
A
U

TO
N

O
M

IC
 C

LO
U

D
S

50 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y 2 3 2 5 - 6 0 9 5/ 16/$ 3 3 . 0 0 © 2 0 16 I EEE

Managing
Uncertainty in
Autonomic Cloud
Elasticity Controllers

Pooyan Jamshidi, Imperial College London
Claus Pahl, Free University of Bozen-Bolzano
Nabor C. Mendonça, University of Fortaleza

Following a control-theoretic approach, the authors
integrate a fuzzy cloud controller with an online
learning mechanism to achieve a framework that can
cope with various sources of uncertainty in the cloud.

he challenge of building autonomous elastic systems involves the adjust-
ment of computing resources along with load variations without the need
for human intervention. Automated cloud-based scalability (that is, au-
toscaling) is a recent advancement toward creating full-fledged elastic
systems.1 Autoscaling an application, typically in commercial solutions,
involves specifying threshold-based rules to implement elasticity policies

M AY/J U N E 2 0 16 I EEE CLO U D CO M P U T I N G 51

for acquiring and releasing cloud resources, such as
virtual machines (VMs).2,3 For example, a typical
elasticity rule is

IF average CPU usage > 80% AND average memory
usage > 50% THEN add 1 VM.

Thus, elasticity rules must be specified with
precise quantitative thresholds. To determine
such thresholds (for example, 80 percent), cloud
users require expertise, which makes the accu-
racy of the elasticity rules subjective and prone
to uncertainty. Furthermore, existing rule-based
approaches often make unrealistic assumptions
about elastic systems. For instance, they assume
that stakeholders agree on the thresholds in the
rules. In addition, they don’t explicitly consider
the presence of measurement inaccuracies in the
input data.4 However, such uncertainties in the
cloud environment are frequent.5,6 Sources of
uncertainty in public cloud platforms include the
amount of time required to start new VMs, which
might be several minutes.7 This could cause many
autoscaling actions to be ineffective since cloud
applications are exposed to rapidly changing
workloads. In addition, sharing physical resourc-
es by different cloud users can lead to significant
performance variations among VMs of equivalent
capacity, requiring frequent tuning of the applica-
tion’s autoscaling thresholds.8 (See the sidebar for
a discussion of related work.)

In this article, we discuss the main sources of
uncertainty and challenges for elasticity manage-
ment using autonomic cloud controllers. We propose
a control-theoretic approach5 to implement a moni-
tor, analyze, plan, execute, and knowledge (MAPE-
K) adaptation loop9 by designing a fuzzy logic
controller. We extend this controller with an on-
line learning loop to enable knowledge evolution in
MAPE-K, proposing the MAPE-KE loop, which can
cope with various types of uncertainty while ensur-
ing application performance and cost.

Uncertainty Sources and Challenges in
Cloud Elasticity Management
Uncertainty emerges from various sources in elastic
cloud systems, such as different interpretations and
decisions in the scaling rule definition, internal de-

cision making processes, or monitoring systems that
produce partially unreliable and incomplete data.

Uncertainty in Elasticity Policy Definition
The specification of elasticity policies needs a care-
ful determination of lower and upper thresholds.
This determination relies on a user’s in-depth knowl-
edge of system behavior over time and how resourc-
es are managed.2 Therefore, the overall accuracy of
elasticity policies remains subjective, making the
effect of any scaling rule prone to uncertainty. In
addition, unpredictable changes in the environment
or on the application demand might require scal-
ing rules to be continuously reevaluated and tuned,
which is a nontrivial task even for expert users.

The main challenge here is to enable the speci-
fication of human-intuitive scaling rules to alleviate
the expertise requirement from cloud users. An even
bolder challenge is to eliminate human intervention
altogether by having the controller define and fine-
tune its own scaling rules.

Uncertainty in Dynamic Resource Provisioning
The process of acquiring and releasing virtual re-
sources in the cloud isn’t instantaneous. The elas-
ticity controller needs to invoke cloud platform
services to initiate the acquisition process and must
wait until new VMs have been spun up to allow the
application components to be deployed on newly
provisioned resources, leading to a better quality
of service. During this time, which often lasts sev-
eral minutes,7 the cloud application is vulnerable to
workload increase. This makes resource provision-
ing also prone to uncertainty.

