
An Efficient Method for Uncertainty Propagation in Robust
Software Performance Estimation

Aldeida Aleti1, Catia Trubianib, André van Hoornc, Pooyan Jamshidid

aFaculty of Information Technology, Monash University, 900 Dandenong Road Caulfield East, VIC,
3145, Australia

bGran Sasso Science Institute, Viale Francesco Crispi 7, 67100 LAquila, Italy
cInstitute of Software Technology, Universität Stuttgart, Universitätsstraße 38 D-70569, Stuttgart,

Germany
dSchool of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA

15213, USA

Abstract

Software engineers often have to estimate the performance of a software system before
having full knowledge of the system parameters, such as workload and operational profile.
These uncertain parameters inevitably affect the accuracy of quality evaluations, and
the ability to judge if the system can continue to fulfil performance requirements if
parameter results are different from expected. Previous work has addressed this problem
by modelling the potential values of uncertain parameters as probability distribution
functions, and estimating the robustness of the system using Monte Carlo-based methods.
These approaches require a large number of samples, which results in high computational
cost and long waiting times.

To address the computational inefficiency of existing approaches, we employ Poly-
nomial Chaos Expansion (PCE) as a rigorous method for uncertainty propagation and
further extend its use to robust performance estimation. The aim is to assess if the
software system is robust, i.e., it can withstand possible changes in parameter values,
and continue to meet performance requirements. PCE is a very efficient technique, and
requires significantly less computations to accurately estimate the distribution of perfor-
mance indices. Through three very different case studies from different phases of software
development and heterogeneous application domains, we show that PCE can accurately
(>97%) estimate the robustness of various performance indices, and saves up to 225
hours of performance evaluation time when compared to Monte Carlo Simulation.

Keywords:
Polynomial Chaos Expansion, Software Performance Engineering, Uncertainty
Propagation

∗Corresponding author
URL: aldeida.aleti@monash.edu (Aldeida Aleti)

Preprint submitted to Journal of Systems and Software January 14, 2018

ar
X

iv
:1

80
1.

04
64

4v
1

 [
cs

.S
E

]
 1

5
Ja

n
20

18

1. Introduction

Performance is a crucial quality attribute of a software system that can be estimated
at different stages of its life-cycle, from the architectural design phase to when the sys-
tem is implemented and running [1]. When the performance is measured early in the
development process, the aim is to derive the appropriate architectural decisions that
improve the performance of the system. At this stage, performance models (e.g., Petri
Nets [2], Queueing Networks [3], Layered Queueing Networks (LQN) [4]) are used to
describe how system operations use resources, and how resource contention affects op-
erations. Decisions made at early development phases greatly impact the quality of the
final software product, and wrong decisions may imply an expensive rework, possibly in-
volving the overall software system. Discovering performance issues early in the software
development process may help avoid expensive fixes after the system has been built. At
later stages of the software’s lifecycle, performance models rely on actual measurements,
and have additional uses, in particular: (i) design of performance tests; (ii) configura-
tion of products for delivery; (iii) evaluation of planned evolutions of the design, while
recognising that no system is ever final [5].

Performance estimationat early stages of software development is difficult, as there are
many aspects that may be unknown or uncertain, such as the design decisions, code, and
execution environment. In many application domains, such as heterogeneous distributed
systems, enterprise applications, and cloud computing, performance evaluation is also
affected by external factors, such as increasingly fluctuating workloads and changing
scenarios [6, 7]. As a result, the software engineer is often forced to make decisions under
uncertainty (i.e., related to the design or refactoring of the system), without knowing the
exact impact of those decisions on performance.

A possible solution is to explicitly define the uncertainty in input parameters during
the performance estimation process [8]. This allows for approximations of performance
indices in cases where the system behaviour can not be determined or precisely evaluated
in advance. In our previous work [9], we introduced a probabilistic formulation of input
parameter uncertainties. The approach samples the distribution of the uncertain input
parameters using a Monte Carlo-based approach, and solves a queuing network for each
sample to evaluate the respective performance values. The histogram of output values is
then used to evaluate how confident one should be that the system performance would
not go below or above a certain required value.

While the Monte Carlo-based method provides a useful estimate of the probability dis-
tribution for the performance indices when uncertain parameters are present, it requires
a large number of samples and very high computational cost, which makes it computa-
tionally expensive for design-time analytic solutions or on-line performance evaluations,
and inconvenient for runtime applications.

