
Autonomic Resource Provisioning for

Cloud-Based Software
Pooyan Jamshidi

IC4, School of Computing, Dublin City
University, Ireland.

pooyan.jamshidi@computing.dcu.ie

Aakash Ahmad
Lero, School of Computing, Dublin

City University, Ireland.
ahmad.aakash@computing.dcu.ie

Claus Pahl
IC4, School of Computing, Dublin City

University, Ireland.
claus.pahl@computing.dcu.ie

ABSTRACT
Cloud elasticity provides a software system with the ability to
maintain optimal user experience by automatically acquiring and
releasing resources, while paying only for what has been
consumed. The mechanism for automatically adding or removing
resources on the fly is referred to as auto-scaling. The state-of-the-
practice with respect to auto-scaling involves specifying threshold-
based rules to implement elasticity policies for cloud-based
applications. However, there are several shortcomings regarding
this approach. Firstly, the elasticity rules must be specified
precisely by quantitative values, which requires deep knowledge
and expertise. Furthermore, existing approaches do not explicitly
deal with uncertainty in cloud-based software, where noise and
unexpected events are common. This paper exploits fuzzy logic to
enable qualitative specification of elasticity rules for cloud-based
software. In addition, this paper discusses a control theoretical
approach using type-2 fuzzy logic systems to reason about
elasticity under uncertainties. We conduct several experiments to
demonstrate that cloud-based software enhanced with such
elasticity controller can robustly handle unexpected spikes in the
workload and provide acceptable user experience. This translates
into increased profit for the cloud application owner.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability and availability;

General Terms
Management, Measurement, Performance, Experimentation.

Keywords
Cloud Computing, Auto-scaling, Elasticity, Uncertainty.

1. INTRODUCTION
Cloud computing platforms are widely used by major IT companies
and startups to remain competitive [1]. Even traditional enterprises
are attempting to exploit the benefits of cloud platforms [1]. The
appealing characteristics that cloud platforms can provide include
high-availability and low cost of maintenance [2]. However, the
main selling point of cloud platforms is elasticity - i.e., the
customers should only pay for what they have utilized [3].
Elasticity is the core design principle of elastic software that convey
three aspects [3] [4]: (1) scalability, the ability of the system to
sustain workload fluctuations, (2) cost efficiency, acquiring only the
required resources by releasing unutilized ones, (3) time efficiency,
acquiring and releasing resources as soon as a request is made.

Figure 1. High-level view of elastic software.

Web-based software systems frequently experience load spikes.
For example, one recent Facebook application experienced a 10
times increase in the number of users from 25,000 to 250,000 in
just three days with up to 20,000 new registrations per hour in peak
times [5]. Such typically business-critical systems must satisfy
certain level of service level agreements (SLA), e.g., upper bounds
on user perceived response time. Otherwise, unexpected loads
cause a poor service level that frustrate end users. Amazon reported
a loss of 245 million dollars for an increase of 100ms in response
time [6]. To avoid such a situation and maintain service quality, the
automated management of such applications is essential [7]. As a
result, there has been a research and practice interest in automated
resource provisioning for such applications [8].

The challenge of building elastic systems involves adjustment of
resources along with load variations without the need for human
interventions. Automated cloud-based scalability (i.e., auto-
scaling) is one of the most recent advancements for dynamic
resource provisioning [9] [10] [11]. To auto-scale an application,
the state-of-the-practice involves specifying threshold-based rules
to implement elasticity policies for cloud applications [10]. There
remained several challenges that we intend to address in this work.
Firstly, elasticity rules must be specified precisely by quantitative
values. This requires expertise, which makes the accuracy of the
policy subjective and prone to uncertainty. Furthermore, existing
approaches make impractical assumptions about elastic systems
and their environment. More specifically, they assume that
stakeholders have a unified opinion about the thresholds in the
rules. More importantly, they do not explicitly consider noises in
the input data. However, these assumptions are barely valid in the
cloud, where uncertainty in terms of noise and dynamic changes in
the environment are frequent [12] [13]. The approaches that rely on
such assumptions are not dependable [12] [13] [9].

The particular contribution of this paper is to develop an elasticity
controller, called RobusT2Scale, which utilizes fuzzy logic to
enable qualitative specifications of elasticity rules. Fuzzy logic
systems (FLSs) [14] are known to enable manipulation of linguistic
rules. This paper proposes an elasticity reasoning (encompasses
analysis and planning in Figure 1) using type-2 FLSs [14].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SEAMS'14, June 2–3, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2864-7/14/06... $15.00.

Elasticity rule uncertainties occur due to the use of imprecise
qualitative values. For example, a typical elasticity rule might be:

 “IF the workload is high, AND response-time is slow,
THEN add two more VMs to the existing resources”

(1.1)

In this situation, a type-2 FLS can provide an effective mechanism
to represent the uncertainties in these italicized linguistic labels and
the numerical manipulation of these rule to plan the scalability. We
demonstrate that RobusT2Scale, via the fuzzy elasticity reasoning,
is robust to several forms of changes in the environment, including
unpredictable changes in requests and unpredictable degradations
in response-time. A number of experimental results demonstrate
the effectiveness of this approach in handling measurement noises
when dealing with unexpected bursts in the requests. We
demonstrate that our approach significantly outperforms two other
provisioning policies, meeting response time obligations while
greatly reducing the number of cloud resources.

The remainder of this paper is structured as follows. Section 2
motivates the research and provides an overview of the proposed
solution. Section 3 reviews the background on mathematical
foundations. Section 4 presents the proposed approach, including
the details of the fuzzy elasticity controller. Section 5 reports the
implementation details of RobusT2Scale followed by experimental
evaluations in Section 6. The paper concludes with a review of
related work and opportunities for future research.

2. CHALLENGES AND APPROACH
In this section, we use a running example to highlight the research
challenges and to exemplify the proposed solution.

2.1 Motivating Example
Let us consider a multi-tenant software as a service (SaaS) that
enables customers (tenants) to design, publish and collect the
results of surveys [15]. Customers can manage their surveys by
creating a subscription with the service and determining a location
for their account and surveys. Public people can participate in the
survey by completing the designed survey provided by the survey
creator through a URL. Surveys usually run for a short period but
may attract huge number of respondents. Because the nature of
survey application includes sudden bursts in demand, it must be
able to quickly grow or contract its deployment infrastructure.

To achieve the scalability requirements, the survey application is
implemented as a cloud-based application. Figure 2 illustrates the
high-level architectural view of the survey application. The
architectural style of the application is a typical multi-tier cloud-
based architecture, with every component running on cloud-based
nodes. User interface (UI) runs on web nodes. Business logic (BL)
runs on compute nodes and data storage (DS) runs on data nodes.
A node might be a part of physical server (e.g., a virtual machine),
a physical server or even the cluster of servers but we use node as
a generic terms because the underlying resources are not relevant.

Figure 2. The survey application architecture.

