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Following a control-theoretic approach, the authors 
integrate a fuzzy cloud controller with an online 
learning mechanism to achieve a framework that can 
cope with various sources of uncertainty in the cloud. 

he challenge of building autonomous elastic systems involves the adjust-
ment of computing resources along with load variations without the need 
for human intervention. Automated cloud-based scalability (that is, au-
toscaling) is a recent advancement toward creating full-fledged elastic 
systems.1 Autoscaling an application, typically in commercial solutions, 
involves specifying threshold-based rules to implement elasticity policies 
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for acquiring and releasing cloud resources, such as 
virtual machines (VMs).2,3 For example, a typical 
elasticity rule is

IF average CPU usage > 80% AND average memory 
usage > 50% THEN add 1 VM.

Thus, elasticity rules must be specified with 
precise quantitative thresholds. To determine 
such thresholds (for example, 80 percent), cloud 
users require expertise, which makes the accu-
racy of the elasticity rules subjective and prone 
to uncertainty. Furthermore, existing rule-based 
approaches often make unrealistic assumptions 
about elastic systems. For instance, they assume 
that stakeholders agree on the thresholds in the 
rules. In addition, they don’t explicitly consider 
the presence of measurement inaccuracies in the 
input data.4 However, such uncertainties in the 
cloud environment are frequent.5,6 Sources of 
uncertainty in public cloud platforms include the 
amount of time required to start new VMs, which 
might be several minutes.7 This could cause many 
autoscaling actions to be ineffective since cloud 
applications are exposed to rapidly changing 
workloads. In addition, sharing physical resourc-
es by different cloud users can lead to significant 
performance variations among VMs of equivalent 
capacity, requiring frequent tuning of the applica-
tion’s autoscaling thresholds.8 (See the sidebar for 
a discussion of related work.) 

In this article, we discuss the main sources of 
uncertainty and challenges for elasticity manage-
ment using autonomic cloud controllers. We propose 
a control-theoretic approach5 to implement a moni-
tor, analyze, plan, execute, and knowledge (MAPE-
K) adaptation loop9 by designing a fuzzy logic 
controller. We extend this controller with an on-
line learning loop to enable knowledge evolution in 
MAPE-K, proposing the MAPE-KE loop, which can 
cope with various types of uncertainty while ensur-
ing application performance and cost. 

Uncertainty Sources and Challenges in 
Cloud Elasticity Management
Uncertainty emerges from various sources in elastic 
cloud systems, such as different interpretations and 
decisions in the scaling rule definition, internal de-

cision making processes, or monitoring systems that 
produce partially unreliable and incomplete data. 

Uncertainty in Elasticity Policy Definition
The specification of elasticity policies needs a care-
ful determination of lower and upper thresholds. 
This determination relies on a user’s in-depth knowl-
edge of system behavior over time and how resourc-
es are managed.2 Therefore, the overall accuracy of 
elasticity policies remains subjective, making the 
effect of any scaling rule prone to uncertainty. In 
addition, unpredictable changes in the environment 
or on the application demand might require scal-
ing rules to be continuously reevaluated and tuned, 
which is a nontrivial task even for expert users.

The main challenge here is to enable the speci-
fication of human-intuitive scaling rules to alleviate 
the expertise requirement from cloud users. An even 
bolder challenge is to eliminate human intervention 
altogether by having the controller define and fine-
tune its own scaling rules. 

Uncertainty in Dynamic Resource Provisioning
The process of acquiring and releasing virtual re-
sources in the cloud isn’t instantaneous. The elas-
ticity controller needs to invoke cloud platform 
services to initiate the acquisition process and must 
wait until new VMs have been spun up to allow the 
application components to be deployed on newly 
provisioned resources, leading to a better quality 
of service. During this time, which often lasts sev-
eral minutes,7 the cloud application is vulnerable to 
workload increase. This makes resource provision-
ing also prone to uncertainty. 

The main challenge here is to identify trends 
in the monitoring data to anticipate the need for 
further resources ahead of time. This would let the 
controller acquire resources proactively, expediting 
the execution of autoscaling actions with minimum 
impact on application performance. 