The main challenge here is to identify trends
in the monitoring data to anticipate the need for
further resources ahead of time. This would let the
controller acquire resources proactively, expediting
the execution of autoscaling actions with minimum
impact on application performance.

Uncertainty in Monitoring Data
The cloud controller needs to continuously monitor
the state of the application as well as that of the cloud
resources in which the application is deployed in order
to react to possible load variations in a timely manner.
Monitoring data usually corresponds to a distribution
of values collected by measurement-specific probes

52 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

or sensors, which aren’t immune to measurement de-
viations (this can be associated with so-called sensory
noise1). For instance, a probe monitoring the response
time of an application hosted in the cloud might re-
turn slightly different values at different times. This
sensory noise is another source of uncertainty, as it

results in oscillations that can affect how the control-
ler allocates resources to applications.3

The main challenge here is to build a robust
controller that sustains sensory noise. This would
avoid oscillations in resource allocation due to slight
variations in the monitored values.

RELATED WORK IN CLOUD AUTOSCALING

loud autoscaling is a hot research topic that
has attracted the interest of researchers from

both academia and industry.1–3 Here, we consider
some representative approaches that, like ours, focus
on elasticity techniques to deal with unpredictable
workloads and other types of uncertainties when
dynamically allocating resources to cloud-based ap-
plications. A more comprehensive review of existing
cloud autoscaling solutions and services is available
elsewhere.2

Jia Rao and his colleagues adopt a multilayer
approach to handle multi-objective requirements
such as performance and power in dynamic re-
source allocation.4 The lower layer focuses on each
objective and exploits a fuzzy controller model pro-
posed earlier.5 The higher layer maintains a tradeoff
between the multiple objectives by coordinating
their respective controllers. Enda Barrett and his
colleagues use reinforcement learning (RL) tech-
niques to automanage cloud resources.6 However,
their solution is model based and only applicable for
stable workloads, since they must recalculate the
models when conditions change at runtime. Alessio
Gambi and his colleagues design cloud controllers
as black-box surrogate models of the evolving sys-
tem and use machine learning techniques to predict
system performance under different usage sce-
narios.7 Finally, Harold Lim and his colleagues8 and
Ahmad Al-Shishtawy and Vladimir Vlassov9 propose
cloud controllers specifically tailored to cope with
uncertainties raised at the cloud storage tier, such as
actuator delays due to the need to rebalance data
across storage nodes.

Unlike these approaches, our work offers a seam-
less knowledge evolution-based self-adaptation solu-
tion through fuzzy control and RL, taking the burden
of defining adaptation rules from the users.

References

1. L.M. Vaquero, L. Rodero-Merino, and R. Buyya,
“Dynamically Scaling Applications in the Cloud,”
ACM SIGCOMM Computer Comm. Rev., vol. 41, no.
51, 2011, pp. 45–52.

2. T. Lorido-Botran, J. Miguel-Alonso, and J.A. Lozano,
“A Review of Auto-scaling Techniques for Elastic Ap-
plications in Cloud Environments,” J. Grid Comput-
ing, vol. 12, no. 4, 2014, pp. 559–592.

3. H.C. Lim et al., “Automated Control in Cloud Com-
puting: Challenges and Opportunities,” Proc. Work-
shop Automated Control for Datacenters and Clouds
(ACDC), 2009, pp. 13–18.

4. J. Rao et al., “DynaQoS: Model-Free Self-Tuning
Fuzzy Control of Virtualized Resources for QoS Pro-
visioning,” Proc. Int’l Workshop Quality of Service
(IWQoS), 2011, pp. 1–9.

5. J. Xu et al., “Autonomic Resource Management in
Virtualized Data Centers Using Fuzzy Logic-Based
Approaches,” Cluster Computing, vol. 11, no. 3,
2008, pp. 213–227.

6. E. Barrett, E. Howley and J. Duggan, “Applying Rein-
forcement Learning Towards Automating Resource
Allocation and Application Scalability in the Cloud,”
Concurrency and Computation: Practice and Expe-
rience, vol. 25, no. 12, 2013, pp. 1656–1674.

7. A. Gambi, M. Pezze, and G. Toffetti, “Kriging-Based
Self-Adaptive Cloud Controllers,” IEEE Trans. Ser-
vices Computing, preprint, 2014; doi:10.1109/
TSC.2015.2389236.