To address this issue, we introduce a new approach for estimating performance ro-
bustness, which is based on polynomial chaos expansion (PCE) [10]. PCE is a stochastic
response surface model that computes cumulative distribution functions for performance
indices affected by uncertain input parameters. Accurate statistics can be obtained with
only a few runs of computationally expensive queuing network solutions or measurements
from running systems.

The proposed technique is applied to three very different datasets evaluated at various
phases of software development and from heterogeneous application domains. These are:

2

E-commerce system, which is modelled at design-time with Layered Queueing Networks
(LQN) [11], and two real systems, JPetStore, which is a Java enterprise application
running in a controlled environment under load generation, and WordCount, a Stream
Processing System (SPS) benchmark implemented with Apache Storm and running on
a cloud cluster with OpenNebula. Experimental results demonstrate the effectiveness,
accuracy, and robustness of our approach. The PCE method produces very low errors
even with only 100 samples, saving up to 225 hours when compared to the Monte Carlo
Simulation approach. The robustness of the technique was tested on noisy data with
different levels of signal-to-noise ratios. The PCE method was at least 80% accurate in
propagating uncertainty, with accuracy above 97% in the majority of the cases affected
by noise.

2. Related Work

Issues arising from uncertain parameter inputs that affect the robustness of a software
system have been investigated in the literature, with a main focus on quality attributes,
such as reliability [12, 13] and performance [9]. Here, we review papers that are most
relevant to our approach, by categorising them in terms of methods that use machine
learning techniques for performance prediction, approaches for uncertainty analysis, and
more in general techniques that can be used for uncertainty quantification and propaga-
tion.

2.1. Performance Estimation with Machine Learning

As performance evaluations and measurements can be quite costly, there has been
a large body of work that has focused on reducing the number of evaluations required
to make accurate estimations. To this end, several learning techniques have proven to
be quite effective. Minimising the learning data when training these machine learning
models from real observations, such as average arrival rates and response times [14, 15]
has been a research priority.

The response surface methodology (RSM) explores the relationships between several
explanatory variables and one or more response variables, in particular a sequence of
designed experiments is used to obtain an optimal response [16, 17]. Such methodology
has been applied for reliability-based design optimisation in [18], for multidisciplinary
design optimisation [19, 20], and robust optimisation [21, 22]. A survey of sampling-
based methods for uncertainty and sensitivity analysis is provided in [23], and a survey
of fitness approximation methods applied in evolutionary computation is reported in [24].

When considering the performance indices of software systems, the type of applied
machine learning techniques resulted to be quite diverse. For instance, Courtois and
Woodside [25] use regression functions to derive performance models from measured data.
An iterative process incorporates new measurements until the model’s accuracy is con-
sidered high enough. In [26], service resource consumption is derived from an optimized
set of response time measurements. Instead, Wang et al. [27] use Bayesian inference and
Gibbs sampling to model service demand from queue length data. Kattepur and Nam-
biar [28] employ spline interpolation of service demands to propose a modified version
of the multi-tiered web applications algorithm that provides more accurate estimates of
maximum throughput and response time.

3

Machine learning approaches have been also proposed for performance prediction of
highly configurable systems [29, 30, 31, 32]. The system is considered a black-box model,
which is learned or deduced from performance measurements of sampled configurations.
A common strategy is to execute the system in different configurations and use machine
learning techniques to generalize a model that characterize system performance [33].

Zheng et al. [34] applied Kalman filters to update parameters of queueing models
as the software system evolves. Ghanbari et al. [35] derived performance parameters
(such as service demands) by a combination of K-means clustering algorithm with a
tracking filter for grouping classes of services. In [36] statistical techniques are applied
to tune the application parameter space, and two classes of predictive models, piecewise
polynomial regression and artificial neural networks are compared. Sharma et al. [37]
apply independent component analysis to categorize workload requests and to identify
their resource demands using measurement results such as CPU and network usage.
Finally, genetic programming [38] has been used to derive software performance curves,
but the evaluation is restricted to a limited set of input parameters that vary in a narrow
interval.

Our approach differs from these works because we consider uncertain parameters of
different nature (spanning from workload, operational profile, software resource demand,
and hardware service time), and the values of such uncertain parameters can be expressed
in different forms, such as probability distribution functions, intervals, random seeds, etc.
This provides greater flexibility for software engineers in modelling parameters of different
characteristics. In literature ML techniques are well-know to require a substantial amount
of training data in order to provide accurate performance estimations. PCE, on the other
hand, is a cost effective method that requires significantly less training data to estimate
the performance of software systems [39], as also demonstrated by our experiments in
this paper. Furthermore, the PCE approach has advantages over other ML methods due
to the fact that the mean and variance of the output required for the quantifying the
robustness of the system are available in closed form [40].

