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ABSTRACT 
Cloud elasticity provides a software system with the ability to 
maintain optimal user experience by automatically acquiring and 
releasing resources, while paying only for what has been 
consumed. The mechanism for automatically adding or removing 
resources on the fly is referred to as auto-scaling. The state-of-the-
practice with respect to auto-scaling involves specifying threshold-
based rules to implement elasticity policies for cloud-based 
applications. However, there are several shortcomings regarding 
this approach. Firstly, the elasticity rules must be specified 
precisely by quantitative values, which requires deep knowledge 
and expertise. Furthermore, existing approaches do not explicitly 
deal with uncertainty in cloud-based software, where noise and 
unexpected events are common. This paper exploits fuzzy logic to 
enable qualitative specification of elasticity rules for cloud-based 
software. In addition, this paper discusses a control theoretical 
approach using type-2 fuzzy logic systems to reason about 
elasticity under uncertainties. We conduct several experiments to 
demonstrate that cloud-based software enhanced with such 
elasticity controller can robustly handle unexpected spikes in the 
workload and provide acceptable user experience. This translates 
into increased profit for the cloud application owner. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Reliability and availability; 

General Terms 
Management, Measurement, Performance, Experimentation. 

Keywords 
Cloud Computing, Auto-scaling, Elasticity, Uncertainty. 

1. INTRODUCTION 
Cloud computing platforms are widely used by major IT companies 
and startups to remain competitive [1]. Even traditional enterprises 
are attempting to exploit the benefits of cloud platforms [1]. The 
appealing characteristics that cloud platforms can provide include 
high-availability and low cost of maintenance [2]. However, the 
main selling point of cloud platforms is elasticity - i.e., the 
customers should only pay for what they have utilized [3]. 
Elasticity is the core design principle of elastic software that convey 
three aspects [3] [4]: (1) scalability, the ability of the system to 
sustain workload fluctuations, (2) cost efficiency, acquiring only the 
required resources by releasing unutilized ones, (3) time efficiency, 
acquiring and releasing resources as soon as a request is made.  

 
Figure 1. High-level view of elastic software. 

Web-based software systems frequently experience load spikes. 
For example, one recent Facebook application experienced a 10 
times increase in the number of users from 25,000 to 250,000 in 
just three days with up to 20,000 new registrations per hour in peak 
times [5]. Such typically business-critical systems must satisfy 
certain level of service level agreements (SLA), e.g., upper bounds 
on user perceived response time. Otherwise, unexpected loads 
cause a poor service level that frustrate end users. Amazon reported 
a loss of 245 million dollars for an increase of 100ms in response 
time [6]. To avoid such a situation and maintain service quality, the 
automated management of such applications is essential [7]. As a 
result, there has been a research and practice interest in automated 
resource provisioning for such applications [8].  

The challenge of building elastic systems involves adjustment of 
resources along with load variations without the need for human 
interventions. Automated cloud-based scalability (i.e., auto-
scaling) is one of the most recent advancements for dynamic 
resource provisioning [9] [10] [11]. To auto-scale an application, 
the state-of-the-practice involves specifying threshold-based rules 
to implement elasticity policies for cloud applications [10]. There 
remained several challenges that we intend to address in this work. 
Firstly, elasticity rules must be specified precisely by quantitative 
values. This requires expertise, which makes the accuracy of the 
policy subjective and prone to uncertainty. Furthermore, existing 
approaches make impractical assumptions about elastic systems 
and their environment. More specifically, they assume that 
stakeholders have a unified opinion about the thresholds in the 
rules. More importantly, they do not explicitly consider noises in 
the input data. However, these assumptions are barely valid in the 
cloud, where uncertainty in terms of noise and dynamic changes in 
the environment are frequent [12] [13]. The approaches that rely on 
such assumptions are not dependable [12] [13] [9]. 

The particular contribution of this paper is to develop an elasticity 
controller, called RobusT2Scale, which utilizes fuzzy logic to 
enable qualitative specifications of elasticity rules. Fuzzy logic 
systems (FLSs) [14] are known to enable manipulation of linguistic 
rules. This paper proposes an elasticity reasoning (encompasses 
analysis and planning in Figure 1) using type-2 FLSs [14]. 
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Elasticity rule uncertainties occur due to the use of imprecise 
qualitative values. For example, a typical elasticity rule might be:  

 “IF the workload is high, AND response-time is slow, 
THEN add two more VMs to the existing resources”  

(1.1) 

In this situation, a type-2 FLS can provide an effective mechanism 
to represent the uncertainties in these italicized linguistic labels and 
the numerical manipulation of these rule to plan the scalability. We 
demonstrate that RobusT2Scale, via the fuzzy elasticity reasoning, 
is robust to several forms of changes in the environment, including 
unpredictable changes in requests and unpredictable degradations 
in response-time. A number of experimental results demonstrate 
the effectiveness of this approach in handling measurement noises 
when dealing with unexpected bursts in the requests. We 
demonstrate that our approach significantly outperforms two other 
provisioning policies, meeting response time obligations while 
greatly reducing the number of cloud resources. 

The remainder of this paper is structured as follows. Section 2 
motivates the research and provides an overview of the proposed 
solution. Section 3 reviews the background on mathematical 
foundations. Section 4 presents the proposed approach, including 
the details of the fuzzy elasticity controller. Section 5 reports the 
implementation details of RobusT2Scale followed by experimental 
evaluations in Section 6. The paper concludes with a review of 
related work and opportunities for future research. 

2. CHALLENGES AND APPROACH 
In this section, we use a running example to highlight the research 
challenges and to exemplify the proposed solution.  

2.1 Motivating Example 
Let us consider a multi-tenant software as a service (SaaS) that 
enables customers (tenants) to design, publish and collect the 
results of surveys [15]. Customers can manage their surveys by 
creating a subscription with the service and determining a location 
for their account and surveys. Public people can participate in the 
survey by completing the designed survey provided by the survey 
creator through a URL. Surveys usually run for a short period but 
may attract huge number of respondents. Because the nature of 
survey application includes sudden bursts in demand, it must be 
able to quickly grow or contract its deployment infrastructure.  