8. H.C. Lim, S. Babu, and J.S. Chase, “Automated Con-
trol for Elastic Storage,” Proc. Int’ l Conf. Autonomic
Computing (ICAC), 2010, pp 1–10.

9. A. Al-Shishtawy and V. Vlassov, “Elastman: Elasticity
Manager for Elastic Key-Value Stores in the Cloud,”
Proc. ACM Cloud and Autonomic Computing Conf.
(CAC), 2013, pp. 7:1–7:10.

M AY/J U N E 2 0 16 I EEE CLO U D CO M P U T I N G 53

A Fuzzy Control-Theoretic Approach for
Robust Elastic Cloud Systems
We propose RobusT2Scale, a control-theoretic elas-
ticity management approach based on fuzzy control
(https://github.com/pooyanjamshidi/RobusT2Scale).
It enables qualitative specifications of elasticity
rules but also deals with noise and uncertainty aris-
ing from monitoring in cloud environments.4,5 As
our experimental results show, RobusT2Scale is ro-
bust to several forms of changes in the environment,
including unpredictable changes in application de-
mand as well as unpredictable degradations of sys-
tem performance.

Fuzzy Controller Design
A cloud-based elastic system has three parts: a
cloud-based application, a cloud platform, and an
elasticity controller. The elasticity controller imple-
ments the following tasks, which form the MAPE-K
control loop9:

• monitor the application and its environment
(that is, in control-theoretic terms disturbances
such as workload);

• analyze the input data and detect any possible
violation;

• plan corrective actions in terms of adding re-
sources or removing existing unused ones;

• execute the plan according to a specific plat-
form; and

• use or update shared knowledge.

The knowledge base consists of the scaling rules.
We chose performance (response time) and work-
load (number of accesses) as the two input param-
eters for our controller.

Enabling qualitative specification of scaling rules.
Our aim is to facilitate qualitative, deliberately impre-
cise specification of scaling rules. For example, an elas-

ticity rule might be expressed qualitatively as follows:

IF workload is high AND response time is slow
THEN add 2 VMs

To this end, we rely on fuzzy logic systems (FLSs)
to enable the manipulation of linguistic rules.10 In
particular, we use so-called type-2 FLS10 to repre-
sent the uncertainties embedded in these linguistic
labels, such as high and low, and the numerical ma-
nipulation of these rules to plan the scalability of
cloud-based applications.

The scaling rule antecedents need to capture
linguistic impreciseness. The linguistic variable rep-
resenting the value of a workload is divided into five
levels: very low, low, medium, high, and very high.
Similarly, the linguistic variable representing the
response time is also divided into five levels: instan-
taneous, fast, medium, slow, and very slow. The rule
consequent is divided into the number of VM nodes
that are added or removed. To design the fuzzy rules,
we collected the required data by interviewing 10
cloud experts. We asked these experts to determine
a consequent using an integer from [–2, 2]. As we
expected, different experts chose different numbers
of node instances for the same questions (see Table
1). Note that the final consequent associated with
each rule is determined by the weighted average, de-
noted by Cavg, of the consequents given to that rule.
We also asked the experts to locate an interval for
each linguistic label for workload and response time
in the range [0, 100]. For the labels, we received 10
different intervals. We then calculated the mean
and deviations of the two ends (see Table 2).

Defining membership functions. The first step to
fuzzy reasoning is to “fuzzify” the monitoring in-
puts for further processing. We map each linguistic
concept into a type-2 fuzzy logic membership func-
tion (MF). We use trapezoidal MFs to represent the

Table 1. Sample of expert responses for elasticity policies.

Rule Antecedents Consequent Weighted average
(Cavg)

Workload Response time –2 –1 0 1 2

1 Very low Instantaneous 7 2 1 0 0 –1.6

7 Low fast 2 7 1 0 0 –1.1

13 Medium Medium 0 0 5 4 1 0.6

19 High Slow 0 0 1 7 2 11

25 Very high Very slow 0 0 0 4 6 16

54 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

outer concepts very low (instantaneous) and very
high (very slow), and triangular MFs to represent
low (fast), medium, and high (slow). If a and b with
standard deviations σa and σb, respectively, are the
mean values of the interval end points of the labels
(see Table 2), the MFs can be constructed based
on the overall value distribution for the labels and
the distribution of the respective means for each
user. The result is a trapezoidal or triangular type-
2 MF, defined by lower and upper type-1 MFs
capturing the degree of uncertainty between the
different interpretations of the different users, as
Figure 1 shows.