2.2. Performance Uncertainty Analysis

There are several works in the literature that optimise QoS properties of software
systems affected by variability in system or environment parameters. For instance,
Menasce et al. [41] deal with uncertainties by reconfiguring software architectures at
runtime. Kowal et al. [42] leverage the commonalities across variants of software sys-
tems to analyse uncertainty in terms of both parametric changes (which affect the values
of performance annotations) and structural changes (which may affect the topology of
performance models). Incerto et al. [43] express uncertainty as symbols in the specifi-
cation of queuing network performance models and derive actual values of symbols by
means of satisfiability modulo theory. Perez-Palacin et al. [44] proposed a methodology
to guide software engineers in the process of recognizing and managing the existence of
uncertainty. Jamshidi et al. [45, 7, 46] deal with uncertainty of workload in dynamic
and uncertain cloud environments [47].

Previous work has tackled the problem of model-based performance and reliability
evaluation of software systems in presence of uncertainties [9, 12, 48, 49]. The prob-
abilistic formulation of parameter uncertainties is sampled using a Monte Carlo-based
approach to systematically assess the robustness of a software system under uncertainty.

4

As drawback, Monte Carlo simulation requires the creation of a large number of sam-
ples, which can be very computationally expensive [50], as the performance and reliability
models have to be re-evaluated for each sample.

Esfahani et al. [6] introduce GuideArch, which employs fuzzy mathematical methods
to reason about uncertainty. In GuideArch, the impact of architecture design alternatives
on software properties is modelled as a triangular fuzzy value. The method enables the
ranking of software architectures, finding the optimal architecture, and identifying critical
design decisions.

Another approach that provides a quantitative method for comparing different design
alternatives dealing with uncertainty is rArcheopterix (robust ArcheOpterix) [48, 12,
13]. The rArcheopterix framework considers the uncertainty of design-time parameter
estimates and optimises embedded system architectures for clearly defined robust quality
goals, such as confidence intervals.

Similarly to rArcheOpterix [48], we consider uncertain parameters as probability dis-
tributions. However, rArcheOpterix uses Monte Carlo-based method, which is compu-
tationally expensive. In this paper, we propose the PCE approach, which significantly
reduces the number of samples required to perform uncertainty propagation.

2.3. Uncertainty Modelling and Propagation

The related work in uncertainty modelling and propagation aims at measuring the
impact of uncertain input parameters on the system output. One way of classifying these
methods is based on how uncertainty is described. The main categories are:

• Probabilistic approaches, which assume that the probability density functions
(PDFs) of the uncertain parameters are known. These methods are known as
parametric approaches and include solving techniques such as (i) maximum likeli-
hood [51], (ii) method of moments [52], and (iii) Bayesian estimation [52]. In order
to use these approaches, one has to choose the form of the model, e.g., Gaussian,
and determine the coefficients of that model.

• Possibilistic approaches are methods that use a membership function to model
uncertain input parameters. These methods are also known as non-parametric or
fuzzy approaches, originally introduced by Zadeh [53]. Uncertain parameters are
described using linguistic categories with fuzzy boundaries.

• Information gap decision theory [54] estimates the impact of uncertain pa-
rameters by the deviation of errors, i.e., the difference between the parameters and
their estimation. It is usually used in cases historical data is not available, and
uncertain parameters cannot be described with probability distributions functions
or membership functions.

• Interval analysis was first introduced by Moore [55] and models uncertain pa-
rameters as intervals. Differently from probabilistic approaches, interval analysis
is similar to a worst-case analysis. It aims to investigate the limits of variation,
without assumptions of distribution.

Our approach belongs to the probabilistic kind, and is applied for the first time to
model and propagate uncertainty in software systems.

5

3. Polynomial Chaos Expansion for Uncertainty Propagation in Robust Per-
formance Estimation

Any software system, whether it is at the modelling stage or while running, has
uncertainties associated with it. For instance, web-based systems would have to deal
with an uncertain number of users, who may generate an uncertain number of requests
for the various services that the system offers. At the modelling stage, a software architect
would not have a full picture of the environment in which the software would be deployed.
All these uncertain parameters affect the quality attributes of the system, and most
importantly, performance.

It is possible to estimate the range or distribution of uncertain parameters from
historical data, or using expert knowledge. It is yet unclear, however, how to estimate
the performance (e.g., response time and resource utilization) of a software system when
it is subject to uncertain parameter values. In this work, we seek to develop a solution
to this problem.