2.2 Research Challenges
Let us imagine customers using the survey application continues to
grow. The number of surveys with large number of respondents is
increasing, leading to sudden spikes in application usage. In order
to handle such bursts in usage, the resources for such application
needs to be dynamically adjusted, see a number of possible
configurations in Figure 2. In cloud platforms, auto-scaling enables
the implementation of application’s elasticity policy [10]. Similar
to an adaptation policy [16], which governs how/when software
components are added and removed from a software system, an
elasticity policy [17] governs how/when resources are added and
removed from a cloud-based application. In rule-based
mechanisms, when the value of certain metrics, such as CPU
utilization, exceed a predefined threshold, more nodes are added
until the values have dropped to an acceptable level.

Formally, each auto-scaling rule involves several parameters,
which are defined by the stakeholders [18]: 1) an upper threshold
for a metric and a time value ℎ , , , 2) a lower threshold
for a metric and a time value ℎ , , , 3) the number of VMs
to be allocated or released 4) two cool-down periods , .
More specifically, the rules have the following structure:

 “IF ≥ ℎ , 	for seconds THEN
= # + AND cool down for s”

(2.1)

 “IF ≤ ℎ , 	for seconds THEN
= # − AND cool down for s”

(2.2)

If the value measured for metric reaches a threshold ℎ , 	 for
 seconds, nodes will be added. For instance, if the average

CPU utilization of current VMs in the business logic tier is above
85% for 600 seconds, 2 new VMs will be added in that tier.

Threshold-based rules can control the amount of resources by
performing auto-scaling actions to adapt resources based on the
demand. This has been shown in previous research (e.g., [19] [20]
[7] [21]), on public clouds (e.g., Amazon EC2 [22], Microsoft
Azure [23]), open cloud providers (OpenNabula [22]) and even
third party services (e.g., RightScale [22]). Although this approach
is popular, there are several challenges associated with this:

• Challenge 1. Parameters’ value prediction ahead of time. The
process of acquiring and releasing resources is not instant.
First, the auto-scaling controller needs to invoke the cloud
platform to initiate the acquisition process. The VMs will then
be spun up and then the application needs to be deployed on
the new machines. During this time, which may take on
average 10 minutes [24], the cloud application is vulnerable to
workload increase and as a result provide user dissatisfaction.
Section 5.1 describes our approach to predict inputs.

• Challenge 2. Qualitative specification of thresholds. The
specification of the rules requires careful setting out of the
lower and upper thresholds. This requires deep knowledge
about the behavior of the system over time [18]. Therefore, the
overall accuracy of the policies remains subjective, which
makes the resource provisioning prone to uncertainty.
Section 4.3 shows our solution to enable qualitative
specification of thresholds.

• Challenge 3. Robust control of uncertainty. The measurement
data corresponds to a distribution of values. For instance, a
probe monitoring the response time of an application hosted
in the cloud may return slightly different value every point in
time. This variation could be associated to the sensory noise
[7]. This results in the oscillations for resource allocations
[18]. Sections 4.3 to 4.6 describe our solution to determine the
required resources under the presence of uncertainty.

2.3 Solution Overview
The problem of application elasticity falls into the category of
autonomic computing [25], where systems make use of autonomic
managers implementing feedback control loops (cf. Figure 1).
Figure 1 gives an overview of the solution space: a scalable cloud-
based application hosted on nodes obtained from a provider based
on a pay-as-you-go lease. In the example in Section 2.1, a cloud-
based application that serves requests from a dynamic set of tenants
and public clients is introduced. Since the users are sensitive to
performance of the application, the owner is presumed to have a
service level objective (SLO) to characterize an acceptable
performance. If an application does not violate SLOs, users have
good experience. The purpose of the “controlled elasticity” is to
grow and shrink resources to meet the SLO efficiently under the
dynamic workload and to minimize the incurred cost. This work
only targets applications that can benefit from such elasticity.

We implemented a controller that runs on behalf of cloud-based
software and drives actuators to acquire/release nodes based on
application status and environmental conditions. In particular, this
paper makes the following contributions:

1. Our approach integrates a time-series technique with a fuzzy
logic controller to realize a hybrid auto-scaler, which we call
RobusT2Scale. This allows us to determine the right capacity
in response to changes. We demonstrate that RobusT2Scale
can handle most well-known change patterns in workload.

2. RobusT2Scale enables qualitative imprecise thresholds (e.g.,
“high”, “low”) for specifying elasticity rules. To the best of
our knowledge, RobusT2Scale is the first auto-scaler to
exhibit such flexibility in rule specification.

3. RobusT2Scale is robust to noisy data, which are collected
based on client-side application-level measurements.

3. BACKGROUND
A type-2 (T2) fuzzy set [26] [27] is an extension of type-1 (T1)
fuzzy set. At a specific value ′ (cf. Figure 3), there is an interval
instead of a crisp value. This leads to the definition of a three
dimensional membership function (MF), a T2 MF, which
characterizes a T2 fuzzy set (FS) (Definition 1). Note all definitions
in this paper are standard definitions in fuzzy theory that we
borrowed from literature (e.g., [28] [29] [30]), also compare to
Figure 3 for a better understanding of what definitions convey.

Definition 1. A T2 FS, , is characterized by a T2 MF ,

, , , ∀ ∈ , ∀

∈ , , 1 	 (3.1)

When these values have the same weight, it leads to definition of
an interval type-2 fuzzy set (IT2 FS), defined in Definition 2.

Definition 2. If , 1, is an interval T2 FS (IT2 FS).

Therefore, the MF of IT2 FS can be fully specified by the two T1
MFs (cf. Definition 4). The area between the two MFs (the grey
region in Figure 3) characterizes the uncertainty.

Definition 3. The uncertainty in the membership function of an
IT2-FS, , is called footprint of uncertainty (FOU) of , i.e.,

∈

, |∀ ∈ , ∀	 ∈ (3.2)

Definition 4. The upper membership function (UMF) and
lower membership function (LMF) of are two T1-MFs

, respectively that bound the FOU.

Figure 3. A type-2 fuzzy set based possibility distribution.

Definition 5. An embedded fuzzy set is a T1 FS that is
located inside the FOU of .

4. ELASTICITY REASONING USING

TYPE-2 FUZZY LOGIC SYSTEMS
In this section, we develop an IT2 FLS to enable the elasticity
reasoning in cloud-based software, in which elasticity rules are
based on a data collection from a group of technical stakeholders.
As we discussed in Section 2.3, we chose to develop a fuzzy
controller to give the stakeholders of cloud-based applications more
flexibility to accommodate their thoughts in a qualitative manner.

4.1 Autonomous Control of Elasticity
As depicted in Figure 1, a cloud-based elastic system comprises
three parts: 1) a cloud-based application, 2) a cloud platform, 3) an
elasticity controller. The elasticity controller 1) Monitor the
application and the environment. 2) Analyze the data and detect any
violations. 3) Plan corrective actions in terms of adding resources
or removing existing unutilized ones. 4) Execute the plan according
to a specific platform. 5) Use or update a shared Knowledge. This
is known as MAPE-K [25] loop named after its phases.
The monitoring is usually facilitated through the cloud platforms or
third party solutions. For example, Amazon CloudWatch [22]
provides monitoring for applications run on Amazon’s cloud
platform. The execution is facilitated through the cloud platform
APIs and runtime configurability of the application. The elasticity
reasoning process, , is typically consisted of two steps: (i)
processing a time-series runtime data collected through monitoring
(see Section 5.1), and (ii) decision-making about the elasticity
action (see Section 4.2). Once a specific situation ∈ is detected,
the reasoning mechanism chooses an action ∈ delineated as:

 :	 → (4.1)

The notion of the reasoner here generalizes a broader domain of
analysis and planning altogether.