Fuzzy controller workflow. The designed fuzzy con-
troller works as follows (see Figure 2):

• The monitoring inputs comprising the workload
(w) as well as the response time (rt) are first
fuzzified.

• The fuzzified inputs activate the inference en-
gine to produce type-2 fuzzy sets.

• Decisions made by fuzzy inference are in the
form of fuzzy values, which can’t be directly
used. The fuzzy values are type-reduced, which
combines the output sets and calculates the set
center via the MF’s centroid (dotted line).

0 10 20 30 40 50 60 70 80 90 100

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
em

b
er

sh
ip

 g
ra

d
e

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
em

b
er

sh
ip

 g
ra

d
e

Workload

Very low

Low

(a) (b)

Medium High

Very high

Instantaneous

Fast

Medium Slow

Very slow

0 10 20 30 40 50 60 70 80 90 100
Response time

FIGURE 1. The type-2 membership functions (MFs) are derived from the user’s data to define the antecedents of the autoscaling
rules: (a) workload and (b) response time.

Table 2. Workload and response time quantifications.

Linguistic label Mean Standard deviation

Start (a) End (b) Start (σa) End (σb)

Workload Very low 0 27 0 8.23

Low 22 41.5 7.15 7.09

Medium 36.5 64 5.80 3.94

High 61 82.5 4.59 6.77

Very high 78 100 6.32 0

Response
time

Instantaneous 0 7.2 0 5.20

Fast 6.1 20 4.07 5.27

Medium 18.2 41.5 5.59 8.51

Slow 38.5 63.5 7.09 9.44

Very slow 60 100 7.82 0

M AY/J U N E 2 0 16 I EEE CLO U D CO M P U T I N G 55

• The type-reduced fuzzy sets are type-1 fuzzy
sets that need to be defuzzified to determine
the scaling actions (sa) in terms of the num-
ber of VM nodes that need to be added or
removed.

• These are then fed to the resource allocator (ac-
tuator) to enact the change.

Figure 3 illustrates the control surface gener-
ated by the type-2 fuzzy sets computed by applying
different combinations of workload and response
time values. This provides a smoother resources
management under workload and performance vari-
ations compared to type-1 solutions. More details on
designing the RobusT2Scale fuzzy controller can be
found elsewhere.4

Enabling workload and performance prediction. To
allow the controller to anticipate drastic changes in
demand and application behavior, and also to allevi-
ate the VM provisioning latency, we combined the
fuzzy control mechanism with exponential smooth-
ing prediction. Exponential smoothing is a tech-
nique applied to time series data, either to produce
smoothed data for presentation or to make forecasts
about future system behavior. We use two types for
workload and performance prediction:

• When an application starts running, we employ
a time series forecasting technique to estimate
the future workload. We use double exponential
smoothing because it can smooth the inputs and
predict trends in historical data.

• For estimating response time, we use single ex-
ponential smoothing because, for oscillatory re-
sponse times, we don’t need to predict the trend,
but only require a smoothed value.

Both exponential smoothing techniques put a
weight on the historical data by a series of exponen-
tially decreasing factors, making recently observed
data more relevant.

Experimental Evaluation
We conducted several experimental studies in the
Microsoft Azure cloud to evaluate the proposed
fuzzy elasticity controller in terms of its prediction
accuracy, its effectiveness in guaranteeing service-
level objectives (SLOs), and its robustness against
measurement noise. To this end, we developed a
stateless, dynamically scalable cloud application
framework based on our fuzzy controller, called
ElasticBench (https://github.com/pooyanjamshidi/
ElasticBench). ElasticBench includes a workload

generator to simulate different workload patterns,
allowing us to test and train the controller before
actual execution. To build a generic workload gen-
erator, we developed a service to generate Fibonacci
numbers. A delay is embedded in the process of cal-
culating Fibonacci numbers to simulate a process
that takes a reasonably long period. Note that calcu-
lating Fibonacci numbers is an O(N) task, making
it a good candidate for demonstrating different
application types by embedding different delays,
since our platform can generate requests with

Fuzzy logic
controller

w
sa

rt

Elasticity policy

Rule
base DefuzzifierFuzzifier

Inference
engine

Cloud application

Cloud platform

ActuatorMonitoring

FIGURE 2. RobusT2Scale realizes the MAPE-K control loop by integrating
Monitoring, Fuzzy Reasoning and Cloud Actuator components in a
cohesive architecture.