As software systems usually have a large number of uncertain parameters with many
possible values, it becomes infeasible to run exhaustive evaluations of the sample space
and all possible value combinations. Instead, the method that we propose to use for
estimating performance robustness explicitly considers parametric uncertainties and uses
polynomial expansions to propagate these uncertainties, which makes it computationally
more efficient than the standard Monte Carlo-based schemes that have previously been
used in this area (please refer to Section 2).

3.1. Polynomial Chaos Expansion

Given an uncertain parameter x (e.g., number of users for a service), and a perfor-
mance index (e.g., response time of the service) y, polynomial chaos expansion estimates
how the output varies as the input varies, thus propagating the uncertainty in the input
into the output.

As the x parameter is uncertain, it represents a random variable X, and it is specified
via a specific random variable ξ and its PDF ρ(ξ), as follows:

X = f(ξ) (1)

The random variable ξ can be uniform, exponential, etc., depending on the modelling
choice. We seek for an appropriate function f such that given ρ(ξ), we can achieve the
required distribution of X. PCE takes a representation of an uncertain input (eq. 1),
and expands the function f in terms of a set of orthogonal polynomials.

The polynomial basis comprises polynomials ψ0 = 1, ψ1, ψ2, ..., where ψi is a polyno-
mial of order i, and they satisfy the orthogonality condition:

〈ψi, ψj〉 =

∫
ψi(ξ)ψj(ξ)ρ(ξ)dξ = 0, ∀i 6= j (2)

which means that the covariance between any two different ψi(ξ) is zero, that is they are
uncorrelated.

Using the orthogonal basis polynomials, we can write:

X = f(ξ) =
∞∑

i=0

aiψi(ξ), (3)

6

where ai are the expansion coefficients (the mode strength). The combination of ai and
ψi is called the i-th mode, for which a unique expansion exists where the mode strengths
are given by

a = 〈f, ψi〉/〈ψi, ψi〉. (4)

The denominator 〈ψi, ψi〉 is computed from the orthogonal polynomials, whereas the
enumerator 〈f, ψi〉 is an integral of the form given by eq. 2, which is evaluated numerically
for complex forms of f .

Any expansion of ξ in the form of eq. 3 is called PCE. There are many possible
functions f for a given X and ξ distribution, hence there can be many possible PCEs of
a given X using a given random variable ξ.

For practical reasons, PCEs are usually truncated to a finite number of terms d as
follows:

X = f(ξ) ≈
d∑

i=0

aiψi(ξ), (5)

The term d should be large enough for the approximation to be accurate. In practice,
a good representation f is one for which the truncated representation fd with small d
will be accurate. Since polynomials are orthogonal, they can be written uniquely as an
expansion in the orthogonal family, which means that coefficients ai are well defined.
The polynomials are chosen based on the distribution of the chosen random variable ξ.
The polynomial types used for standard forms of continuous probability distributions are
listed in Table 1.

Table 1: Askey scheme of continuous hyper-geometric polynomials used for standard forms of continuous
probability distributions.

Distribution Density function Polynomial Weight function Range

Normal 1√
2π
e

−ξ2
2 Hermite e

−ξ2
2 [−∞,∞]

Uniform 1
2

Legendre 1 [−1, 1]
Beta (1−ξ)α(1+ξ)β

2α+β+1B(α+1,β+1)
Jacobi (1− ξ)α(1 + ξ)β [−1, 1]

Exponential e−ξ Laguerre e−ξ [0,∞]

Gamma ξαe−ξ
Γ(α+1)

Generalised Laguerre xαe−ξ [0,∞]

The PDF of ξ can take any form, e.g., discrete, continuous, discretised continuous,
specified analytically, using histograms, datasets, or moments. The key point in PC
theory is that the polynomial basis is linked with the distribution of ξ, which dictates
the polynomial basis functions. The weighting function of the orthogonal polynomials
in Table 1 is identical to the probability density function of the corresponding input
distribution, which dictates the choice of the appropriate polynomial.

Usually, real-world systems have more than one uncertain input parameter. In this
case, X, ξ, and the coefficients (mode strengths) ai are vectors, hence we write them as
X, Ξ, and ai. It follows that the polynomial ψi(Ξ) is multivariate, hence we can write it
as Ψi.