To achieve the scalability requirements, the survey application is 
implemented as a cloud-based application. Figure 2 illustrates the 
high-level architectural view of the survey application. The 
architectural style of the application is a typical multi-tier cloud-
based architecture, with every component running on cloud-based 
nodes. User interface (UI) runs on web nodes. Business logic (BL) 
runs on compute nodes and data storage (DS) runs on data nodes. 
A node might be a part of physical server (e.g., a virtual machine), 
a physical server or even the cluster of servers but we use node as 
a generic terms because the underlying resources are not relevant.   

 
Figure 2. The survey application architecture. 

2.2 Research Challenges 
Let us imagine customers using the survey application continues to 
grow. The number of surveys with large number of respondents is 
increasing, leading to sudden spikes in application usage. In order 
to handle such bursts in usage, the resources for such application 
needs to be dynamically adjusted, see a number of possible 
configurations in Figure 2. In cloud platforms, auto-scaling enables 
the implementation of application’s elasticity policy [10]. Similar 
to an adaptation policy [16], which governs how/when software 
components are added and removed from a software system, an 
elasticity policy [17] governs how/when resources are added and 
removed from a cloud-based application. In rule-based 
mechanisms, when the value of certain metrics, such as CPU 
utilization, exceed a predefined threshold, more nodes are added 
until the values have dropped to an acceptable level. 

Formally, each auto-scaling rule involves several parameters, 
which are defined by the stakeholders [18]: 1) an upper threshold 
for a metric  and a time value ℎ , , , 2) a lower threshold 
for a metric  and a time value ℎ , , , 3) the number of VMs 
to be allocated or released  4) two cool-down periods , . 
More specifically, the rules have the following structure: 

 “IF ≥ ℎ , 	for  seconds THEN 
# = # +  AND cool down for  s” 

(2.1) 

 “IF ≤ ℎ , 	for  seconds THEN 
# = # −  AND cool down for  s” 

(2.2) 

If the value measured for metric  reaches a threshold ℎ , 	 for 
 seconds,  nodes will be added. For instance, if the average 

CPU utilization of current VMs in the business logic tier is above 
85% for 600 seconds, 2 new VMs will be added in that tier. 

Threshold-based rules can control the amount of resources by 
performing auto-scaling actions to adapt resources based on the 
demand. This has been shown in previous research (e.g., [19] [20] 
[7] [21]), on public clouds (e.g., Amazon EC2 [22], Microsoft 
Azure [23]), open cloud providers (OpenNabula [22]) and even 
third party services (e.g., RightScale [22]). Although this approach 
is popular, there are several challenges associated with this: 

• Challenge 1. Parameters’ value prediction ahead of time. The 
process of acquiring and releasing resources is not instant. 
First, the auto-scaling controller needs to invoke the cloud 
platform to initiate the acquisition process. The VMs will then 
be spun up and then the application needs to be deployed on 
the new machines. During this time, which may take on 
average 10 minutes [24], the cloud application is vulnerable to 
workload increase and as a result provide user dissatisfaction. 
Section 5.1 describes our approach to predict inputs. 

• Challenge 2. Qualitative specification of thresholds. The 
specification of the rules requires careful setting out of the 
lower and upper thresholds. This requires deep knowledge 
about the behavior of the system over time [18]. Therefore, the 
overall accuracy of the policies remains subjective, which 
makes the resource provisioning prone to uncertainty. 
Section 4.3 shows our solution to enable qualitative 
specification of thresholds. 

• Challenge 3. Robust control of uncertainty. The measurement 
data corresponds to a distribution of values. For instance, a 
probe monitoring the response time of an application hosted 
in the cloud may return slightly different value every point in 
time. This variation could be associated to the sensory noise 
[7]. This results in the oscillations for resource allocations 
[18]. Sections 4.3 to 4.6 describe our solution to determine the 
required resources under the presence of uncertainty. 



2.3 Solution Overview 
The problem of application elasticity falls into the category of 
autonomic computing [25], where systems make use of autonomic 
managers implementing feedback control loops (cf. Figure 1). 
Figure 1 gives an overview of the solution space: a scalable cloud-
based application hosted on nodes obtained from a provider based 
on a pay-as-you-go lease. In the example in Section 2.1, a cloud-
based application that serves requests from a dynamic set of tenants 
and public clients is introduced. Since the users are sensitive to 
performance of the application, the owner is presumed to have a 
service level objective (SLO) to characterize an acceptable 
performance. If an application does not violate SLOs, users have 
good experience. The purpose of the “controlled elasticity” is to 
grow and shrink resources to meet the SLO efficiently under the 
dynamic workload and to minimize the incurred cost. This work 
only targets applications that can benefit from such elasticity.  

We implemented a controller that runs on behalf of cloud-based 
software and drives actuators to acquire/release nodes based on 
application status and environmental conditions. In particular, this 
paper makes the following contributions: 

1. Our approach integrates a time-series technique with a fuzzy 
logic controller to realize a hybrid auto-scaler, which we call 
RobusT2Scale. This allows us to determine the right capacity 
in response to changes. We demonstrate that RobusT2Scale 
can handle most well-known change patterns in workload.  

2. RobusT2Scale enables qualitative imprecise thresholds (e.g., 
“high”, “low”) for specifying elasticity rules. To the best of 
our knowledge, RobusT2Scale is the first auto-scaler to 
exhibit such flexibility in rule specification. 

3. RobusT2Scale is robust to noisy data, which are collected 
based on client-side application-level measurements. 

3. BACKGROUND 
A type-2 (T2) fuzzy set [26] [27] is an extension of type-1 (T1) 
fuzzy set. At a specific value ′ (cf. Figure 3), there is an interval 
instead of a crisp value. This leads to the definition of a three 
dimensional membership function (MF), a T2 MF, which 
characterizes a T2 fuzzy set (FS) (Definition 1). Note all definitions 
in this paper are standard definitions in fuzzy theory that we 
borrowed from literature (e.g., [28] [29] [30]), also compare to 
Figure 3 for a better understanding of what definitions convey.  