4.2 Overview of Elasticity Reasoning
The elasticity reasoning process, discussed in Section 4.1, is
realized in this work using IT2-FLS. Figure 4 shows an elastic
system within which the reasoning process is replaced with an IT2-
FLS. The reference model that we borrowed is FORMS [31]. In this
model, the base-level cloud-based software is under the control of
meta-level auto-scaler. In this paper, we exemplify a SaaS (see
Section 2.1), which is scaled by RobusT2Scale. In the meta-level,
we realized the IBM MAPE-K [25]. Users use the functionalities
via different devices, stakeholders specify policies and cloud
platforms facilitate resource provisioning. In the remainder, we
describe a method for designing the elasticity reasoning that
operates at the heart of elasticity mechanism.

Figure 4. Overview of RobusT2Scale.

4.3 Extracting Elasticity Knowledge
In FLSs, the rule base and the membership functions associated
with the variables in the rules are designed either by data collection
from system behavior or by human experience [32]. In this work,
human expertise have been considered to design the fuzzy sets and
rules of the controller responsible for handling the elasticity
reasoning. One of the reasons behind this choice was the inabilities
of data-driven approaches to work under unforeseen situations. The
most prominent capability of IT2-FLSs is the possibility of
systematic collection of knowledge from different experts.

A fuzzy knowledge base (also called rule base as in Figure 4) holds
the knowledge of how to best scale the target system in terms of a
set of linguistic rules (e.g., rule (1.1)). In an if-then rule, the
antecedent is composed of a number of sensed variables, and the
consequent is composed of a number of control variables [29]. To
construct a fuzzy knowledge base, the rules are systematically
obtained from the stakeholders (e.g., architects or administrators).
For instance, administrators employ subconsciously a set of if-then
rules to manage the amount of resources a system needs to maintain
acceptable level of user experience. Here, we present a technique
for extracting elasticity knowledge from a group of experts. We
also used the guidelines in [33] for data extraction.

In the running example, linguistic variable representing the value
of workload were divided into five levels: very low (VL), low (L),
medium (M), high (H), and very high (VH). Similarly, linguistic
variable representing the value of response-time were divided into
five levels: instantaneous (I), fast (F), medium (M), slow (S), very

slow (VS). The consequent was divided into number of nodes that
are added or removed. In this paper, for presentation purposes, we
only consider five possible options from -2 to +2 nodes. To design
the fuzzy rules, we collected the required data by performing a data
collection among 10 experts in cloud computing. We used the
following questions to extract knowledge from experts:

IF (the workload is high, AND the response time is
slow), THEN (add/remove … node instances). (4.2)

These experts were asked to determine a consequent using an
integer from [−2,2]. As we expected, different experts chose
different number of node instances for the same questions. The
questions and responds are summarized in Table 1. In order to
reduce the threat of ordering effects, we reordered the questions.
We also asked the experts to locate an interval for each linguistic
label for workload and response-time in [0,100]. For the labels, we
received 10 different intervals from the 10 experts. We then
calculated the mean and deviations of the two ends in Table 2.

Table 1. Questions for elasticity policies and expert responses.

Table 2. Data regarding workload and response-time labels.

4.4 Defining Membership Functions
Sensors measure the input values to the controller. Their conversion
to fuzzy values is realized by MFs. In this section, we show how to
derive appropriate MFs based on the data extracted in Section 4.3.
We used the guidelines in [34] [35] in order to construct the MFs.

As illustrated in Figure 5 and Figure 6, we used trapezoidal MFs to
represent “Very low” (“Instantaneous”) and “Very high” (“Very
slow”), and triangular MFs to represent “Low” (“Fast”), “Medium”
and “High” (“Slow”). Let and with standard deviations and

 respectively be the mean values of the interval end-points of the
linguistic labels (cf. Table 2). For “Low”, “Medium” and “High”
label, the triangular T1 MF is then constructed by connecting: =

− , 0 , = + /2,1 , = + , 0 . Accordingly, for
“Very low” and “Very high” labels, the associated trapezoidal MFs
can be constructed by connecting: − , 0 , , 1 , , 1 , +
, 0 , see dashed lines in Figure 5 and Figure 6. As it is indicated

by the standard deviations in Table 2, there are uncertainties
associated with the ends and the locations of the MFs. For instance,
one may imagine a triangular T1 MF in: ′ − 0.3 ∗ , 0 , =

+ /2,1 , ′ + 0.4 ∗ , 0 . These uncertainties cannot
be captured by T1 fuzzy MFs. However, in IT2 MFs, the footprint
of uncertainty (i.e., FOU in Definition 3) can be obtained by the
UMF and LMF (Definition 4) for each linguistics. A blurring
parameter 0 ≤ ≤ 1 can determine the FOU (see Table 3).

Table 3. Locations of the main points of IT2 MFs.

Here, we use = 0.5. Parameter = 0 reduces IT2 MFs to a T1
MFs, while parameter = 1 makes FSs with the widest FOUs.

Rule ()

Antecedents Consequent

Workload Response-time -2 -1 0 1 2

1 Very low Instantaneous 7 2 1 0 0 -1.6
2 Very low Fast 5 4 1 0 0 -1.4
3 Very low Medium 0 2 6 2 0 0
4 Very low Slow 0 0 4 6 0 0.6
5 Very low Very slow 0 0 0 6 4 1.4
6 Low Instantaneous 5 3 2 0 0 -1.3
7 Low Fast 2 7 1 0 0 -1.1
8 Low Medium 0 1 5 3 1 0.4
9 Low Slow 0 0 1 8 1 1
10 Low Very slow 0 0 0 4 6 1.6
11 Medium Instantaneous 6 4 0 0 0 -1.6
12 Medium Fast 2 5 3 0 0 -0.9
13 Medium Medium 0 0 5 4 1 0.6
14 Medium Slow 0 0 1 7 2 1.1
15 Medium Very slow 0 0 1 3 6 1.5
16 High Instantaneous 8 2 0 0 0 -1.8
17 High Fast 4 6 0 0 0 -1.4
18 High Medium 0 1 5 3 1 0.4
19 High Slow 0 0 1 7 2 1.1
20 High Very slow 0 0 0 6 4 1.4
21 Very high Instantaneous 9 1 0 0 0 -1.9
22 Very high Fast 3 6 1 0 0 -1.2
23 Very high Medium 0 1 4 4 1 0.5
24 Very high Slow 0 0 1 8 1 1
25 Very high Very slow 0 0 0 4 6 1.6