Uncertainty in Monitoring Data
The cloud controller needs to continuously monitor 
the state of the application as well as that of the cloud 
resources in which the application is deployed in order 
to react to possible load variations in a timely manner. 
Monitoring data usually corresponds to a distribution 
of values collected by measurement-specific probes 
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or sensors, which aren’t immune to measurement de-
viations (this can be associated with so-called sensory 
noise1). For instance, a probe monitoring the response 
time of an application hosted in the cloud might re-
turn slightly different values at different times. This 
sensory noise is another source of uncertainty, as it 

results in oscillations that can affect how the control-
ler allocates resources to applications.3

The main challenge here is to build a robust 
controller that sustains sensory noise. This would 
avoid oscillations in resource allocation due to slight 
variations in the monitored values.

RELATED WORK IN CLOUD AUTOSCALING

loud autoscaling is a hot research topic that 
has attracted the interest of researchers from 

both academia and industry.1–3 Here, we consider 
some representative approaches that, like ours, focus 
on elasticity techniques to deal with unpredictable 
workloads and other types of uncertainties when 
dynamically allocating resources to cloud-based ap-
plications. A more comprehensive review of existing 
cloud autoscaling solutions and services is available 
elsewhere.2 

Jia Rao and his colleagues adopt a multilayer 
approach to handle multi-objective requirements 
such as performance and power in dynamic re-
source allocation.4 The lower layer focuses on each 
objective and exploits a fuzzy controller model pro-
posed earlier.5 The higher layer maintains a tradeoff 
between the multiple objectives by coordinating 
their respective controllers. Enda Barrett and his 
colleagues use reinforcement learning (RL) tech-
niques to automanage cloud resources.6 However, 
their solution is model based and only applicable for 
stable workloads, since they must recalculate the 
models when conditions change at runtime. Alessio 
Gambi and his colleagues design cloud controllers 
as black-box surrogate models of the evolving sys-
tem and use machine learning techniques to predict 
system performance under different usage sce-
narios.7 Finally, Harold Lim and his colleagues8 and 
Ahmad Al-Shishtawy and Vladimir Vlassov9 propose 
cloud controllers specifically tailored to cope with 
uncertainties raised at the cloud storage tier, such as 
actuator delays due to the need to rebalance data 
across storage nodes. 

Unlike these approaches, our work offers a seam-
less knowledge evolution-based self-adaptation solu-
tion through fuzzy control and RL, taking the burden 
of defining adaptation rules from the users. 
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A Fuzzy Control-Theoretic Approach for 
Robust Elastic Cloud Systems 
We propose RobusT2Scale, a control-theoretic elas-
ticity management approach based on fuzzy control 
(https://github.com/pooyanjamshidi/RobusT2Scale). 
It enables qualitative specifications of elasticity 
rules but also deals with noise and uncertainty aris-
ing from monitoring in cloud environments.4,5 As 
our experimental results show, RobusT2Scale is ro-
bust to several forms of changes in the environment, 
including unpredictable changes in application de-
mand as well as unpredictable degradations of sys-
tem performance. 

Fuzzy Controller Design
A cloud-based elastic system has three parts: a 
cloud-based application, a cloud platform, and an 
elasticity controller. The elasticity controller imple-
ments the following tasks, which form the MAPE-K 
control loop9:

• monitor the application and its environment 
(that is, in control-theoretic terms disturbances 
such as workload); 

• analyze the input data and detect any possible 
violation; 

• plan corrective actions in terms of adding re-
sources or removing existing unused ones; 

• execute the plan according to a specific plat-
form; and 

• use or update shared knowledge. 

The knowledge base consists of the scaling rules. 
We chose performance (response time) and work-
load (number of accesses) as the two input param-
eters for our controller.

Enabling qualitative specification of scaling rules. 
Our aim is to facilitate qualitative, deliberately impre-
cise specification of scaling rules. For example, an elas-

ticity rule might be expressed qualitatively as follows: 

IF workload is high AND response time is slow 
THEN add 2 VMs

To this end, we rely on fuzzy logic systems (FLSs) 
to enable the manipulation of linguistic rules.10 In 
particular, we use so-called type-2 FLS10 to repre-
sent the uncertainties embedded in these linguistic 
labels, such as high and low, and the numerical ma-
nipulation of these rules to plan the scalability of 
cloud-based applications.