Definition 1. A T2 FS, , is characterized by a T2 MF ,  

 
, , , ∀ ∈ , ∀

∈ , , 1 	 (3.1) 

 

When these values have the same weight, it leads to definition of 
an interval type-2 fuzzy set (IT2 FS), defined in Definition 2. 

Definition 2. If , 1,  is an interval T2 FS (IT2 FS). 

Therefore, the MF of IT2 FS can be fully specified by the two T1 
MFs (cf. Definition 4). The area between the two MFs (the grey 
region in Figure 3) characterizes the uncertainty. 

Definition 3. The uncertainty in the membership function of an 
IT2-FS, , is called footprint of uncertainty (FOU) of , i.e., 

 
∈

, |∀ ∈ , ∀	 ∈  (3.2) 

 

Definition 4. The upper membership function (UMF) and 
lower membership function (LMF) of  are two T1-MFs 

,  respectively that bound the FOU. 

 
Figure 3. A type-2 fuzzy set based possibility distribution. 

Definition 5. An embedded fuzzy set  is a T1 FS that is 
located inside the FOU of . 

4. ELASTICITY REASONING USING 

TYPE-2 FUZZY LOGIC SYSTEMS 
In this section, we develop an IT2 FLS to enable the elasticity 
reasoning in cloud-based software, in which elasticity rules are 
based on a data collection from a group of technical stakeholders. 
As we discussed in Section 2.3, we chose to develop a fuzzy 
controller to give the stakeholders of cloud-based applications more 
flexibility to accommodate their thoughts in a qualitative manner.  

4.1 Autonomous Control of Elasticity 
As depicted in Figure 1, a cloud-based elastic system comprises 
three parts: 1) a cloud-based application, 2) a cloud platform, 3) an 
elasticity controller. The elasticity controller 1) Monitor the 
application and the environment. 2) Analyze the data and detect any 
violations. 3) Plan corrective actions in terms of adding resources 
or removing existing unutilized ones. 4) Execute the plan according 
to a specific platform. 5) Use or update a shared Knowledge. This 
is known as MAPE-K [25] loop named after its phases. 
The monitoring is usually facilitated through the cloud platforms or 
third party solutions. For example, Amazon CloudWatch [22] 
provides monitoring for applications run on Amazon’s cloud 
platform. The execution is facilitated through the cloud platform 
APIs and runtime configurability of the application. The elasticity 
reasoning process, , is typically consisted of two steps: (i) 
processing a time-series runtime data collected through monitoring 
(see Section 5.1), and (ii) decision-making about the elasticity 
action (see Section 4.2). Once a specific situation ∈  is detected, 
the reasoning mechanism chooses an action ∈  delineated as: 

 :	 →  (4.1) 

The notion of the reasoner here generalizes a broader domain of 
analysis and planning altogether.  

4.2 Overview of Elasticity Reasoning 
The elasticity reasoning process, discussed in Section 4.1, is 
realized in this work using IT2-FLS. Figure 4 shows an elastic 
system within which the reasoning process is replaced with an IT2-
FLS. The reference model that we borrowed is FORMS [31]. In this 
model, the base-level cloud-based software is under the control of 
meta-level auto-scaler. In this paper, we exemplify a SaaS (see 
Section 2.1), which is scaled by RobusT2Scale. In the meta-level, 
we realized the IBM MAPE-K [25]. Users use the functionalities 
via different devices, stakeholders specify policies and cloud 
platforms facilitate resource provisioning. In the remainder, we 
describe a method for designing the elasticity reasoning that 
operates at the heart of elasticity mechanism. 



 
Figure 4. Overview of RobusT2Scale. 

4.3 Extracting Elasticity Knowledge 
In FLSs, the rule base and the membership functions associated 
with the variables in the rules are designed either by data collection 
from system behavior or by human experience [32]. In this work, 
human expertise have been considered to design the fuzzy sets and 
rules of the controller responsible for handling the elasticity 
reasoning. One of the reasons behind this choice was the inabilities 
of data-driven approaches to work under unforeseen situations. The 
most prominent capability of IT2-FLSs is the possibility of 
systematic collection of knowledge from different experts.  

A fuzzy knowledge base (also called rule base as in Figure 4) holds 
the knowledge of how to best scale the target system in terms of a 
set of linguistic rules (e.g., rule (1.1)). In an if-then rule, the 
antecedent is composed of a number of sensed variables, and the 
consequent is composed of a number of control variables [29]. To 
construct a fuzzy knowledge base, the rules are systematically 
obtained from the stakeholders (e.g., architects or administrators). 
For instance, administrators employ subconsciously a set of if-then 
rules to manage the amount of resources a system needs to maintain 
acceptable level of user experience. Here, we present a technique 
for extracting elasticity knowledge from a group of experts. We 
also used the guidelines in [33] for data extraction. 

In the running example, linguistic variable representing the value 
of workload were divided into five levels: very low (VL), low (L), 
medium (M), high (H), and very high (VH). Similarly, linguistic 
variable representing the value of response-time were divided into 
five levels: instantaneous (I), fast (F), medium (M), slow (S), very 

slow (VS). The consequent was divided into number of nodes that 
are added or removed. In this paper, for presentation purposes, we 
only consider five possible options from -2 to +2 nodes. To design 
the fuzzy rules, we collected the required data by performing a data 
collection among 10 experts in cloud computing. We used the 
following questions to extract knowledge from experts: 

 
IF (the workload is high, AND the response time is 
slow), THEN (add/remove … node instances). (4.2) 

These experts were asked to determine a consequent using an 
integer from [−2,2]. As we expected, different experts chose 
different number of node instances for the same questions. The 
questions and responds are summarized in Table 1. In order to 
reduce the threat of ordering effects, we reordered the questions. 
We also asked the experts to locate an interval for each linguistic 
label for workload and response-time in [0,100]. For the labels, we 
received 10 different intervals from the 10 experts. We then 
calculated the mean and deviations of the two ends in Table 2. 

Table 1. Questions for elasticity policies and expert responses. 

 
Table 2. Data regarding workload and response-time labels. 

 

4.4 Defining Membership Functions 
Sensors measure the input values to the controller. Their conversion 
to fuzzy values is realized by MFs. In this section, we show how to 
derive appropriate MFs based on the data extracted in Section 4.3. 
We used the guidelines in [34] [35] in order to construct the MFs. 