Linguistic
Means Standard Deviations

Start () End () Start () End (

W
o

r
k

lo
a

d
 Very low 0 27 0 8.23

Low 22 41.5 7.15 7.09
Medium 36.5 64 5.80 3.94

High 61 82.5 4.59 6.77
Very high 78 100 6.32 0

R
es

p
o

n
se

-t
im

e Instantaneous 0 7.2 0 5.20
Fast 6.1 20 4.07 5.27

Medium 18.2 41.5 5.59 8.51
Slow 38.5 63.5 7.09 9.44

Very slow 60 100 7.82 0

 Triangular Trapezoidal
= − 1 + ∗ , 0

= ((+) 2⁄ , 1)
= (+ (1 +) ∗ , 0)

= (− (1 −) ∗ , 0)

= ((+) 2⁄ , 1)

= (+ (1 −) ∗ , 0)

= (− (1 +) ∗ , 0)

= (− , 1)
= (+ , 1)

= (+ (1 +) ∗ , 0)

= (− (1 −) ∗ , 0)

= (+ , 1)

= (− , 1)

= (+ (1 −) ∗ , 0)

Figure 5. IT2 MFs of the workload labels.

Figure 6. IT2 MFs of the response-time labels.

4.5 Basics of the Fuzzy Elasticity Controller
Having constructed the IT2 FLS with the MFs and the set of rules,
the controller can then start controlling the elasticity reasoning on
behalf of stakeholders. The designed controller works as the
following (see Figure 4): (1) the inputs comprising the workload as
well as the response time are first fuzzified. (2) Then the fuzzified
input activates the inference engine to produce output IT2 FSs. (3)
Decisions made by fuzzy inference are in the form of fuzzy values,
which cannot be directly used. The outputs are then processed by a
type-reducer, which combines the output sets and then calculate the
center-of-set (Definition 7). (4) The type reduced FSs are T1 fuzzy
sets that needs to be defuzzified to determine the nodes. (5) It then
fed to the resource allocator to enact the change.

First, we must specify how the numeric inputs ∈ are
converted to fuzzy sets (a process called "fuzzification" [28]) so
that they can be used by the FLS. In this paper, we use singleton:

 = 1 = 								
0 ℎ (4.3)

For defuzzification, we use the notion of centroid [36].

Definition 6. The centroid of a IT2 FS is the union of the
centroids of all its embedded T1 fuzzy sets (Definition 5):

 ≡ = ,
∀

 (4.4)

The type-reducer that we use here is center-of-sets [36].

Definition 7. The center-of-set type reduction is computed as:

= ∑ ×

∑
∈
∈

= [,]
(4.5)

, where ∈ is the firing degree of rule and ∈ is the
centroid of the IT2 FS (cf. Definition 6).

, and , are computed by the KM algorithm [36].

4.6 Elasticity Reasoning as the Key Process
The rules in this work are in the form of multi-input single-output.
Because the preferences of stakeholders may not be similar, many
elasticity rules in the mind of stakeholders may be conflicting, i.e.
rules with the same antecedent but different consequent values. In
this step, rules with the same if part are combined into a single rule.
For each response that we received from the stakeholders, we have:

 : 	 	 	 	 … 	 	 	 , 	 	 	 (4.6)

, where is the index for the responses. In order to combine these
conflicting rules, we used the average of all the responses for each
rule and used this as the centroid of the rule consequent. Note that
the rule consequents are IT2 FSs, however, when the type reduction
in Definition 1 is used, these IT2 FSs are replaced by their
centroids, so we represent them as intervals [,] or crisp values

when = . This leads to rules with the following form:

: IF (the workload () is , AND the response-

time () is), THEN (add/remove instances).
(4.7)

 = ∑ ×
∑ (4.8)

, here 	is the value of associated consequent, i.e., an integer
between [−2,2], and is the weight associated with th
consequent of the th rule (cf. Table 1). Therefore, each (see
Table 1) can be computed with the Equation (4.8). For instance,

, which is associated to rule number 12 is calculated as:

 = 2 × −2 + 5 × −1 + 3 × 0 + 0 × 1 + 0 × 2
2 + 5 + 3 + 0 + 0 = −0.9 (4.9)

In an example, we now discuss the details of the elasticity reasoning
process according to Figure 4. Let us imagine the normalized values
regarding the workload and response-time are = 40 = 50
respectively, see the solid lines in Figure 5 and Figure 6. For =
40, two IT2 FSs regarding the linguistics = and =

 with the degrees [0.3797,0.5954] and [0.3844,0.5434]
are fired. Similarly, for = 50, three IT2 FSs regarding the
linguistics = , = , and = 	 with
the firing degrees [0,0.1749], [0.9377,0.9568] and [0,0.2212] are
fired. Intuitively, the lower and upper values of the intervals can be
computed by finding the y-intercept of the solid lines in the figures
respectively with the LMF and the UMF of the crossed FSs. As a
result, six rules are fired: : , , : , , : , ,	

: , , : , , : , , see Table 1. The firing
intervals are computed using meet operation [27]. For instance, the
firing interval associated to the rule is:

= 	⨂ = 0.3797 × 0.9377 = 0.3560	
= 	⨂ = 0.5954 × 0.9568 = 0.5697

(4.10)

The output can be obtained using the center-of-set (Definition 7):

40,50 = [40,50 , 40,50]	

= [0.9296,1.1809] (4.11)

The defuzzified output can be calculated:

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

gr
ad

e
M

em
be

rs
hi

p
gr

ad
e

VL
L

M

H
VH

I F M S VS

 40,50 = 0.9296 + 1.1809
2 = 1.0553 (4.12)

Similarly, we can compute , for all the possible normalized
values of the input parameters (i.e., ∈ [0,100], ∈ [0,100]).
The resulting hyper-surface , is shown in Figure 7. Note
that , ⊆ [−2,2] for any , .

Figure 7. Output of the IT2 FLS for elasticity reasoning.

4.7 The Benefits of Using Type-2 over Type-1
As discussed in Section 4.1, elasticity reasoning is the process of
finding a solution for a decision-making problem - choosing an
appropriate number of nodes given environmental and system state.
As shown in Section 4.6, the output of IT2 FLS is a boundary rather
than a hard-threshold as in T1 FLS [29] [35]. Therefore, the
decision for nodes can be more flexible providing a boundary. For
instance, if the system requires a high performance, the decision
can be made based on the upper boundary, i.e. 40,50 = 1.1809 .
As a result, two VMs will be added. If the system requires saving
cost, the decision can be made based on the lower boundary, i.e.

40,50 = 0.9296 . No new nodes would then be added. In
addition, if the system needs to achieve a compromise in user
experience and cost, the decision can be made based on any value
in the boundary. This flexibility and the ability to handle conflicting
rules (see Section 4.6) are the key benefits of T2 FLSs over T1
counterparts that motivated us to choose it for elasticity reasoning.