The scaling rule antecedents need to capture 
linguistic impreciseness. The linguistic variable rep-
resenting the value of a workload is divided into five 
levels: very low, low, medium, high, and very high. 
Similarly, the linguistic variable representing the 
response time is also divided into five levels: instan-
taneous, fast, medium, slow, and very slow. The rule 
consequent is divided into the number of VM nodes 
that are added or removed. To design the fuzzy rules, 
we collected the required data by interviewing 10 
cloud experts. We asked these experts to determine 
a consequent using an integer from [–2, 2]. As we 
expected, different experts chose different numbers 
of node instances for the same questions (see Table 
1). Note that the final consequent associated with 
each rule is determined by the weighted average, de-
noted by Cavg, of the consequents given to that rule. 
We also asked the experts to locate an interval for 
each linguistic label for workload and response time 
in the range [0, 100]. For the labels, we received 10 
different intervals. We then calculated the mean 
and deviations of the two ends (see Table 2).

Defining membership functions. The first step to 
fuzzy reasoning is to “fuzzify” the monitoring in-
puts for further processing. We map each linguistic 
concept into a type-2 fuzzy logic membership func-
tion (MF). We use trapezoidal MFs to represent the 

Table 1. Sample of expert responses for elasticity policies.

Rule Antecedents Consequent Weighted average 
(Cavg)

Workload Response time –2 –1 0 1 2

1 Very low Instantaneous 7 2 1 0 0 –1.6

7 Low fast 2 7 1 0 0 –1.1

13 Medium Medium 0 0 5 4 1 0.6

19 High Slow 0 0 1 7 2 11

25 Very high Very slow 0 0 0 4 6 16
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outer concepts very low (instantaneous) and very 
high (very slow), and triangular MFs to represent 
low ( fast), medium, and high (slow). If a and b with 
standard deviations σa and σb, respectively, are the 
mean values of the interval end points of the labels 
(see Table  2), the MFs can be constructed based 
on the overall value distribution for the labels and 
the distribution of the respective means for each 
user. The result is a trapezoidal or triangular type-
2 MF, defined by lower and upper type-1 MFs 
capturing the degree of uncertainty between the 
different interpretations of the different users, as 
Figure 1 shows.

Fuzzy controller workflow. The designed fuzzy con-
troller works as follows (see Figure 2): 

• The monitoring inputs comprising the workload 
(w) as well as the response time (rt) are first 
fuzzified. 

• The fuzzified inputs activate the inference en-
gine to produce type-2 fuzzy sets. 

• Decisions made by fuzzy inference are in the 
form of fuzzy values, which can’t be directly 
used. The fuzzy values are type-reduced, which 
combines the output sets and calculates the set 
center via the MF’s centroid (dotted line). 
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FIGURE 1. The type-2 membership functions (MFs) are derived from the user’s data to define the antecedents of the autoscaling 
rules: (a) workload and (b) response time.

Table 2. Workload and response time quantifications.

Linguistic label Mean Standard deviation

Start (a) End (b) Start (σa) End (σb)

Workload Very low 0 27 0 8.23

Low 22 41.5 7.15 7.09

Medium 36.5 64 5.80 3.94

High 61 82.5 4.59 6.77

Very high 78 100 6.32 0

Response 
time

Instantaneous 0 7.2 0 5.20

Fast 6.1 20 4.07 5.27

Medium 18.2 41.5 5.59 8.51

Slow 38.5 63.5 7.09 9.44

Very slow 60 100 7.82 0
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• The type-reduced fuzzy sets are type-1 fuzzy 
sets that need to be defuzzified to determine 
the scaling actions (sa) in terms of the num-
ber of VM nodes that need to be added or 
removed.

• These are then fed to the resource allocator (ac-
tuator) to enact the change.