As illustrated in Figure 5 and Figure 6, we used trapezoidal MFs to 
represent “Very low” (“Instantaneous”) and “Very high” (“Very 
slow”), and triangular MFs to represent “Low” (“Fast”), “Medium” 
and “High” (“Slow”). Let  and  with standard deviations  and 

 respectively be the mean values of the interval end-points of the 
linguistic labels (cf. Table 2). For “Low”, “Medium” and “High” 
label, the triangular T1 MF is then constructed by connecting: =

− , 0 , = + /2,1 , = + , 0 . Accordingly, for 
“Very low” and “Very high” labels, the associated trapezoidal MFs 
can be constructed by connecting: − , 0 , , 1 , , 1 , +
, 0 , see dashed lines in Figure 5 and Figure 6. As it is indicated 

by the standard deviations in Table 2, there are uncertainties 
associated with the ends and the locations of the MFs. For instance, 
one may imagine a triangular T1 MF in: ′ − 0.3 ∗ , 0 , =

+ /2,1 , ′ + 0.4 ∗ , 0 . These uncertainties cannot 
be captured by T1 fuzzy MFs. However, in IT2 MFs, the footprint 
of uncertainty (i.e., FOU in Definition 3) can be obtained by the 
UMF and LMF (Definition 4) for each linguistics. A blurring 
parameter 0 ≤ ≤ 1 can determine the FOU (see Table 3).  

Table 3. Locations of the main points of IT2 MFs. 

 
Here, we use = 0.5. Parameter = 0 reduces IT2 MFs to a T1 
MFs, while parameter = 1 makes FSs with the widest FOUs.  

Rule ( ) 

Antecedents Consequent 

 
Workload Response-time -2 -1 0 1 2 

1 Very low Instantaneous 7 2 1 0 0 -1.6 
2 Very low Fast 5 4 1 0 0 -1.4 
3 Very low Medium 0 2 6 2 0 0 
4 Very low Slow 0 0 4 6 0 0.6 
5 Very low Very slow 0 0 0 6 4 1.4 
6 Low Instantaneous 5 3 2 0 0 -1.3 
7 Low Fast 2 7 1 0 0 -1.1 
8 Low Medium 0 1 5 3 1 0.4 
9 Low Slow 0 0 1 8 1 1 
10 Low Very slow 0 0 0 4 6 1.6 
11 Medium Instantaneous 6 4 0 0 0 -1.6 
12 Medium Fast 2 5 3 0 0 -0.9 
13 Medium Medium 0 0 5 4 1 0.6 
14 Medium Slow 0 0 1 7 2 1.1 
15 Medium Very slow 0 0 1 3 6 1.5 
16 High Instantaneous 8 2 0 0 0 -1.8 
17 High Fast 4 6 0 0 0 -1.4 
18 High Medium 0 1 5 3 1 0.4 
19 High Slow 0 0 1 7 2 1.1 
20 High Very slow 0 0 0 6 4 1.4 
21 Very high Instantaneous 9 1 0 0 0 -1.9 
22 Very high Fast 3 6 1 0 0 -1.2 
23 Very high Medium 0 1 4 4 1 0.5 
24 Very high Slow 0 0 1 8 1 1 
25 Very high Very slow 0 0 0 4 6 1.6 

Linguistic 
Means Standard Deviations 

Start ( ) End ( ) Start ( ) End (  

W
o

r
k

lo
a

d
 Very low 0 27 0 8.23 

Low 22 41.5 7.15 7.09 
Medium 36.5 64 5.80 3.94 

High 61 82.5 4.59 6.77 
Very high 78 100 6.32 0 

R
es

p
o

n
se

-t
im

e Instantaneous 0 7.2 0 5.20 
Fast 6.1 20 4.07 5.27 

Medium 18.2 41.5 5.59 8.51 
Slow 38.5 63.5 7.09 9.44 

Very slow 60 100 7.82 0 
 

 Triangular Trapezoidal 
= − 1 + ∗ , 0  

= (( + ) 2⁄ , 1) 
= ( + (1 + ) ∗ , 0)  

= ( − (1 − ) ∗ , 0)  

= (( + ) 2⁄ , 1) 

= ( + (1 − ) ∗ , 0) 

= ( − (1 + ) ∗ , 0)  

= ( − , 1) 
= ( + , 1)  

= ( + (1 + ) ∗ , 0)  

= ( − (1 − ) ∗ , 0)  

= ( + , 1) 

= ( − , 1)  

= ( + (1 − ) ∗ , 0) 



 
Figure 5. IT2 MFs of the workload labels. 

 
Figure 6. IT2 MFs of the response-time labels. 

4.5 Basics of the Fuzzy Elasticity Controller 
Having constructed the IT2 FLS with the MFs and the set of rules, 
the controller can then start controlling the elasticity reasoning on 
behalf of stakeholders. The designed controller works as the 
following (see Figure 4): (1) the inputs comprising the workload as 
well as the response time are first fuzzified. (2) Then the fuzzified 
input activates the inference engine to produce output IT2 FSs. (3)
Decisions made by fuzzy inference are in the form of fuzzy values, 
which cannot be directly used. The outputs are then processed by a 
type-reducer, which combines the output sets and then calculate the 
center-of-set (Definition 7). (4) The type reduced FSs are T1 fuzzy 
sets that needs to be defuzzified to determine the nodes. (5) It then 
fed to the resource allocator to enact the change.  

First, we must specify how the numeric inputs ∈  are 
converted to fuzzy sets (a process called "fuzzification" [28]) so 
that they can be used by the FLS. In this paper, we use singleton: 

 = 1 = 								
0 ℎ  (4.3) 

For defuzzification, we use the notion of centroid [36].  

Definition 6. The centroid of a IT2 FS  is the union of the 
centroids of all its embedded T1 fuzzy sets  (Definition 5): 

 ≡ = ,
∀

 (4.4) 

 

The type-reducer that we use here is center-of-sets [36].  

