

Question 3. Fuzzy rules definition

Please use your own experience, thoughts and preferences to complete Table 8.6 using the linguistic

labels in Table 7.1.

Table 8.5. Linguistic labels to describe ElasticQueue operating mode.

ElasticQueue
Mode

Interface
Component

Processing
Components

Normal 1 1
Effort 1 2

Medium Effort 1 3
High Effort 1 4

Maximum Effort 1 5

The following examples demonstrate how to complete this section. However, they are only examples.

Please feel free to modify your answers.

Example 2: If Load is “High” and Response time is “Slow” then the mode of the ElasticQueue is

_____________?

 The ElasticQueue has less processing components than is needed and the queue is relatively

overloaded.

 It is necessary to rapidly increase the computing powers (i.e., the processing components) of the

ElasticQueue

If Load is “High” and Response time is “Slow” then the mode of the ElasticQueue is “High-Effort”.

Example 3: If Load is “Medium” and Response time is “Fast” then the mode of the ElasticQueue is

_____________?

 The ElasticQueue meet the SLA

 It is necessary to hold the output power in the ElasticQueue

If Load is “Medium” and Response time is “Fast” then the mode of the ElasticQueue is “Effort”.

5

Question 3. Fuzzy rules definition

Please use your own experience, thoughts and preferences to complete Table 8.6 using the linguistic

labels in Table 7.1.

Table 8.6. Fuzzy adaptation rules.

Rule
(𝒍)

Antecedents Consequent

Workload
Response

time
Normal Effort

Medium
Effort

High
Effort

Maximum
Effort

1 Very low Instantaneous
2 Very low Fast
3 Very low Medium
4 Very low Slow
5 Very low Very slow
6 Low Instantaneous
7 Low Fast
8 Low Medium
9 Low Slow

10 Low Very slow
11 Medium Instantaneous
12 Medium Fast
13 Medium Medium
14 Medium Slow
15 Medium Very slow
16 High Instantaneous
17 High Fast
18 High Medium
19 High Slow
20 High Very slow
21 Very high Instantaneous
22 Very high Fast
23 Very high Medium
24 Very high Slow
25 Very high Very slow