5. REALIZING THE AUTO-SCALER
In Section 4, we described the details of the elasticity reasoning that
acts as the heart of RobusT2Scale for making the scaling decisions.
In this section, we describe the other modules involves in
RobusT2Scale as depicted in Figure 4. First, we describe the
prediction module for reasoning input preparations, and then we
detail the resource allocator as the actuator of RobusT2Scale.
Finally, we describe the details of the integration of these modules.

5.1 Parameter Prediction and Smoothing
In historical data corresponding to workload measurements, there
are typically high variability, which makes resource allocation at
small time-scales unfeasible. As we discussed in Section 2.2 (see
challenge 1), the startup time of the VMs are not instant and among
the cloud providers, it varies between 60 to 600 seconds [24] but
the workload contains many short duration spikes. On the other
hand, the elasticity is only effective if node instances can be ready
to use when they are needed to serve the workload. Instead of
making decisions based on short duration spikes, the elasticity
controller needs to identify workload variations that will persist for
long enough periods in order to launch or terminate VMs. The term
workload refers to a list of user requests and their arrival timestamp.

When an application starts running, a time-series forecasting
technique is employed to estimate the workload at some future

point in time. We use double exponential smoothing [37] because
this model has the capability to smooth the inputs and predict the
trend in historical data. This model takes the number of requests for
application services at runtime and predict the future workload. On
the other hand, for estimating response-time, we use single
exponential smoothing [37] because for the oscillatory response-
time, we do not need to predict the trend but a smoothed value.

Both the exponential smoothing techniques weight the history of
the workload data by a series of exponentially decreasing factors.
An exponential factor close to one gives a large weight to the first
samples and rapidly makes old samples negligible. The specific
formula for single exponential smoothing is:

 = + 1 − , > 0; = (5.1)

Correspondingly, the formula for double exponential smoothing is:

= + 1− +

= (−) + (1 −) ; 0 < , , < 1
(5.2)

, where the raw data sequence and is the output of the
techniques and , , are the smoothing factors. Note the number
of data points here depends on the control loop intervals and the
frequency of the performance counters retrievals in each loop.

5.2 Resource Allocation
The resource allocator (See Figure 4) communicates with the cloud
management services to acquire or release node instances as
indicated by the controller (see Sections 4.6). However, the when
and how to apply the changes in the resources is determined by the
resource allocator. In order to regulate such policies, we
implemented specific features in resource allocator module.

In some cloud providers, the cost for VMs are calculated on hourly

basis (e.g., Amazon EC2) and in some providers it is proportional
to the exact time between acquiring the machine to the time it has
been released (e.g., Microsoft Azure). For this reason, we
implemented two different termination policies. One policy
terminates a node instance as soon as it has been decided and the
other only terminates a node instance if it has been running just
below a multiple number of hours. In the meantime, these instances
contribute to processing the workload, thus providing some extra
capacity to handle short load spikes at no extra cost. However, in
this work, we evaluated RobusT2Scale on Azure, thus we only
make use of the first policy. Note Azure offers both platform as a
service (PaaS) as well as infrastructure as a service (IaaS), but in
the context of this work, we only employed PaaS services.

Another feature is the cool-down period (also called inertia or calm
period [18]). The cool-down period prevents the resource allocator
of making any changes to the system deployment on the cloud for
certain amount of time. The motivation behind this is to avoid
frequent creation and releasing of instances when the workload
exhibits high variability, as this would have a negative impact on
the cost [18]. We implemented this feature by putting a delay in
each control loop. As a result, the reactive controller is only able to
change the deployment if sufficient time between scaling action has
passed and if the new instances’ state is ‘operational’.

We also enforce some constraints to the number of node instances
in order to avoid excessive cost or to jeopardize user experience.
Note the constraint rules always takes precedence over reactive
rules that are used in the fuzzy elasticity reasoner, to ensure that the
reactive rules cannot continue to add new node instances above a
maximum threshold or remove instances below a minimum level.

V

M
s

ad
de

d/
re

m
ov

ed

5.3 Implementation Details of RobusT2Scale
We have described the behavior of the three key components of the
RobusT2Scale, i.e., fuzzy elasticity controller, workload predictor
and cloud resource allocator, in detail in Section 4 and 5.1 and 5.2
respectively. We now present the details of the coordination
between these components to realize RobusT2Scale as depicted in
Figure 8. We implemented the predictor and elasticity reasoner in
Matlab 2013a and the resource allocator in C#.NET. We also
integrated all modules with a coordinator controller. Since in the
resource allocator and the coordinator we make use of RESTful
API calls to the cloud platform, the choice of programming
language is just a matter of preference.

Figure 8. Coordination between RobusT2Scale’s components.

As depicted in Figure 8, for collecting the monitoring data, we used
the performance counters in Windows Azure. We configured the
system under test to retrieve the performance counters periodically
each 1000 ms. The predictor then calculates the number of hits and
response-time in each control loop and feed to the elasticity
controller. The elasticity controller then calculate the number of
new nodes and feed it to the resource allocator to decide when and
how to acquire resources. The allocator then sends a REST request
to Windows Azure management fabric. The fabric then changes the
status of the application from ‘running’ to ‘transitioning’ until the
new instances are up and running. However, meanwhile load
balancer can route request to existing nodes. When the deployment
status restores back to ‘running’, the allocator send another request
in the next control loop otherwise new requests will be ignored.

6. EXPERIMENTAL EVALUATIONS
In this section, we present a number of experimental studies on
RobusT2Scale to answer the following research questions:
- RQ1. What is the accuracy of the employed estimation techniques

and does the error of estimation vary across different workloads?
- RQ2. Is it effective for guaranteeing SLAs and minimizing cost?
- RQ3. Is it robust against measurement noises?

Figure 9. Overview of our experimental setting.

6.1 Experimental Setting
The architecture of our experimental setup is depicted in Figure 9.
The client side is JMeter, which generate workload based on our
predefined patterns. In our case, the server side is the System Under
Test (SUT), which is a three tier cloud-based application controlled
by RobusT2Scale. Here we defined test cases in which the number
of users and their usage vary according to time-dependent patterns.
A workload generated in this manner hits the SUT and triggers its
controller. The controller ensure that the application remains
elastic. Here we followed the guidelines of cloud testing, e.g. [13].

Typically, scalability is concerned with variances that are large
enough to warrant a scaling action. In this work, we injected
different patterns of workloads, most of which are drawn from real
world workloads (e.g. [38], similar patterns are also used in [39]),
to explore the platform’s elasticity behavior for a range of demand
patterns. In our measurements, we use a set of six different
workloads – see Figure 11. Across time, some workloads show
recurring cycles of growth and decrease, such as an hourly news
cycle. Others have a single burst, such as during a special event.
Further, we scale the duration of the traces to 1 hour. We evaluate
RobusT2Scale against the full set of workloads (see Table 5). For
the experiments, we also considered some other treatments. Since
JMeter consumes significant amount of resources, we ran an
instance on a dedicated machine. We ran the SUT on Azure VMs.
VMs were located in the same availability zone in Ireland; see the
deployment details in Table 4.

Table 4. Deployment details of our experimental setting.