7

If the random variables Ξ are independent, Ψi is a tensor product of the polynomial
bases for each Ξi. More specifically, if Ξ comprises m id random variables, and given
index j=(j1, j2, ..., jm), we can write:

Ψj(Ξ) =
m∏

i=1

ψji(Ξi) (6)

In case the input variables are not independent, they can be transformed using In-
dependent Component Analysis (ICA) to remove any correlations [56]. ICA is a source
separation method which aims at estimating independent unobservable (latent) variables
which are mixed into observed variables. The main idea of the method is in its search for
non-Gaussian components, which rely on the covariance matrix of random variables, and
combines a static linear mixture model with higher order statistics in order to identify
unobservable variables. An example is the variation of service demands due to changes
in caching effectiveness. This occurs when processor workload increases, or there exists
competing workload demands, affecting the number of user requests. As a result, these
parameters will be correlated.

3.2. Uncertainty Propagation

The primary objective of this work is to create a PCE expansion for performance
indices given uncertain input parameters. Assume the output of a software system (per-
formance index) is y when given an input x, i.e., y = η(x), where η represents the
performance of the software system. As in the previous section, we assume this input is
uncertain, hence it is represented as a random variable X. As a result, the output is a
random variable Y = η(X). Both X and Y can be vectors, if there are more than one
input and one output.

Assume that we have a PCE for X as described in eq. 5, and we seek to represent
the output with another PCE as follows:

Y = g(Ξ) =
∞∑

i=0

biψi(Ξ), (7)

and in the truncated form as

Y = g(Ξ) ≈
d∑

i=0

biψi(Ξ). (8)

The random variable Ξ, the mode functions ψi, and the truncation level d for the
PCE of Y are the same as the ones used for the PCE of X.

The PC analysis is completed by finding the mode strengths bi, using intrusive or
non-intrusive methods. Intrusive methods, such as the stochastic Galerkin technique [40],
manipulate the governing equations, and provide semi-analytical solutions for uncertainty
analysis. These methods are complex and computationally expensive, since they require
symbolic manipulations, hence we use a non-intrusive and more efficient method, i.e.,
sparse quadrature [57].

Non-intrusive methods treat the system as a black box, and solve the following equa-
tion:

8

d∑

i=0

biψi(ξ) = η(fd(ξ)), (9)

where fd(ξ) =
∑d

i=0 aiψi(ξ), by evaluation the system at different values of the random
variable ξ.

Once the mode strengths have been identified, and the PCE for the output y =∑d
i=0 biψi(ξ) has been established, the distribution Y as induced by distribution X is

estimated.
Next, characteristic statistical properties of Y useful for uncertainty quantification,

such as mean and variance can be exactly calculated. The first two moments of Y are
obtained using properties of the orthogonal polynomials:

E(Y) = b0, E(Y 2) =
d∑

i=0

b2i 〈ψi, ψi〉. (10)

from which the variance of Y can easily be calculated. Since for orthogonal polynomials
〈ψi, psii〉 = 1, the variance is equal to

E(Y 2) =
d∑

i=0

b2i . (11)

3.3. Estimating Software Performance Robustness with PCE

The PCE method is applied to estimate the performance of software systems under
uncertain input parameters. The main steps of the method are depicted in Algorithm 1
using the parameters from the running example of this section.

Algorithm 1 PCE for Robust Performance Estimation.

1: procedure PCE
2: u ≈∑d

i=0 aiψi(ξ) . Number of users is represented using random variable ξ.

3: rt ≈∑d
i=0 biψi(ξ) . Response time is represented in terms of ξ.

4: a = 〈∑d
i=0 aiψi(ξ), ψi〉/〈ψi, ψi〉 . Calculate the mode strengths a.

5: b = 〈∑d
i=0 biψi(ξ), ψi〉/〈ψi, ψi〉 . Calculate the mode strengths b.

6: E(rt) = b0 . Calculate the mean of response time.
7: E(rt2) =

∑d
i=0 b

2
i . Calculate the variance of response time.

8: CoV=

√
E(rt2)

E(rt)
. Calculate the coefficient of variation of response time.

9: end procedure

The first step of this process (line 2 of Algorithm 1) is concerned with representing
uncertain input parameters in terms of random variable defined by their probability dis-
tributions. Depending on the type of the uncertain input parameter, different probability
density functions may be appropriate.

For instance, consider a web-based system that provides certain services, and we are
interested in estimating whether the system is robust in terms of response time, i.e., we
would like to make sure that our system can meet response time requirements of our users
despite the uncertain parameters that may affect it. One potential uncertain parameter is

9

the number of users. Through historical data (e.g., considering how the system has been
used in the past), assume we observe that this parameter follows a normal distribution
with mean µ = 100 and standard deviation σ = 20.