100
80

60
40

20
0

0

50

–1

0

1

2

–2
100

Sc
al

in
g

 a
ct

io
n

Response time Workload

FIGURE 3. Control surface of RobusT2Scale, the type-2 fuzzy controller
for elasticity reasoning, for different combinations of workload and
response time.

56 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

varying patterns (as Figure 4 shows, different values
of Fibonacci numbers are generated according to the
level of requests).

We use two types of Azure service roles to imple-
ment ElasticBench: web role and worker role. Both
roles run on Azure A1 (small) instances. The requests
issued from the load generator are received by the
web role, which puts a message on a task assignment
queue. The worker role instances continuously check
the queue, and a background process (to calculate the
Fibonacci number) is immediately started based on
the content of the message in the queue. The worker
roles communicate with the Azure storage service to
acquire the data required for processing (for example,
previously calculated Fibonacci numbers). Once the

controller decides to scale-in (out) the resources,
ElasticBench increases (decreases) the number of
worker roles accordingly. Further details about our
experimental setup are available elsewhere.4

Prediction accuracy. To evaluate the accuracy of
the controller’s exponential smoothing estimation
technique, we simulated different workloads and
measured the error of estimation by root-relative-
squared error (RRSE).

Figure 4a shows sample data and different
estimations achieved by changing the model’s pa-
rameters, resulting in different levels of prediction
accuracy. We also evaluated the prediction tech-
niques’ accuracy for six different workload patterns

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)(a) (b)

(c) (d)

100

150

200

250

300

350

400

450

500

550

N
u

m
b

er
 o

f
h

its

Original data

Betta=0.10, gamma=0.94,
RMSE=32.7833, RRSE=0.26911

Betta=0.27, gamma=0.94,
RMSE=15.766, RRSE=0.12942

Betta=0.80, gamma=0.94,
RMSE=19.0656, RRSE=0.15651

R
o

o
t-

re
la

tiv
e-

sq
u

ar
ed

 e
rr

o
r

Workload patterns

Big spike Dual phase Large
variations

Quickly
varying

Slowly
varying

Steep
tri phase

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

100

200

300

400

500

1000

2000

0 50 100
0

200

400

0 50 100
0

500

1000

0 50 100
0

500

1000

0
0

500

1000

1500

0.12
0.9

0.14

0.2

0.16

0.92

0.18

0.4 0.94

0.2

Alpha Gamma

R
M

SE

0.22

0.960.6

0.24

0.98

0.26

0.8
1 0 20 40 60 80 100 120

Time (seconds)

150

200

250

300

350

400

450

500
N

u
m

b
er

 o
f

h
its

Observed data
Smoothed data
Forecast

FIGURE 4. Accuracy evaluation: (a) estimation versus actual workload, (b) estimation error, (c) prediction error, and (d) workload
prediction. (RMSE: root-mean-square error; RRSE: root-relative-squared error)

M AY/J U N E 2 0 16 I EEE CLO U D CO M P U T I N G 57

(big spike, dual phase, large variations, quickly vary-
ing, slowly varying, and steep tri phase), as Figure
4b shows.4 For three patterns (slowly varying, dual
phase, and steep tri phase), the relative error and
variations are quite low. The large variation pattern
shows the large error mean, while the big spike and
quickly varying patterns present the largest varia-
tions. Overall, we can conclude that our prediction
solution is sufficiently accurate for common work-
load situations. Figure 4c shows that the predic-
tion accuracy will change with different values of
double exponential smoothing hyper-parameters.
Figure 4d provides a longer-term prediction based
on the current observation. It shows that double ex-
ponential smoothing detected the ascending work-
load trend correctly.

Effectiveness. Scalability is concerned with varianc-
es that are large enough to warrant a scaling action.
As a benchmark for measuring the controller’s effec-
tiveness, we consider

• the 95th percentile of the response time (rt_95),
which represents our performance SLO; and

• the weighted average number of node instances
acquired over time (vm), which determines the
cost.