6.2 Workload Estimation Accuracy (RQ1)
In order to evaluate the accuracy of the adopted estimation
technique, we simulated different workloads and measured the
error of estimation by root relative squared error (RRSE). Figure
10 shows a sample data and different estimations by changing the
parameters of the model. It is evident that the estimations with
different parameters results in different level of prediction
accuracy. For this sample, the estimation with 0.27, = 0.94 is
more accurate than the other two estimations.

Figure 10. Predicted vs. actual workload.

We also evaluated the accuracy of the prediction techniques for
different workload patterns. As it is depicted in Figure 11, for
different patterns (i.e., big spike, etc.), the estimator shows different
estimation errors. For three patterns, i.e., ‘slowly varying’, ‘dual
phase’, ‘steep tri phase’, the relative error and variations are quite
low. The ‘large variation’ shows the large mean of error and ‘big
spike’ and ‘quickly varying’ demonstrate the largest variations.

Experimental

Deployment Units

Clients Elastic Application Elasticity Controller

JMeter UI BL (Scalable) DS RobusT2Scale

Specification
Desktop, Intel Core i7
CPU, 2.8GHz, 12 GB

1 Small (A1)
Azure VM

2-6 Small (A1)
Azure VMs

1 Small (A1)
Azure VM

1 Small (A1) Azure
VM

0 10 20 30 40 50 60 70 80 90 100
-500

0

500

1000

1500

2000

Time (seconds)

N
u
m

b
e
r
o
f

h
it
s

Original data

betta=0.10, gamma=0.94, rmse=308.1565, rrse=0.79703

betta=0.27, gamma=0.94, rmse=209.7852, rrse=0.54504

betta=0.80, gamma=0.94, rmse=272.6285, rrse=0.70858

Figure 11. Estimation errors w.r.t. workload patterns.

6.3 Effectiveness of RobusT2Scale (RQ2)
As a benchmark for measuring the effectiveness of RobusT2Scale,
we consider (1) 95th percentile of response time (), which
represent our SLA and (2) the weighted average number of node
instances acquired over time (), which determines the cost of
ownership. These criteria cover the three main aspects of elasticity
comprising scalability, cost and time efficiency. The goal is to meet
the response time SLA, here we assume 600 , while
keeping as low as possible. The drop in represents the
potential capacity to be released back to the cloud to save on costs.
To evaluate the effectiveness of RobusT2Scale, we compared our
approach with two provisioning policies: over-provisioning (here
is 6) and under-provisioning (here is 2). A summary of the results
is shown in Table 5. In comparison with over provisioning policy,
RobusT2Scale has acquired less nodes, saving as much as a factor
of two in cost. In comparison with under provisioning policy,
RobusT2Scale is significantly better in terms of , giving a
cloud-based application a better chance to guarantee the SLAs.

Table 5. Comparison of the effectiveness of RobusT2Scale.

As seen in Table 5, the SUT with RobusT2Scale has not violated
the response time SLA in all patterns of workloads except for the
“big spike”. The SUT with the overprovisioning has satisfied the
SLA for all the patterns, however, by imposing a cost of up to a
double amount (for ‘big spike’, but for the other patterns the
difference is less) of what has been imposed by RobusT2Scale. The
SLA is never met for the SUT with the under provisioning.

6.4 Robustness of RobusT2Scale (RQ3)
In Section 6.2, we showed that the utilized estimation approach, i.e.
double exponential smoothing, contains unavoidable errors. In this
paper, we have claimed that the RobusT2Scale are resilient against
input noises, one of which is the estimation error. In this section,
we provide some experimental evidences to support this claim.

In Section 6.2, we observed that the worst estimation error happens
for ‘large variation’ and ‘quickly varying’ patterns and is less than
10% of the actual workload. As a result, we injected a white noise
to the input measurement data (i.e., , see Section 4.6) with an

amplitude of 10%. We ran RMSE measurements for each levels of
blurring, and for each measurement, we used 10,000 data items as
input. Figure 12 shows RMSE values for the four different blurring
values. We observed two interesting points. First, the error of
control output produced by the elasticity controller is less than 0.1
for the blurring levels. Second, the error of control output is
decreasing when we designed the controller with a higher blurring.
As we discussed in Section 4.4, a higher blurring leads to a bigger
FOU, which is a representative for the supporting levels of
uncertainty (see Definition 3). Therefore, designer should make a
choice in terms of the level of uncertainty that the controller can
support. Note in some circumstances an overly wide FOU results
in a performance degradations [33]. These observations provide
enough evidence that RobusT2Scale is robust against input noise.
This achievement is one of the important benefits of using IT2 FLS
rather than T1 FLS for elasticity reasoning in cloud-based software,
where uncertainty in terms of noise and events are prevalent [13].

Figure 12. RMSEs of the controller with different blurrings.

6.5 Discussions and Threats to Validity
In the remainder of this section, we discuss the results, limitations,
threats to validity of the findings, some insights and future work.

Independent elasticity controller. RobusT2Scale is independent
from both the underlying cloud platform and specific cloud-based
application (see Section 5.3), and allows cloud service providers
(e.g., SaaS application owners) to easily integrate it with their own
application. RobusT2Scale can be deployed either in the cloud,
preferably in a separate node from the application, or on premise.
Note that in this paper, we described a methodology to build such
a controller based on data collection from users.

Few design parameters. The design of RobusT2Scale includes only
few parameters: blurring parameter (see Section 4.4), smoothing
factors , , (see Section 5.1), and cool-down period (see
Section 5.2). Fortunately, all of the parameters only need to be
determined once for an application to integrate with RobusT2Scale.

No need for offline training. The prediction techniques can be used
without offline training because it takes advantage of online
incremental learning. This reduces the upfront efforts required for
configuring RobusT2Scale for building elastic applications. This
along with the fact that RobusT2Scale requires few design
parameters increases the chance for the adoption of this approach.

Rule explosion and computational complexity. Rule explosion is
not a relevant concern in our approach to elasticity due to limited
number of reasoning parameters as opposed to rule-based reasoning
in self-adaptive software [16]. However, IT2 FLSs are effective in
elimination of the rule explosion in comparison with T1 FLSs [29].
More importantly, the ability of the FOU to represent uncertainties
enables the designer to cover input-output domains with fewer FSs
leading to the reduction of the rules comparing with T1 FLS [33].

Limited workload patterns. In Section 6, we considered six
different workload patterns. However, in production environments,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Big spike Dual phase Large variations Quickly varying Slowly varying Steep tri phase

SUT Criteria
Big

spike

Dual

phase

Large

variations

Quickly

varying

Slowly

varying

Steep tri

phase

with

RobusT2Scale
95% 973ms 537ms 509ms 451ms 423ms 498ms

 3.2 3.8 5.1 5.3 3.7 3.9
with

overprovisioning
95% 354ms 411ms 395ms 446ms 371ms 491ms

 6 6 6 6 6 6
with under

provisioning
95% 1465ms 1832ms 1789ms 1594ms 1898ms 2194ms

 2 2 2 2 2 2

0

0.02

0.04

0.06

0.08

0.1

alpha=0.1 alpha=0.5 alpha=0.9 alpha=1.0

0 50 100
0

500

1000

1500

0 50 100
100

200

300

400

500

0 50 100
0

1000

2000

0 50 100
0

200

400

600
0 50 100

0

500

1000

0 50 100
0

500

1000

R
oo

t r
el

at
iv

e
sq

ua
re

d
er

ro
r

R
M

SE

workload may change in many unpredictable ways [40]. Evaluating
RobusT2Scale under all scenarios is beyond the scope of this paper.