As described in line 2 of Algorithm 1, the number of users u is expressed in terms
of a standard normal random variable ξ in N(0, 1). Given X, the aim is to estimate
how this uncertainty manifests itself in the performance indices of the system, such as
the response time. To this end, the response time trt is expressed in terms of the same
random variable ξ as follows:

rt ≈
d∑

i=0

biψi(ξ) (12)

The coefficients bi are calculated using the sparse quadrature method [57], as illus-
trated in line 4 and 5 of Algorithm 1. In our example, this represents the response surface
of response time as calculated by PCE, which can be used for performance robustness
quantification.

Performance robustness is defined as either the lack or low level of performance vari-
ation in response to a perturbation. To illustrate this concept, the output of the PCE
model is presented in Figure 1 for two different software systems that are affected by the
same uncertain parameter (number of users) with mean 100 and standard deviation 20.

1.396 1.398 1.4 1.402 1.404

10
-4

0

0.5

1

1.5

2

2.5

3

3.5
10

6

(a) System 1.

0 0.5 1 1.5 2 2.5 3

10
-4

0

2000

4000

6000

8000

10000

(b) System 2.

Figure 1: Distribution of potential number of users estimated using 1,000 samples.

The response time of both systems has the same mean, but differs in standard devi-
ation: the response time of System 1 shown in Figure 1a has a lower standard deviation
(σ = 1.2e− 07) than the response time of System 2 shown in Figure 1b (σ = 4.2e− 05).
Standard deviation is a commonly used measure of variation and robustness. This met-
ric can be estimated using Equation 10. However, standard deviation, while it measures
dispersion, does not allow for comparing how robust a system is for different performance
indices coming from different distribution, as they may vary greatly in the means about
which they occur.

In this paper, we propose to use the coefficient of variation (CoV), which can be
calculated by taking the ratio of mean and standard deviation, and as a result cancelling
the units.

10

CoV =

√
E(rt2)

E(rt)
(13)

Both the mean (first moment) E(rt) and the variance (second moment) E(rt2) are
calculated using Equation 10. CoV is expressed as a percentage, and estimates the vari-
ability of the performance indices with respect to the mean, as reported in Equation 13
and line 4 of Algorithm 1. The means tell us whether the systems meet performance
requirements, whereas the CoVs indicate whether these means are robust. A system
with low CoV is less dispersed, hence more robust towards the variation of the input
parameters. In the example presented in Figure 1, CoV of System 1 is 0.08%, whereas
the CoV of System 2 is 30%, hence it can be concluded that the response time of System
1 is more robust than the response time of System 2, and would be less influenced by
variations in the number of users.

4. Experimental Evaluation

To evaluate the PCE technique for robust software performance estimation, we per-
formed an experimental study on three different software systems. The case studies are
chosen such that they represent different phases of software development, and have dif-
ferent numbers of uncertain input parameters with various distributions. The nature of
the systems is also different with uncertainty levels of different scales. Each run has a
fixed set of parameters that does not vary during the experiment.

We empirically estimate the ranges and distribution of uncertain parameters using
experimental measurements of the system. The probability density function is estimated
from the data. While there are different ways of estimating the probability density func-
tion, a typical approach is using kernel density [58]. A kernel distribution produces a
nonparametric probability density estimate that fits to the data. The resulting distribu-
tion is defined by a kernel density estimator, a smoothing function that determines the
shape of the curve used to generate the probability density function, and a bandwidth
value that determines the range.

We use cross-validation for model selection, while the accuracy of the selected degree
for the PCE is measured by the leave-one-out error [59]. The method consists of running
the PCE analysis on N sets of a reduced experimental design selected from the available
data, and comparing its prediction on the excluded points with the real output values.
The generalisation error is estimated for each set of reduced experimental design, and
averaged over N sets. This method has been shown to be more reliable and to overcome
any issue with over-fitting present in other approaches [60].

We also investigate the efficiency of the method by using different numbers of samples
in PCE model construction, and robustness, which is determined by introducing different
levels of noise in measurements. Finally, we evaluate how PCE performs when compared
to the commonly used Monte Carlo approach. Different samples were used for PCE
and the Monte Carlo Method. Results are shown for each case study individually, and
summarised at the end.

11

4.1. Benchmark Method – Monte Carlo Simulation

We compare the efficiency of the PCE method against a commonly used approach:
Monte Carlo Simulation [13]. Monte Carlo-based methods usually evaluate a large num-
ber of samples that consider various combinations of uncertain parameters. As in the
PCE approach, uncertain parameters are sampled from their respective probability dis-
tribution, and performance indices are measured as described in Algorithm 2. The MC
method is terminated when the desired statistical significance is achieved, measured by
the relative error e in line 7 of Algorithm 2.