Definition 7. The center-of-set type reduction is computed as: 

 
= ∑ ×

∑
∈
∈

= [ , ] 
(4.5) 

, where ∈  is the firing degree of rule  and ∈  is the 
centroid of the IT2 FS  (cf. Definition 6). 

,  and ,  are computed by the KM algorithm [36].  

4.6 Elasticity Reasoning as the Key Process 
The rules in this work are in the form of multi-input single-output. 
Because the preferences of stakeholders may not be similar, many 
elasticity rules in the mind of stakeholders may be conflicting, i.e. 
rules with the same antecedent but different consequent values. In 
this step, rules with the same if part are combined into a single rule. 
For each response that we received from the stakeholders, we have: 

 : 	 	 	 	 … 	 	 	 , 	 	 	  (4.6) 

, where  is the index for the responses. In order to combine these 
conflicting rules, we used the average of all the responses for each 
rule and used this as the centroid of the rule consequent. Note that 
the rule consequents are IT2 FSs, however, when the type reduction 
in Definition 1 is used, these IT2 FSs are replaced by their 
centroids, so we represent them as intervals [ , ] or crisp values 

when = . This leads to rules with the following form: 

 
: IF (the workload ( ) is , AND the response-

time ( ) is ), THEN (add/remove  instances). 
(4.7) 

 = ∑ ×
∑  (4.8) 

, here 	is the value of associated consequent, i.e., an integer 
between [−2,2], and  is the weight associated with th 
consequent of the th rule (cf. Table 1). Therefore, each  (see 
Table 1) can be computed with the Equation (4.8). For instance, 

, which is associated to rule number 12 is calculated as: 

 = 2 × −2 + 5 × −1 + 3 × 0 + 0 × 1 + 0 × 2
2 + 5 + 3 + 0 + 0 = −0.9 (4.9) 

In an example, we now discuss the details of the elasticity reasoning 
process according to Figure 4. Let us imagine the normalized values 
regarding the workload and response-time are = 40 = 50 
respectively, see the solid lines in Figure 5 and Figure 6. For =
40, two IT2 FSs regarding the linguistics =  and =

 with the degrees [0.3797,0.5954] and [0.3844,0.5434] 
are fired. Similarly, for = 50, three IT2 FSs regarding the 
linguistics = , = , and = 	  with 
the firing degrees [0,0.1749], [0.9377,0.9568] and [0,0.2212] are 
fired. Intuitively, the lower and upper values of the intervals can be 
computed by finding the y-intercept of the solid lines in the figures 
respectively with the LMF and the UMF of the crossed FSs. As a 
result, six rules are fired: : , , : , , : , ,	

: , , : , , : , , see Table 1. The firing 
intervals are computed using meet operation [27]. For instance, the 
firing interval associated to the rule  is: 

 
= 	⨂ = 0.3797 × 0.9377 = 0.3560	
= 	⨂ = 0.5954 × 0.9568 = 0.5697 

(4.10) 

The output can be obtained using the center-of-set (Definition 7): 

 
40,50 = [ 40,50 , 40,50 ]	

= [0.9296,1.1809] (4.11) 

The defuzzified output can be calculated: 
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 40,50 = 0.9296 + 1.1809
2 = 1.0553 (4.12) 

Similarly, we can compute ,  for all the possible normalized 
values of the input parameters (i.e., ∈ [0,100], ∈ [0,100]). 
The resulting hyper-surface ,  is shown in Figure 7. Note 
that , ⊆ [−2,2] for any , . 

 
Figure 7. Output of the IT2 FLS for elasticity reasoning. 

4.7 The Benefits of Using Type-2 over Type-1 
As discussed in Section 4.1, elasticity reasoning is the process of 
finding a solution for a decision-making problem - choosing an 
appropriate number of nodes given environmental and system state. 
As shown in Section 4.6, the output of IT2 FLS is a boundary rather 
than a hard-threshold as in T1 FLS [29] [35]. Therefore, the 
decision for nodes can be more flexible providing a boundary. For 
instance, if the system requires a high performance, the decision 
can be made based on the upper boundary, i.e. 40,50 = 1.1809 . 
As a result, two VMs will be added. If the system requires saving 
cost, the decision can be made based on the lower boundary, i.e. 

40,50 = 0.9296 . No new nodes would then be added. In 
addition, if the system needs to achieve a compromise in user 
experience and cost, the decision can be made based on any value 
in the boundary. This flexibility and the ability to handle conflicting 
rules (see Section 4.6) are the key benefits of T2 FLSs over T1 
counterparts that motivated us to choose it for elasticity reasoning.  

5. REALIZING THE AUTO-SCALER 
In Section 4, we described the details of the elasticity reasoning that 
acts as the heart of RobusT2Scale for making the scaling decisions. 
In this section, we describe the other modules involves in 
RobusT2Scale as depicted in Figure 4. First, we describe the 
prediction module for reasoning input preparations, and then we 
detail the resource allocator as the actuator of RobusT2Scale. 
Finally, we describe the details of the integration of these modules. 

5.1 Parameter Prediction and Smoothing 
In historical data corresponding to workload measurements, there 
are typically high variability, which makes resource allocation at 
small time-scales unfeasible. As we discussed in Section 2.2 (see 
challenge 1), the startup time of the VMs are not instant and among 
the cloud providers, it varies between 60 to 600 seconds [24] but 
the workload contains many short duration spikes. On the other 
hand, the elasticity is only effective if node instances can be ready 
to use when they are needed to serve the workload. Instead of 
making decisions based on short duration spikes, the elasticity 
controller needs to identify workload variations that will persist for 
long enough periods in order to launch or terminate VMs. The term 
workload refers to a list of user requests and their arrival timestamp. 

When an application starts running, a time-series forecasting 
technique is employed to estimate the workload at some future 

point in time. We use double exponential smoothing [37] because 
this model has the capability to smooth the inputs and predict the 
trend in historical data. This model takes the number of requests for 
application services at runtime and predict the future workload. On 
the other hand, for estimating response-time, we use single 
exponential smoothing [37] because for the oscillatory response-
time, we do not need to predict the trend but a smoothed value.  