Evaluations with different application type. Our experimental
evaluation is limited to a multi-tier application. Moreover,
RobusT2Scale assumes that nodes are stateless. Fortunately, such
architectural patterns have been promoted [23].

Evaluations with different cloud providers. Although the fuzzy
reasoner and the adopted prediction techniques are independent of
specific cloud providers, we tested RobusT2Scale only on
Microsoft Azure. As a future work, we plan to extend our resource
allocator with platforms such as Amazon EC2 and OpenStack [22].

Concentrating only on business tier. In this paper, we only focus
on the business tier of the cloud-based application. However, we
cannot claim that RobusT2Scale can be readily adopted to auto-
scale the other tiers. Although in [18], authors argue that the auto-
scaling approaches can be used in other tiers, in [8], authors argue
that there are some very specific issues related to specific tiers.

7. RELATED WORK
In general, auto-scaling approaches can be characterized into three
categories. Reactive techniques adjust the required resources based
on demand. Proactive techniques anticipate the amount of
resources. Hybrid approaches blends reactive and proactive
techniques. For a more detail review, refer to [22] [41] [18] [12].

Reactive auto-scaling. Reactive techniques are popular in research
and practice [41]. For instance, commercial solutions offered by
several public cloud providers (e.g., Amazon and Microsoft), cloud
platforms (e.g., OpenNabula) as well as third party tools (e.g.,
RightScale) utilize reactive rule-based methods. Threshold-based
rules are popular (e.g., [19] [20] [7] [21]). However, it requires an
extra effort for specifying metrics and parameters. Among the
parameters, the upper and lower thresholds are the key. A
complement to reactive rules is RightScale's auto-scaling algorithm
[22]. It is a voting process whereby, if a majority of the nodes
agrees that they need to scale up or down, that action is agreed. The
main drawback of reactive approaches is their inability to anticipate
the unexpected changes. This usually incurs higher cost. As
opposed to existing work, in our approach, the thresholds can be set
qualitatively. As a result, stakeholders do not need to set precise
thresholds, which needs deep knowledge of the workload patterns
and cause oscillations in the resources if specified incorrectly [18].

Proactive auto-scaling. In turn, the proactive approaches uses
analytical models to anticipate workloads. Among others, time-
series analysis, queuing models, machine learning, and control
theory are popular techniques. Time-series analysis (e.g., [11])
predict future values of a parameter, based on its historical data.
However, the prediction accuracy highly depends on the number
observations and the interval [18]. Reinforcement learning (e.g.,
[42]) enable learning elasticity policies from observations.
However, it requires long learning, which is only applicable for
stable workloads. Queuing theory (e.g., [43]) imposes restrictive
assumptions and as they are intended for stationary scenarios, the
models need to be recalculated when the conditions change [18].
Finally, controllers (e.g., [8] [7]) are able to maintain the output at
the desired level, depending on the input. However, setting a wrong
gain parameter may cause oscillations. In some other approaches
like [39], future workload prediction is relegated due to dynamics.

Hybrid auto-scaling. Hybrid approaches combine reactive and
proactive techniques to determine when to acquire resources over
short and long time scales respectively (e.g., [43]). In this category,
some approaches use predictive techniques for releasing resources
and reactive techniques for acquiring resources (e.g., [44]).

RobusT2Scale is considered as a hybrid approach as we combine
both proactive time-series analysis and reactive fuzzy controller.

Vertical vs. horizontal scaling. In practice, existing solutions for
auto-scaling enable horizontal scaling, i.e., acquiring or realizing
node instances, while vertical scaling, i.e., increasing computing
power of node instances, is not considered. It has been attributed to
impossibility of changing the size of nodes at the hypervisors level
[22] [9]. RobusT2Scale enables horizontal scaling.

White box vs. black box approaches. Unlike our approach, some
elasticity controllers are based on black-box surrogate models of
the system that evolve over time, see [12]. These controllers use
machine learning to predict system performance under different
usage. In the training phase, the controller correlates the
configurations with monitoring variables, and builds a model for
each dimension of the system’s behavior. In the control phase, the
controller uses these models to manage resources while
continuously learning from system behavior.

Fuzzy control solutions. Xu et al. [45] proposed an elasticity
controller that applies fuzzy logic techniques to learn the
relationship between workload, resources and performance and
then manages the resource allocation based on the learned fuzzy
rules. Similar type of fuzzy controller has been offered in [46] with
adaptive output amplification and flexible rule selection. However,
both approaches are based on T1 FLS and have not addressed the
challenges posed by uncertainty.

Control-theoretical solutions. There are some approaches based on
control theory (e.g., [19] [47]) that can enhance cloud-based
applications with the capability to adjust their resources based on
changing environmental conditions. These approaches typically
synthesize an elasticity controller to automatically decide when to
activate some optional features. The benefit of such approach is that
they allow guaranteeing some specific desirable properties.
Although such controllers are resilient against stationary noises but
they are proved to be robust against non-stationary uncertainties.

Concluding remarks. The literature on auto-scaling is abundant.
However, our approach has three distinguishing benefits. Firstly, it
enables qualitative rule specification through a well-defined
methodology. It can also handle measurement noises and robustly
adjust resources. Additionally, conflicting rules can be handled
within our approach. This can prepare tradeoffs to decide an
appropriate action. To the best of our knowledge, this is the first
work based on type-2 fuzzy controllers for the problem of dynamic
resource provisioning in the cloud.

8. CONCLUSION AND FUTURE WORK
This paper tackled the problem of dynamic allocation of resources
for cloud-based applications facing unpredictable workloads to
decrease cost of ownership without violating SLAs. We proposed
a hybrid elasticity controller to adjust the required resources when
the application is running. The notable novelty of our approach is
to enable qualitative specification of elasticity rules. A secondary
benefit is that the elasticity controller can handle conflicting rules.
The proposed controller is also robust against noisy measurements.
We envision some future work as 1) integration of RobusT2Scale
with comprehensive set of platforms, 2) systematic comparison
with other auto-scaling approaches in controlled experiments.

9. ACKNOWLEDGMENTS
The research work described in this paper was partly supported by
the Irish Centre for Cloud Computing and Commerce (IC4), a
national technology center funded by Enterprise Ireland, and, in
part, by Science Foundation Ireland grant 10/CE/I1855 to Lero.

10. REFERENCES
[1] M. Armbrust and e. al., "A view of cloud computing,"

Communications of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

[2] P. Jamshidi, A. Ahmad and C. Pahl, "Cloud Migration Research:
A Systematic Review," IEEE Transactions on Cloud Computing,

2013.