Algorithm 2 Monte-Carlo method with dynamic stopping criterion.

1: procedure MonteCarlo()
2: i = 1
3: while e > 0.05 do . Tolerance level is set at 0.05 for 95% confidence.
4: ri=MonteCarloSimulation(samples) . Perform Monte Carlo Simulation.

5: r =

i∑
j=0

rj

i . Calculate the mean over all samples.

6: r2 =

i∑
j=0

r2j

i . Calculate the mean-square over all samples.

7: e =
2z(1−α/2)√

i

√
r2−r2
r . α is the desired significance of the test.

8: i = i+ 1
9: end while

10: end procedure

The parameter z in line 7 refers to the inverse cumulative density value of the standard
normal distribution (for less than 30 samples the t-distribution is used), whereas α is
the desired significance of the test. For further details and illustration of the dynamic
stopping criterion we refer the interested reader to [13].

5. Case Study 1 – E-commerce

The E-commerce system is a web-based application that manages business data related
to books and movies: guest users can browse catalogues, while customer users can make
selections of items to be purchased. A Layered Queueing Network (LQN) model for
this case study has been used for running model-based performance analysis [61]. Here
we introduce uncertainties in the specification of input parameters as described in the
following section.

5.1. Experimental Design

Table 2 reports the uncertain parameters defined for this case study. Depending on
the source of uncertainty, parameters may result in different distributions and range of
possible values. Software designers had a colloquium with the system owner, and they
agreed to specify the following range of values: (i) workload, which is labelled as users,
and is uniformly distributed between the range (49, 98); (ii) service demands, denoted
as PAvail and PQual, which indicate the demand incurred by the services intended to
determine the availability and quality of products, respectively; (iii) hardware service

12

times, that are: (1) DBL, i.e., light requests to database 25% of time solved in 0.03 UT
(unit of time), 50% with 0.015 UT, and 25% with 0.0075 UT, and (2)DBH refers to heavy
requests to database which are in 50% of the time solved in 0.06 UT (units of time), 25%
with 0.009 UT, and 25% with 0.12 UT; (iv) operational profile DBA denotes the access
to promotions by users, and is triangularly distributed between 0.2 and 0.8, plus 0.5 as
mode. The parameters show no correlation between each other, hence are considered
independent and no tranformation is required for the PCE. The LQN Solver tool [62]
is used to analyze the runtime behaviour of the software system and get measurements
for different performance indices representing response time, throughput, and utilization.
The evaluation of each sample takes approximately 3 minutes.

Table 2: E-commerce – uncertainty specification.

Parameter Distribution Range of values
users uniform (49, 98)
PAvail normal (2, 8)
PQual normal (4, 16)
DBL discrete (0.03, 0.25, 0.015, 0.5, 0.0075, 0.25)
DBH discrete (0.06, 0.5, 0.009, 0.25, 0.12, 0.25)
DBA triangular (0.2, 0.8, 0.5)

5.2. Results

The PCE technique is applied to the E-commerce case study. The probability dis-
tribution plots in Figure 2 show the results for all performance indices, both predicted
(YPC) and measured (Y). For the purpose of this experiment, we considered the follow-
ing performance indices: mean response time and throughput for the browseCatalog and
makePurchase services, and the utilization of database and library components.

The number of samples used in this case is 1,000. The plots indicate that in all
scenarios, the probability distributions of the real and predicted values by PCE are almost
identical, indicating that the polynomial chaos expansion technique is very accurate.

The detailed results of the polynomial chaos expansion are shown in Table 3. The
second column lists the polynomial degree, which shows the complexity of the model.
This is derived through an automated exploration of different degrees up to d=30, which
gives the best fit. The mean, standard deviation (SD), and coefficient of variance (CoV)
are indicators of solution quality. These are estimated through Equation 10 for each
performance index reported in Figure. 2.

The CoVs shown in Table 3 indicate that the solution is relatively robust in terms of
response time for makePurchase service (around 54%), but has very low robustness with
respect to the other performance indices, especially for the throughput of the browseCat-
alog service (159.77%) and the utilization of the library component (159.76%).

As this case study shows, while a software system may be robust in terms of some
performance index, it may suffer in the robustness of other indices. Hence, these aspects
should be considered simultaneously when designing new software systems, or while
taking refactoring actions.