Both the exponential smoothing techniques weight the history of 
the workload data by a series of exponentially decreasing factors. 
An exponential factor close to one gives a large weight to the first 
samples and rapidly makes old samples negligible. The specific 
formula for single exponential smoothing is: 

 = + 1 − , > 0; =  (5.1) 

Correspondingly, the formula for double exponential smoothing is: 

 
= + 1− +  

= ( − ) + (1 − ) ;  0 < , , < 1 
(5.2) 

, where  the raw data sequence and  is the output of the 
techniques and , ,  are the smoothing factors. Note the number 
of data points here depends on the control loop intervals and the 
frequency of the performance counters retrievals in each loop.  

5.2 Resource Allocation 
The resource allocator (See Figure 4) communicates with the cloud 
management services to acquire or release node instances as 
indicated by the controller (see Sections 4.6). However, the when 
and how to apply the changes in the resources is determined by the 
resource allocator. In order to regulate such policies, we 
implemented specific features in resource allocator module.  

In some cloud providers, the cost for VMs are calculated on hourly 

basis (e.g., Amazon EC2) and in some providers it is proportional 
to the exact time between acquiring the machine to the time it has 
been released (e.g., Microsoft Azure). For this reason, we 
implemented two different termination policies. One policy 
terminates a node instance as soon as it has been decided and the 
other only terminates a node instance if it has been running just 
below a multiple number of hours. In the meantime, these instances 
contribute to processing the workload, thus providing some extra 
capacity to handle short load spikes at no extra cost. However, in 
this work, we evaluated RobusT2Scale on Azure, thus we only 
make use of the first policy. Note Azure offers both platform as a 
service (PaaS) as well as infrastructure as a service (IaaS), but in 
the context of this work, we only employed PaaS services. 

Another feature is the cool-down period (also called inertia or calm 
period [18]). The cool-down period prevents the resource allocator 
of making any changes to the system deployment on the cloud for 
certain amount of time. The motivation behind this is to avoid 
frequent creation and releasing of instances when the workload 
exhibits high variability, as this would have a negative impact on 
the cost [18]. We implemented this feature by putting a delay in 
each control loop. As a result, the reactive controller is only able to 
change the deployment if sufficient time between scaling action has 
passed and if the new instances’ state is ‘operational’.  

We also enforce some constraints to the number of node instances 
in order to avoid excessive cost or to jeopardize user experience. 
Note the constraint rules always takes precedence over reactive 
rules that are used in the fuzzy elasticity reasoner, to ensure that the 
reactive rules cannot continue to add new node instances above a 
maximum threshold or remove instances below a minimum level.   
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5.3 Implementation Details of RobusT2Scale 
We have described the behavior of the three key components of the 
RobusT2Scale, i.e., fuzzy elasticity controller, workload predictor 
and cloud resource allocator, in detail in Section 4 and 5.1 and 5.2 
respectively. We now present the details of the coordination 
between these components to realize RobusT2Scale as depicted in 
Figure 8. We implemented the predictor and elasticity reasoner in 
Matlab 2013a and the resource allocator in C#.NET. We also 
integrated all modules with a coordinator controller. Since in the 
resource allocator and the coordinator we make use of RESTful 
API calls to the cloud platform, the choice of programming 
language is just a matter of preference. 

 
Figure 8. Coordination between RobusT2Scale’s components. 

As depicted in Figure 8, for collecting the monitoring data, we used 
the performance counters in Windows Azure. We configured the 
system under test to retrieve the performance counters periodically 
each 1000 ms. The predictor then calculates the number of hits and 
response-time in each control loop and feed to the elasticity 
controller. The elasticity controller then calculate the number of 
new nodes and feed it to the resource allocator to decide when and 
how to acquire resources. The allocator then sends a REST request 
to Windows Azure management fabric. The fabric then changes the 
status of the application from ‘running’ to ‘transitioning’ until the 
new instances are up and running. However, meanwhile load 
balancer can route request to existing nodes. When the deployment 
status restores back to ‘running’, the allocator send another request 
in the next control loop otherwise new requests will be ignored. 

6. EXPERIMENTAL EVALUATIONS 
In this section, we present a number of experimental studies on 
RobusT2Scale to answer the following research questions: 
- RQ1. What is the accuracy of the employed estimation techniques 

and does the error of estimation vary across different workloads? 
- RQ2. Is it effective for guaranteeing SLAs and minimizing cost? 
- RQ3. Is it robust against measurement noises? 

 
Figure 9. Overview of our experimental setting. 

6.1 Experimental Setting 
The architecture of our experimental setup is depicted in Figure 9. 
The client side is JMeter, which generate workload based on our 
predefined patterns. In our case, the server side is the System Under 
Test (SUT), which is a three tier cloud-based application controlled 
by RobusT2Scale. Here we defined test cases in which the number 
of users and their usage vary according to time-dependent patterns. 
A workload generated in this manner hits the SUT and triggers its 
controller. The controller ensure that the application remains 
elastic. Here we followed the guidelines of cloud testing, e.g. [13]. 

Typically, scalability is concerned with variances that are large 
enough to warrant a scaling action. In this work, we injected 
different patterns of workloads, most of which are drawn from real 
world workloads (e.g. [38], similar patterns are also used in [39]), 
to explore the platform’s elasticity behavior for a range of demand 
patterns. In our measurements, we use a set of six different 
workloads – see Figure 11. Across time, some workloads show 
recurring cycles of growth and decrease, such as an hourly news 
cycle. Others have a single burst, such as during a special event. 
Further, we scale the duration of the traces to 1 hour. We evaluate 
RobusT2Scale against the full set of workloads (see Table 5). For 
the experiments, we also considered some other treatments. Since 
JMeter consumes significant amount of resources, we ran an 
instance on a dedicated machine. We ran the SUT on Azure VMs. 
VMs were located in the same availability zone in Ireland; see the 
deployment details in Table 4.  

Table 4. Deployment details of our experimental setting. 

 

6.2 Workload Estimation Accuracy (RQ1) 
In order to evaluate the accuracy of the adopted estimation 
technique, we simulated different workloads and measured the 
error of estimation by root relative squared error (RRSE). Figure 
10 shows a sample data and different estimations by changing the 
parameters of the model. It is evident that the estimations with 
different parameters results in different level of prediction 
accuracy. For this sample, the estimation with 0.27, = 0.94 is 
more accurate than the other two estimations. 