[3] N. R. Herbst, S. Kounev and R. Reussner, "Elasticity in Cloud
Computing: What It Is, and What It Is Not," in ICAC, 2013.

[4] S. Islam, K. Lee, A. Fekete and A. Liu, "How a consumer can
measure elasticity for cloud platforms," in ICPE, 2012.

[5] "Animoto's Facebook Scale-Up," [Online]. Available:
http://tinyurl.com/qdk7om4.

[6] G. Linden, "Make Data Useful," Amazon, 2009.

[7] H. C. Lim, S. Babu, J. S. Chase and S. S. Parekh, "Automated
control in cloud computing: challenges and opportunities," in
ACDC, 2009.

[8] H. C. Lim, S. Babu and J. S. Chase, "Automated control for
elastic storage," in ICAC, 2010.

[9] L. M. Vaquero, L. Rodero-Merino and R. Buyya, "Dynamically
scaling applications in the cloud," Computer Communication

Review, 2011.

[10] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna and G. Iszlai,
"Optimal autoscaling in a IaaS cloud," in ICAC, 2012.

[11] Z. Shen, S. Subbiah, X. Gu and J. Wilkes, "Cloudscale: elastic
resource scaling for multi-tenant cloud systems," in SCC, 2011.

[12] A. Gambi, G. Toffetti and M. Pezzè, "Assurance of self-adaptive
controllers for the cloud," in Assurances for Self-Adaptive

Systems, 2013.

[13] A. Gambi, W. Hummer, H.-L. Truong and S. Dustdar, "Testing
Elastic Computing Systems," Internet Computing, 2013.

[14] N. N. Karnik, J. M. Mendel and Q. Liang, "Type-2 fuzzy logic
systems," IEEE Transactions on Fuzzy Systems,, vol. 7, no. 6,
pp. 643-658, 1999.

[15] D. Betts, Developing Multi-tenant Applications for the Cloud,
Microsoft, 2012.

[16] D. Garlan and e. al., "Rainbow: Architecture-based self-
adaptation with reusable infrastructure," Computer, vol. 37, no.
10, pp. 46-54, 2004.

[17] H. Ghanbari, B. Simmons, M. Litoiu and G. Iszlai, "Exploring
alternative approaches to implement an elasticity policy," in
ICCC, 2011.

[18] T. Lorido-Botrán, J. Miguel-Alonso and J. A. Lozano, "Auto-
scaling Techniques for Elastic Applications in Cloud
Environments," University of Basque Country, Tech. Rep. EHU-
KAT-IK-09-12, 2012.

[19] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant and I. Truck,
"From data center resource allocation to control theory and
back," in ICCC, 2010.

[20] M. Maurer, I. Brandic and R. Sakellariou, "Enacting SLAs in
clouds using rules," in Euro-Par, 2011.

[21] P. Marshall, K. Keahey and T. Freeman, "Elastic site: Using
clouds to elastically extend site resources," in ICCCGC, 2010.

[22] E. Caron, L. Rodero-Merino, F. Desprez and A. Muresan, "Auto-
scaling, load balancing and monitoring in commercial and open-
source clouds," 2012.

[23] B. Wilder, Cloud Architecture Patterns: Using Microsoft Azure,
O'Reilly, 2012.

[24] M. Mao and M. Humphrey, "A performance study on the vm
startup time in the cloud," in CLOUD, 2012.

[25] J. O. Kephart and D. M. Chess, "The vision of autonomic
computing," Computer, vol. 36, no. 1, p. 41–50, 2003.

[26] L. A. Zadeh, "The concept of a linguistic variable and its
application to approximate reasoning—I," IS, 1975.

[27] J. M. Mendel, "Type-2 fuzzy sets and systems: an overview,"
Computational Intelligence Magazine, vol. 2, no. 1, 2007.

[28] J. M. Mendel, R. I. John and F. Liu, "Interval type-2 fuzzy logic
systems made simple," IEEE TFS, 2006.

[29] D. Wu, "On the fundamental differences between Type-1 and
interval Type-2 fuzzy logic controllers," IEEE Transactions on

Fuzzy Systems, 2012.

[30] J. M. Mendel, H. Hagras and R. I. John, "Standard background
material about interval type-2 fuzzy logic systems that can be
used by all authors," CIS, 2010.

[31] D. Weyns, S. Malek and J. Andersson, "FORMS: a formal
reference model for self-adaptation," in ICAC, 2010.

[32] Q. Liang and J. M. Mendel, "Interval type-2 fuzzy logic systems:
theory and design," IEEE TFS, vol. 8, no. 5, pp. 535-550, 2000.

[33] J. M. Mendel, Uncertain rule-based fuzzy logic system:
introduction and new directions, Prentice Hall, 2001.

[34] J. M. Mendel, "Computing with words, when words can mean
different things to different people," in ICSC Sympusium Fuzzy

Logic Application, 1999.

[35] Q. Liang, N. N. Karnik and J. M. Mendel, "Connection
admission control in ATM networks using survey-based type-2
fuzzy logic systems," Transactions on Applications and Systems,

Man, and Cybernetics, 2000.

[36] N. N. Karnik and J. M. Mendel, "Centroid of a type-2 fuzzy set,"
Information Sciences, vol. 132, no. 1, pp. 195-220, 2001.

[37] P. S. Kalekar, "Time series forecasting using Holt-Winters
exponential smoothing," Kanwal Rekhi School of Information
Technology, 2004.

[38] "Anonymized access logs," National Laboratory for Applied
Network Research, 2001. [Online]. Available:
ftp://ftp.ircache.net/Traces/.

[39] A. Gandhi, M. Harchol and R. Raghunathan, "Autoscale:
Dynamic, robust capacity management for multi-tier data
centers," TOCS, 2012.

[40] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan and a. D. A.
Patterson, "Characterizing, modeling, and generating workload
spikes for stateful services," in SCC, 2010.

[41] G. Galante and L. C. E. d. Bona, "A survey on cloud computing
elasticity," in UCC, 2012.

[42] E. Barrett, E. Howley and J. Duggan, "Applying reinforcement
learning towards automating resource allocation and application
scalability in the cloud," Concurrency and Computation:

Practice and Experience, 2012.

[43] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal and T. Wood,
"Agile dynamic provisioning of multi-tier internet applications,"
ACM TAAS, 2008.

[44] A. Ali-Eldin, J. Tordsson and E. Elmroth, "An adaptive hybrid
elasticity controller for cloud infrastructures," in NOMS, 2012.

[45] J. Xu, M. Zhao, J. Fortes, R. Carpenter and M. Yousif, "On the
use of fuzzy modeling in virtualized data center management,"
in ICAC, 2007.

[46] J. Rao, Y. Wei, J. Gong and C. Z. Xu, "DynaQoS: model-free
self-tuning fuzzy control of virtualized resources for QoS
provisioning," in IWQoS, 2011.

[47] C. Klein, M. Maggio, K. E. Årzén and F. Hernández-Rodriguez,
"Brownout: Building More Robust Cloud Applications," in
ICSE, 2014.

View publication statsView publication stats

https://www.researchgate.net/publication/266657635