These criteria cover the three main aspects of elas-
ticity: scalability, cost, and time efficiency. The goal
is to meet the response time SLO (we assume rt_95
= 600 ms) while keeping vm as low as possible.

Given these criteria and goals, we compared
our approach with two common basic provisioning
approaches, overprovisioning (vm = 6) and under-
provisioning (vm = 2), using the same six workload
patterns we used for the accuracy evaluation. Table
3 shows the results.

In comparison with the overprovisioning ap-
proach, RobusT2Scale acquired fewer nodes, saving
a factor of two in cost. As the table shows, RobusT-
2Scale didn’t violate the response time SLO in work-
load patterns except for the big spike pattern. The
overprovisioning approach satisfied the SLO for all
patterns, but only by imposing twice the cost for big
spike (for the other patterns, the difference is less sig-
nificant) compared to RobusT2Scale. The underprovi-
sioning approach never met the SLO for any pattern.

Robustness against noise. RobusT2Scale is resilient
against different input noise types, one of which is
the estimation error.

In our experiments, we observed that the worst
estimation error happens for large variations and
quickly varying patterns and is less than 10 per-
cent of the actual workload. As a result, we injected
white noise to the input measurement data with a 10
percent amplitude. We ran root-mean-square error
(RMSE) measurements for each level of blurring.
For each measurement, we used 10,000 data items
as input. We observed two interesting points:

• First, the error of control output produced by
the elasticity controller is less than 0.1 for the
blurring levels.

• Second, the error of control output is decreasing
for a controller with a higher blurring. A higher
blurring leads to a larger footprint of uncertainty
(FOU), which is representative of the supporting
levels of uncertainty. Since an overly wide FOU
can result in performance degradations,8 the con-
troller designer should take into account the level
of uncertainty that the controller can support.

These observations provide evidence that RobusT-
2Scale is also robust against input noise.

Table 3. Comparison of the effectiveness of RobusT2Scale.

Approach Criteria

Workload patterns

Big spike Dual
phase

Large
variations

Quickly
varying

Slowly
varying

Steep tri
phase

RobusT2Scale rt_95 973 ms 537 ms 509 ms 451 ms 423 ms 498 ms

vm 3.2 3.8 5.1 5.3 3.7 3.9

Overprovisioning rt_95 354 ms 411 ms 395 ms 446 ms 371 ms 491 ms

vm 6 6 6 6 6 6

Underprovisioning rt_95 1,465 ms 1,832 ms 1,789 ms 1,594 ms 1,898 ms 2,194 ms

vm 2 2 2 2 2 2

58 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

MAPE-KE: Enhancing MAPE-K with
Knowledge Evolution
The scaling strategies we’ve considered so far rely on
a set of rules, known as elasticity policies, to scale
up/down the required resources depending on the
application usage. However, from the cloud pro-
vider’s perspective, applications running in their
infrastructure are basically black boxes, making
it difficult to accurately devise optimal or preemp-
tive measures against under- or overprovisioning.
RobusT2Scale facilitates elasticity policy elicitation
through linguistic variables. However, this solution
still requires input from users. To make entirely
user-independent cloud controllers, we integrate the
MAPE-K adaptation loop that was primarily imple-
mented in RobusT2Scale (see Figure 2) with an
online learning loop for knowledge evolution (KE).
The MAPE-KE loop provides the basis for design-
ing robust self-learning cloud controllers. We imple-
mented one such controller, fuzzy Q-learning for
knowledge evolution (FQL4KE; https://github.com/
pooyanjamshidi/Fuzzy-Q-Learning), as an extension
to RobusT2Scale that autonomously scales the cloud
infrastructure without having to rely on user input
for defining scaling rules (see Figure 5).

Reinforcement Learning
FQL4KE implements a fuzzy rule-based reinforce-
ment learning (RL) algorithm that learns and modi-

fies fuzzy rules at runtime.6,11 The updated fuzzy
rules are fed into the controller’s knowledge base.
The implication is that the controller no longer
needs to rely on knowledge provided by users. This
complements existing rule-based cloud controllers,
enabling users to specify system goals by simply ad-
justing some weights instead of specifying complex
elasticity rules.