Figure 3 illustrates the control surface gener-
ated by the type-2 fuzzy sets computed by applying 
different combinations of workload and response 
time values. This provides a smoother resources 
management under workload and performance vari-
ations compared to type-1 solutions. More details on 
designing the RobusT2Scale fuzzy controller can be 
found elsewhere.4

Enabling workload and performance prediction. To 
allow the controller to anticipate drastic changes in 
demand and application behavior, and also to allevi-
ate the VM provisioning latency, we combined the 
fuzzy control mechanism with exponential smooth-
ing prediction. Exponential smoothing is a tech-
nique applied to time series data, either to produce 
smoothed data for presentation or to make forecasts 
about future system behavior. We use two types for 
workload and performance prediction:

• When an application starts running, we employ 
a time series forecasting technique to estimate 
the future workload. We use double exponential 
smoothing because it can smooth the inputs and 
predict trends in historical data. 

• For estimating response time, we use single ex-
ponential smoothing because, for oscillatory re-
sponse times, we don’t need to predict the trend, 
but only require a smoothed value. 

Both exponential smoothing techniques put a 
weight on the historical data by a series of exponen-
tially decreasing factors, making recently observed 
data more relevant.

Experimental Evaluation
We conducted several experimental studies in the 
Microsoft Azure cloud to evaluate the proposed 
fuzzy elasticity controller in terms of its prediction 
accuracy, its effectiveness in guaranteeing service-
level objectives (SLOs), and its robustness against 
measurement noise. To this end, we developed a 
stateless, dynamically scalable cloud application 
framework based on our fuzzy controller, called 
ElasticBench (https://github.com/pooyanjamshidi/
ElasticBench). ElasticBench includes a workload 

generator to simulate different workload patterns, 
allowing us to test and train the controller before 
actual execution. To build a generic workload gen-
erator, we developed a service to generate Fibonacci 
numbers. A delay is embedded in the process of cal-
culating Fibonacci numbers to simulate a process 
that takes a reasonably long period. Note that calcu-
lating Fibonacci numbers is an O(N) task, making 
it a good candidate for demonstrating different 
application types by embedding different delays, 
since our platform can generate requests with 

Fuzzy logic
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Cloud application
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FIGURE 2. RobusT2Scale realizes the MAPE-K control loop by integrating 
Monitoring, Fuzzy Reasoning and Cloud Actuator components in a 
cohesive architecture. 
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varying patterns (as Figure 4 shows, different values 
of Fibonacci numbers are generated according to the 
level of requests). 

We use two types of Azure service roles to imple-
ment ElasticBench: web role and worker role. Both 
roles run on Azure A1 (small) instances. The requests 
issued from the load generator are received by the 
web role, which puts a message on a task assignment 
queue. The worker role instances continuously check 
the queue, and a background process (to calculate the 
Fibonacci number) is immediately started based on 
the content of the message in the queue. The worker 
roles communicate with the Azure storage service to 
acquire the data required for processing (for example, 
previously calculated Fibonacci numbers). Once the 

controller decides to scale-in (out) the resources, 
ElasticBench increases (decreases) the number of 
worker roles accordingly. Further details about our 
experimental setup are available elsewhere.4

Prediction accuracy. To evaluate the accuracy of 
the controller’s exponential smoothing estimation 
technique, we simulated different workloads and 
measured the error of estimation by root-relative-
squared error (RRSE). 

Figure 4a shows sample data and different 
estimations achieved by changing the model’s pa-
rameters, resulting in different levels of prediction 
accuracy. We also evaluated the prediction tech-
niques’ accuracy for six different workload patterns 
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(big spike, dual phase, large variations, quickly vary-
ing, slowly varying, and steep tri phase), as Figure 
4b shows.4 For three patterns (slowly varying, dual 
phase, and steep tri phase), the relative error and 
variations are quite low. The large variation pattern 
shows the large error mean, while the big spike and 
quickly varying patterns present the largest varia-
tions. Overall, we can conclude that our prediction 
solution is sufficiently accurate for common work-
load situations. Figure 4c shows that the predic-
tion accuracy will change with different values of 
double exponential smoothing hyper-parameters. 
Figure 4d provides a longer-term prediction based 
on the current observation. It shows that double ex-
ponential smoothing detected the ascending work-
load trend correctly.