 
Figure 10.  Predicted vs. actual workload. 

We also evaluated the accuracy of the prediction techniques for 
different workload patterns. As it is depicted in Figure 11, for 
different patterns (i.e., big spike, etc.), the estimator shows different 
estimation errors. For three patterns, i.e., ‘slowly varying’, ‘dual 
phase’, ‘steep tri phase’, the relative error and variations are quite 
low. The ‘large variation’ shows the large mean of error and ‘big 
spike’ and ‘quickly varying’ demonstrate the largest variations. 
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betta=0.10, gamma=0.94, rmse=308.1565, rrse=0.79703

betta=0.27, gamma=0.94, rmse=209.7852, rrse=0.54504

betta=0.80, gamma=0.94, rmse=272.6285, rrse=0.70858



 
Figure 11. Estimation errors w.r.t. workload patterns. 

6.3 Effectiveness of RobusT2Scale (RQ2) 
As a benchmark for measuring the effectiveness of RobusT2Scale, 
we consider (1) 95th percentile of response time ( ), which 
represent our SLA and (2) the weighted average number of node 
instances acquired over time ( ), which determines the cost of 
ownership. These criteria cover the three main aspects of elasticity 
comprising scalability, cost and time efficiency. The goal is to meet 
the response time SLA, here we assume 600 , while 
keeping  as low as possible. The drop in  represents the 
potential capacity to be released back to the cloud to save on costs. 
To evaluate the effectiveness of RobusT2Scale, we compared our 
approach with two provisioning policies: over-provisioning (here 
is 6) and under-provisioning (here is 2). A summary of the results 
is shown in Table 5. In comparison with over provisioning policy, 
RobusT2Scale has acquired less nodes, saving as much as a factor 
of two in cost. In comparison with under provisioning policy, 
RobusT2Scale is significantly better in terms of , giving a 
cloud-based application a better chance to guarantee the SLAs.    

Table 5. Comparison of the effectiveness of RobusT2Scale. 

 
As seen in Table 5, the SUT with RobusT2Scale has not violated 
the response time SLA in all patterns of workloads except for the 
“big spike”. The SUT with the overprovisioning has satisfied the 
SLA for all the patterns, however, by imposing a cost of up to a 
double amount (for ‘big spike’, but for the other patterns the 
difference is less) of what has been imposed by RobusT2Scale. The 
SLA is never met for the SUT with the under provisioning. 

6.4 Robustness of RobusT2Scale (RQ3) 
In Section 6.2, we showed that the utilized estimation approach, i.e. 
double exponential smoothing, contains unavoidable errors. In this 
paper, we have claimed that the RobusT2Scale are resilient against 
input noises, one of which is the estimation error. In this section, 
we provide some experimental evidences to support this claim. 

In Section 6.2, we observed that the worst estimation error happens 
for ‘large variation’ and ‘quickly varying’ patterns and is less than 
10% of the actual workload. As a result, we injected a white noise 
to the input measurement data (i.e., , see Section 4.6) with an 

amplitude of 10%. We ran RMSE measurements for each levels of 
blurring, and for each measurement, we used 10,000 data items as 
input. Figure 12 shows RMSE values for the four different blurring 
values. We observed two interesting points. First, the error of 
control output produced by the elasticity controller is less than 0.1 
for the blurring levels. Second, the error of control output is 
decreasing when we designed the controller with a higher blurring. 
As we discussed in Section 4.4, a higher blurring leads to a bigger 
FOU, which is a representative for the supporting levels of 
uncertainty (see Definition 3). Therefore, designer should make a 
choice in terms of the level of uncertainty that the controller can 
support. Note in some circumstances an overly wide FOU results 
in a performance degradations [33]. These observations provide 
enough evidence that RobusT2Scale is robust against input noise. 
This achievement is one of the important benefits of using IT2 FLS 
rather than T1 FLS for elasticity reasoning in cloud-based software, 
where uncertainty in terms of noise and events are prevalent [13].  

 
Figure 12. RMSEs of the controller with different blurrings. 

6.5 Discussions and Threats to Validity 
In the remainder of this section, we discuss the results, limitations, 
threats to validity of the findings, some insights and future work. 

Independent elasticity controller. RobusT2Scale is independent 
from both the underlying cloud platform and specific cloud-based 
application (see Section 5.3), and allows cloud service providers 
(e.g., SaaS application owners) to easily integrate it with their own 
application. RobusT2Scale can be deployed either in the cloud, 
preferably in a separate node from the application, or on premise. 
Note that in this paper, we described a methodology to build such 
a controller based on data collection from users.  

Few design parameters. The design of RobusT2Scale includes only 
few parameters: blurring parameter  (see Section 4.4), smoothing 
factors , ,  (see Section 5.1), and cool-down period (see 
Section 5.2). Fortunately, all of the parameters only need to be 
determined once for an application to integrate with RobusT2Scale. 

No need for offline training. The prediction techniques can be used 
without offline training because it takes advantage of online 
incremental learning. This reduces the upfront efforts required for 
configuring RobusT2Scale for building elastic applications. This 
along with the fact that RobusT2Scale requires few design 
parameters increases the chance for the adoption of this approach.  

Rule explosion and computational complexity. Rule explosion is 
not a relevant concern in our approach to elasticity due to limited 
number of reasoning parameters as opposed to rule-based reasoning 
in self-adaptive software [16]. However, IT2 FLSs are effective in 
elimination of the rule explosion in comparison with T1 FLSs [29]. 
More importantly, the ability of the FOU to represent uncertainties 
enables the designer to cover input-output domains with fewer FSs 
leading to the reduction of the rules comparing with T1 FLS [33].  

Limited workload patterns. In Section 6, we considered six 
different workload patterns. However, in production environments, 
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workload may change in many unpredictable ways [40]. Evaluating 
RobusT2Scale under all scenarios is beyond the scope of this paper. 

Evaluations with different application type. Our experimental 
evaluation is limited to a multi-tier application. Moreover, 
RobusT2Scale assumes that nodes are stateless. Fortunately, such 
architectural patterns have been promoted [23].  