Our approach is based on a particular RL
technique that combines fuzzy control and fuzzy
Q-learning (FQL) to bring human expertise to con-
tinuous evolution machinery.6 Q-learning is particu-
larly suitable for situations in which it’s possible to
learn from interaction with the environment (that
is, a control-theoretic setting5), where the learning
is performed via a reward mechanism. The combi-
nation of fuzzy control and FQL results in a power-
ful self-adaptive mechanism where the fuzzy control
facilitates reasoning at a higher level of abstraction
(that is, human reasoning) and the Q-learning al-
lows the controller to adapt/adjust the knowledge
on the fly to provide more accurate decisions. RL
is generally an appropriate fit for this problem be-
cause the workloads for cloud-based applications
are unpredictable and obtaining actual training
data that’s representative of all runtime situations
is challenging. However, unlike other supervised
learning approaches (such as neural networks), RL
doesn’t require a training dataset. In addition, due

Update knowledge

γ, η, ε, rFuzzy Q-learning
w, rt

th, wm

saw, rt

.fis

RobusT2Scale

ElasticBenchLoad generator

WCF

W
C

C
L

REST
Cloud platform

ActuatorMonitoring

FIGURE 5. Fuzzy Q-learning for knowledge evolution (FQL4KE) integrates RobusT2Scale with an online
learning mechanism into a cohesive architecture to enable on-the-fly autoscaling knowledge evolution.

M AY/J U N E 2 0 16 I EEE CLO U D CO M P U T I N G 59

to workload unpredictability and the complexity of
the cloud-based application, providers don’t have
sufficiently accurate and complete knowledge to
take proper scaling actions in every situation.

Experimental Results
To experimentally demonstrate our self-learning
controller approach’s applicability, we integrated
FQL4KE into ElasticBench and conducted further
studies in the Microsoft Azure cloud. Our experi-
mental results (summarized in Table 4, with details
available elsewhere6,12) build confidence in FQL-
4KE’s effectiveness and efficiency:

• FQL4KE performs better than Azure’s native
autoscaling service and better than or similarly
to RobusT2Scale for all six workloads investigat-
ed, in terms of both response time and the aver-
age number of node instances acquired.

• FQL4KE can learn to acquire resources for dy-
namic cloud systems. Our results show that the
control surface (see Figure 3 for RobusT2Scale)
converges starting from a constant plane at
point zero over time to an effective one, with
an acceptable 10 percent runtime overhead on
monitoring and actuation.

• FQL4KE is flexible enough to allow the opera-
tor to set different elasticity strategies. We con-
sidered different autoscaling strategies with
respect to different environmental condition
that might arise. FQL4KE is effective in terms
of learning optimal policies and updating them
at runtime.

Overall, our evaluation confirms the main ad-
vantages of the FQL4KE self-learning approach.
First, FQL4KE’s self-adaptive and self-learning

capabilities make it robust to highly dynamic
workload intensity. In addition, FQL4KE is model-
independent. The variations in the performance of
the deployed applications and the unpredictability
of dynamic workloads don’t impact the proposed
approach’s effectiveness. FQL4KE is also capable
of automatically constructing the control rules and
keeping control parameters updated through fast
online learning. It executes resource allocation and
learns to improve its performance simultaneously.
Finally, unlike supervised techniques that learn
from training data, FQL4KE doesn’t require offline
training, which saves significant amounts of time
and effort.

hat emerges from this discussion is that we
can understand cloud controllers as control

theory-based tools. Our solutions use fuzzy control
theory combined with machine learning to specifi-
cally deal with uncertainty in its various forms. We
are currently working on different machine learn-
ing mechanisms that enable knowledge evolution in
FQL4KE, a MAPE-KE framework that we put for-
ward in this work. We are also working on different
realizations of FQL4KE on different cloud platforms
such as OpenStack and Amazon EC2.

References
 1. L.M. Vaquero, L. Rodero-Merino, and R.

Buyya, “Dynamically Scaling Applications in
the Cloud,” ACM SIGCOMM Computer Comm.
Rev., vol. 41, no. 51, 2011, pp. 45–52.

 2. H. Ghanbari et al., “Exploring Alternative Ap-
proaches to Implement an Elasticity Policy,”
Proc. IEEE Int’l Conf. Cloud Computing (ICCC),
2011, pp. 716–723.

Table 4. Comparison of the effectiveness of FQL4KE, RobusT2Scale, and Azure autoscaling under
different workloads.