Effectiveness. Scalability is concerned with varianc-
es that are large enough to warrant a scaling action. 
As a benchmark for measuring the controller’s effec-
tiveness, we consider 

• the 95th percentile of the response time (rt_95), 
which represents our performance SLO; and 

• the weighted average number of node instances 
acquired over time (vm), which determines the 
cost.

These criteria cover the three main aspects of elas-
ticity: scalability, cost, and time efficiency. The goal 
is to meet the response time SLO (we assume rt_95 
= 600 ms) while keeping vm as low as possible. 

Given these criteria and goals, we compared 
our approach with two common basic provisioning 
approaches, overprovisioning (vm = 6) and under-
provisioning (vm = 2), using the same six workload 
patterns we used for the accuracy evaluation. Table 
3 shows the results.

In comparison with the overprovisioning ap-
proach, RobusT2Scale acquired fewer nodes, saving 
a factor of two in cost. As the table shows, RobusT-
2Scale didn’t violate the response time SLO in work-
load patterns except for the big spike pattern. The 
overprovisioning approach satisfied the SLO for all 
patterns, but only by imposing twice the cost for big 
spike (for the other patterns, the difference is less sig-
nificant) compared to RobusT2Scale. The underprovi-
sioning approach never met the SLO for any pattern.

Robustness against noise. RobusT2Scale is resilient 
against different input noise types, one of which is 
the estimation error. 

In our experiments, we observed that the worst 
estimation error happens for large variations and 
quickly varying patterns and is less than 10 per-
cent of the actual workload. As a result, we injected 
white noise to the input measurement data with a 10 
percent amplitude. We ran root-mean-square error 
(RMSE) measurements for each level of blurring. 
For each measurement, we used 10,000 data items 
as input. We observed two interesting points: 

• First, the error of control output produced by 
the elasticity controller is less than 0.1 for the 
blurring levels. 

• Second, the error of control output is decreasing 
for a controller with a higher blurring. A higher 
blurring leads to a larger footprint of uncertainty 
(FOU), which is representative of the supporting 
levels of uncertainty. Since an overly wide FOU 
can result in performance degradations,8 the con-
troller designer should take into account the level 
of uncertainty that the controller can support.

These observations provide evidence that RobusT-
2Scale is also robust against input noise.

Table 3. Comparison of the effectiveness of RobusT2Scale.

Approach Criteria

Workload patterns

Big spike Dual 
phase

Large 
variations

Quickly 
varying

Slowly 
varying

Steep tri 
phase

RobusT2Scale rt_95 973 ms 537 ms 509 ms 451 ms 423 ms 498 ms

vm 3.2 3.8 5.1 5.3 3.7 3.9

Overprovisioning rt_95 354 ms 411 ms 395 ms 446 ms 371 ms 491 ms

vm 6 6 6 6 6 6

Underprovisioning rt_95 1,465 ms 1,832 ms 1,789 ms 1,594 ms 1,898 ms 2,194 ms

vm 2 2 2 2 2 2



58 I EEE  CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

MAPE-KE: Enhancing MAPE-K with 
Knowledge Evolution 
The scaling strategies we’ve considered so far rely on 
a set of rules, known as elasticity policies, to scale 
up/down the required resources depending on the 
application usage. However, from the cloud pro-
vider’s perspective, applications running in their 
infrastructure are basically black boxes, making 
it difficult to accurately devise optimal or preemp-
tive measures against under- or overprovisioning. 
RobusT2Scale facilitates elasticity policy elicitation 
through linguistic variables. However, this solution 
still requires input from users. To make entirely 
user-independent cloud controllers, we integrate the 
MAPE-K adaptation loop that was primarily imple-
mented in RobusT2Scale (see Figure 2) with an 
online learning loop for knowledge evolution (KE). 
The MAPE-KE loop provides the basis for design-
ing robust self-learning cloud controllers. We imple-
mented one such controller, fuzzy Q-learning for 
knowledge evolution (FQL4KE; https://github.com/
pooyanjamshidi/Fuzzy-Q-Learning), as an extension 
to RobusT2Scale that autonomously scales the cloud 
infrastructure without having to rely on user input 
for defining scaling rules (see Figure 5). 