Evaluations with different cloud providers. Although the fuzzy 
reasoner and the adopted prediction techniques are independent of 
specific cloud providers, we tested RobusT2Scale only on 
Microsoft Azure. As a future work, we plan to extend our resource 
allocator with platforms such as Amazon EC2 and OpenStack [22].  

Concentrating only on business tier. In this paper, we only focus 
on the business tier of the cloud-based application. However, we 
cannot claim that RobusT2Scale can be readily adopted to auto-
scale the other tiers. Although in [18], authors argue that the auto-
scaling approaches can be used in other tiers, in [8], authors argue 
that there are some very specific issues related to specific tiers. 

7. RELATED WORK 
In general, auto-scaling approaches can be characterized into three 
categories. Reactive techniques adjust the required resources based 
on demand. Proactive techniques anticipate the amount of 
resources. Hybrid approaches blends reactive and proactive 
techniques. For a more detail review, refer to [22] [41] [18] [12]. 

Reactive auto-scaling. Reactive techniques are popular in research 
and practice [41]. For instance, commercial solutions offered by 
several public cloud providers (e.g., Amazon and Microsoft), cloud 
platforms (e.g., OpenNabula) as well as third party tools (e.g., 
RightScale) utilize reactive rule-based methods. Threshold-based 
rules are popular (e.g., [19] [20] [7] [21]). However, it requires an 
extra effort for specifying metrics and parameters. Among the 
parameters, the upper and lower thresholds are the key. A 
complement to reactive rules is RightScale's auto-scaling algorithm 
[22]. It is a voting process whereby, if a majority of the nodes 
agrees that they need to scale up or down, that action is agreed. The 
main drawback of reactive approaches is their inability to anticipate 
the unexpected changes. This usually incurs higher cost. As 
opposed to existing work, in our approach, the thresholds can be set 
qualitatively. As a result, stakeholders do not need to set precise 
thresholds, which needs deep knowledge of the workload patterns 
and cause oscillations in the resources if specified incorrectly [18].  

Proactive auto-scaling. In turn, the proactive approaches uses 
analytical models to anticipate workloads. Among others, time-
series analysis, queuing models, machine learning, and control 
theory are popular techniques. Time-series analysis (e.g., [11]) 
predict future values of a parameter, based on its historical data. 
However, the prediction accuracy highly depends on the number 
observations and the interval [18]. Reinforcement learning (e.g., 
[42]) enable learning elasticity policies from observations. 
However, it requires long learning, which is only applicable for 
stable workloads. Queuing theory (e.g., [43]) imposes restrictive 
assumptions and as they are intended for stationary scenarios, the 
models need to be recalculated when the conditions change [18]. 
Finally, controllers (e.g., [8] [7]) are able to maintain the output at 
the desired level, depending on the input. However, setting a wrong 
gain parameter may cause oscillations. In some other approaches 
like [39], future workload prediction is relegated due to dynamics. 

Hybrid auto-scaling. Hybrid approaches combine reactive and 
proactive techniques to determine when to acquire resources over 
short and long time scales respectively (e.g., [43]). In this category, 
some approaches use predictive techniques for releasing resources 
and reactive techniques for acquiring resources (e.g., [44]). 

RobusT2Scale is considered as a hybrid approach as we combine 
both proactive time-series analysis and reactive fuzzy controller. 

Vertical vs. horizontal scaling. In practice, existing solutions for 
auto-scaling enable horizontal scaling, i.e., acquiring or realizing 
node instances, while vertical scaling, i.e., increasing computing 
power of node instances, is not considered. It has been attributed to 
impossibility of changing the size of nodes at the hypervisors level 
[22] [9]. RobusT2Scale enables horizontal scaling. 

White box vs. black box approaches. Unlike our approach, some 
elasticity controllers are based on black-box surrogate models of 
the system that evolve over time, see [12]. These controllers use 
machine learning to predict system performance under different 
usage. In the training phase, the controller correlates the 
configurations with monitoring variables, and builds a model for 
each dimension of the system’s behavior. In the control phase, the 
controller uses these models to manage resources while 
continuously learning from system behavior. 

Fuzzy control solutions. Xu et al. [45] proposed an elasticity 
controller that applies fuzzy logic techniques to learn the 
relationship between workload, resources and performance and 
then manages the resource allocation based on the learned fuzzy 
rules. Similar type of fuzzy controller has been offered in [46] with 
adaptive output amplification and flexible rule selection. However, 
both approaches are based on T1 FLS and have not addressed the 
challenges posed by uncertainty.  

Control-theoretical solutions. There are some approaches based on 
control theory (e.g., [19] [47]) that can enhance cloud-based 
applications with the capability to adjust their resources based on 
changing environmental conditions. These approaches typically 
synthesize an elasticity controller to automatically decide when to 
activate some optional features. The benefit of such approach is that 
they allow guaranteeing some specific desirable properties. 
Although such controllers are resilient against stationary noises but 
they are proved to be robust against non-stationary uncertainties. 

Concluding remarks. The literature on auto-scaling is abundant. 
However, our approach has three distinguishing benefits. Firstly, it 
enables qualitative rule specification through a well-defined 
methodology. It can also handle measurement noises and robustly 
adjust resources. Additionally, conflicting rules can be handled 
within our approach. This can prepare tradeoffs to decide an 
appropriate action. To the best of our knowledge, this is the first 
work based on type-2 fuzzy controllers for the problem of dynamic 
resource provisioning in the cloud.  

8. CONCLUSION AND FUTURE WORK 
This paper tackled the problem of dynamic allocation of resources 
for cloud-based applications facing unpredictable workloads to 
decrease cost of ownership without violating SLAs. We proposed 
a hybrid elasticity controller to adjust the required resources when 
the application is running. The notable novelty of our approach is 
to enable qualitative specification of elasticity rules. A secondary 
benefit is that the elasticity controller can handle conflicting rules. 
The proposed controller is also robust against noisy measurements. 
We envision some future work as 1) integration of RobusT2Scale 
with comprehensive set of platforms, 2) systematic comparison 
with other auto-scaling approaches in controlled experiments.  
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