Approach Criteria Workload patterns

Big spike Dual
phase

Large
variations

Quickly
varying

Slowly
varying

Steep tri
phase

FQL4KE rt_95 1,212 ms 548 ms 991 ms 1,319 ms 512 ms 561 ms

vm 2.2 3.6 4.3 4.4 3.6 3.4

RobusT2Scale rt_95 1,339 ms 729 ms 1,233 ms 1,341 ms 567 ms 512 ms

vm 3.2 3.8 5.1 5.3 3.7 3.9

Azure autoscaling rt_95 1,409 ms 712 ms 1,341 ms 1,431 ms 1,101 ms 1,412 ms

vm 3.3 4 5.5 5.4 3.7 4

60 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

 3. T. Lorido-Botran, J. Miguel-Alonso, and J.A. Lo-
zano, “A Review of Auto-scaling Techniques for
Elastic Applications in Cloud Environments,”
J. Grid Computing, vol. 12, no. 4, 2014, pp.
559–592.

 4. P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic
Resource Provisioning for Cloud-Based Soft-
ware,” Proc. Int’l Symp. Software Eng. Adaptive
and Self-Managing Systems (SEAMS), 2014, pp.
95–104.

 5. A. Filieri et al. “Software Engineering Meets
Control Theory,” Proc. Int’l Symp. Software Eng.
Adaptive and Self-Managing Systems (SEAMS),
2015, pp. 71–82.

 6. P. Jamshidi et al., “Self-Learning Cloud Con-
trollers: Fuzzy Q-Learning for Knowledge Evo-
lution,” Proc. IEEE Int’l Conf. Cloud and Auto-
nomic Computing (ICCAC), 2015, pp. 208–211.

 7. M. Mao and M. Humphrey, “A Performance
Study on the VM Startup Time in the Cloud,”
Proc. Int’l Conf. Cloud Computing (CLOUD),
2012, pp. 423–430.

 8. H.C. Lim et al., “Automated Control in Cloud
Computing: Challenges and Opportunities,”

Proc. Workshop Automated Control for Datacen-
ters and Clouds (ACDC), 2009, pp. 13–18.

 9. J.O. Kephart and D.M. Chess, “The Vision of Au-
tonomic Computing,” Computer, vol. 36, no. 1,
2003, pp. 41–50.

 10. J.M. Mendel, “Type-2 Fuzzy Sets and Systems:
An Overview,” Computational Intelligence Mag-
azine, vol. 2, no. 1, 2007, pp. 20–29.

 11. E. Barrett, E. Howley and J. Duggan, “Applying
Reinforcement Learning Towards Automating
Resource Allocation and Application Scalability
in the Cloud,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 12, 2013,
pp. 1656–1674.

 12. P. Jamshidi et al., “Fuzzy Self-Learning Con-
trollers for Elasticity Management in Dynamic
Cloud Architectures,” Proc. Int’l ACM Sigsoft
Conf. Quality of Software Architectures (QoSA
16), 2016, pp. 70–79.

POOYAN JAMSHIDI is a postdoctoral research as-
sociate in Imperial College London’s Department
of Computing. His interests include self-adaptive
software, in particular, applying statistical machine
learning and control theory to enable self-organizing
behaviors in distributed systems for processing big
data. Jamshidi received a PhD in computing from
Dublin City University. He’s a member of IEEE, ACM
SIGSOFT, and the Standard Performance Evaluation
Corporation. Contact him at p.jamshidi@imperial
.ac.uk.

CLAUS PAHL is an associate professor at the Free
University of Bozen-Bolzano, Italy. His research in-
terests include software engineering in service and
cloud computing, specifi cally migration and scal-
ability concerns. Pahl has a PhD in computing from
the University of Dortmund. Contact him at claus
.pahl@unibz.it.

NABOR C. MENDONÇ A is a full professor at the
University of Fortaleza, Brazil. His research interests
include software engineering and distributed systems,
with a focus on the development and evaluation of
cloud computing technologies. Mendonç a has a PhD
in computing from Imperial College London. He’s a
member of IEEE, ACM, and the Brazilian Computer
Society. Contact him at nabor@unifor.br.

Let your attendees have:

Android iPhone
iPad Kindle Fire.

CONFERENCES
in the Palm of Your Hand

cps@computer.org

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

View publication statsView publication stats

https://www.researchgate.net/publication/301891619