Reinforcement Learning 
FQL4KE implements a fuzzy rule-based reinforce-
ment learning (RL) algorithm that learns and modi-

fies fuzzy rules at runtime.6,11 The updated fuzzy 
rules are fed into the controller’s knowledge base. 
The implication is that the controller no longer 
needs to rely on knowledge provided by users. This 
complements existing rule-based cloud controllers, 
enabling users to specify system goals by simply ad-
justing some weights instead of specifying complex 
elasticity rules. 

Our approach is based on a particular RL 
technique that combines fuzzy control and fuzzy 
Q-learning (FQL) to bring human expertise to con-
tinuous evolution machinery.6 Q-learning is particu-
larly suitable for situations in which it’s possible to 
learn from interaction with the environment (that 
is, a control-theoretic setting5), where the learning 
is performed via a reward mechanism. The combi-
nation of fuzzy control and FQL results in a power-
ful self-adaptive mechanism where the fuzzy control 
facilitates reasoning at a higher level of abstraction 
(that is, human reasoning) and the Q-learning al-
lows the controller to adapt/adjust the knowledge 
on the fly to provide more accurate decisions. RL 
is generally an appropriate fit for this problem be-
cause the workloads for cloud-based applications 
are unpredictable and obtaining actual training 
data that’s representative of all runtime situations 
is challenging. However, unlike other supervised 
learning approaches (such as neural networks), RL 
doesn’t require a training dataset. In addition, due 
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FIGURE 5. Fuzzy Q-learning for knowledge evolution (FQL4KE) integrates RobusT2Scale with an online 
learning mechanism into a cohesive architecture to enable on-the-fly autoscaling knowledge evolution.
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to workload unpredictability and the complexity of 
the cloud-based application, providers don’t have 
sufficiently accurate and complete knowledge to 
take proper scaling actions in every situation.

Experimental Results
To experimentally demonstrate our self-learning 
controller approach’s applicability, we integrated 
FQL4KE into ElasticBench and conducted further 
studies in the Microsoft Azure cloud. Our experi-
mental results (summarized in Table 4, with details 
available elsewhere6,12) build confidence in FQL-
4KE’s effectiveness and efficiency:

• FQL4KE performs better than Azure’s native 
autoscaling service and better than or similarly 
to RobusT2Scale for all six workloads investigat-
ed, in terms of both response time and the aver-
age number of node instances acquired.

• FQL4KE can learn to acquire resources for dy-
namic cloud systems. Our results show that the 
control surface (see Figure 3 for RobusT2Scale) 
converges starting from a constant plane at 
point zero over time to an effective one, with 
an acceptable 10 percent runtime overhead on 
monitoring and actuation.

• FQL4KE is flexible enough to allow the opera-
tor to set different elasticity strategies. We con-
sidered different autoscaling strategies with 
respect to different environmental condition 
that might arise. FQL4KE is effective in terms 
of learning optimal policies and updating them 
at runtime.

Overall, our evaluation confirms the main ad-
vantages of the FQL4KE self-learning approach. 
First, FQL4KE’s self-adaptive and self-learning 

capabilities make it robust to highly dynamic 
workload intensity. In addition, FQL4KE is model-
independent. The variations in the performance of 
the deployed applications and the unpredictability 
of dynamic workloads don’t impact the proposed 
approach’s effectiveness. FQL4KE is also capable 
of automatically constructing the control rules and 
keeping control parameters updated through fast 
online learning. It executes resource allocation and 
learns to improve its performance simultaneously. 
Finally, unlike supervised techniques that learn 
from training data, FQL4KE doesn’t require offline 
training, which saves significant amounts of time 
and effort.

hat emerges from this discussion is that we 
can understand cloud controllers as control 

theory-based tools. Our solutions use fuzzy control 
theory combined with machine learning to specifi-
cally deal with uncertainty in its various forms. We 
are currently working on different machine learn-
ing mechanisms that enable knowledge evolution in 
FQL4KE, a MAPE-KE framework that we put for-
ward in this work. We are also working on different 
realizations of FQL4KE on different cloud platforms 
such as OpenStack and Amazon EC2. 
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