The degree of the most accurate expansion depends on the number of samples used
to construct the PCE. The errors in Table 4 are an indication of the accuracy of the

13

2 4 6 8 10 12

Values

0

0.05

0.1

0.15

0.2

0.25

0.3

F
re
q
u
e
n
c
y

users PAvail PQual DBA DBL DBH

Y

Y
PC

(a) RT (browseCatalog)

0 100 200 300 400 500

Values

0

0.002

0.004

0.006

0.008

0.01

F
re
q
u
e
n
c
y

users PAvail PQual DBA DBL DBH

Y

Y
PC

(b) RT (makePurchase)

10.5 11 11.5 12 12.5 13

Values

0

1

2

3

4

5

6

7

8

F
re
q
u
e
n
c
y

users PAvail PQual DBA DBL DBH

Y

Y
PC

(c) TH (browseCatalog)

0 0.005 0.01 0.015 0.02

Values

0

50

100

150

200

250

300

F
re
q
u
e
n
c
y

users PAvail PQual DBA DBL DBH

Y

Y
PC

(d) TH (makePurchase)

0.105 0.11 0.115 0.12 0.125 0.13

Values

0

100

200

300

400

500

600

700

800

F
re
q
u
e
n
c
y

users PAvail PQual DBA DBL DBH

Y

Y
PC

(e) U (database)

0.8 0.85 0.9 0.95 1 1.05

Values

0

20

40

60

80

100

F
re
q
u
e
n
c
y

users PAvail PQual DBA DBL DBH

Y

Y
PC

(f) U (library)

Figure 2: Distribution of the different performance indices for the E-commerce System, as obtained from
direct sampling of 1,000 points, as well as from the PCE estimate.

Table 3: PCE results for the E-commerce System.

Performance PCE
Indices Degree Mean SD CoV

RT (browseCatalog) 6 1.84 2.94 159%
RT (makePurchase) 8 182 43.21 54%
TH (browseCatalog) 7 3.47 5.55 159.77%
RT (makePurchase) 16 0.0062 0.0022 35.2%
U (database) 6 0.038 0.057 149.55%
U (library) 7 0.27 0.43 159.76%

uncertainty propagation and robustness estimation. The PCE approach was very efficient
and produced very low errors even with 100 samples. In the majority of the cases, the
accuracy of PCE was above 99%, apart from the thoughput for the makePurchase service,
where the PCE method had an error of 14% for 100 samples.

For comparison, the last column of Table 4 shows the number of samples required
by the Monte Carlo method to accurately estimate the robustness of the system. The
confidence value was set to 95%, which means that errors should be less than 5%. As each
sample takes approximately 3 minutes to be evaluated, we set the stopping criterion to
1,000 or until the desired level of accuracy has been achieved. In 3 out of 6 scenarios the
MC method did not achieve the desired level of accuracy with the allowed 1,000 samples:

14

Table 4: Accuracy of PCE estimates with different number of samples for the E-commerce System.

Performance PCE Samples MC Samples
Indices 1000 700 300 100 Required

RT (browseCatalog) 5.2 E-05 7.2 E-05 1.2 E-04 2.9 E-04 >1,000
RT (makePurchase) 5.1 E-05 7.1 E-05 1.2 E-04 2.9 E-04 >1,000
TH (browseCatalog) 2.2 E-04 5.72 E-04 1.19 E-03 3.25 E-03 549
TH (makePurchase) 1.9 E-02 4.9 E-02 1.1 E-01 1.4 E-01 >1,000
U (database) 4.5 E-04 6.6 E-04 4.1 E-04 6.2 E-03 549
U (library) 3.1 E-04 4.83 E-04 3.05 E-04 2.7 E-03 557

RT (browseCatalog), RT (makePurchase), and TH (makePurchase). PCE, on the other
hand, produced models for these cases that are at least 98% accurate. in the other three
cases, while the MC method converged at around 550 samples, PCE required only 100
samples with an error < 1%. This translates to 450 samples times 3 minutes/sample =
22.5 hours in time savings.

Table 5: Leave-one-out cross-validation errors of PCE with different levels of relative added noise (RAN)
for the E-commerce System.

Performance RAN level
Indices 20 10 5 1

RT (browseCatalog) 6.94E-03 6.29E-02 1.71E-01 3.43E-01
RT (makePurchase) 1.40E-04 1.70E-04 3.50E-04 5.70E-04
TH (browseCatalog) 2.02E-02 1.65E-01 3.94E-01 6.04E-01
TH (makePurchase) 2.83E-02 4.25E-02 8.40E-02 1.64E-01
U (database) 2.07E-02 6.24E-02 1.80E-01 3.81E-01
U (library) 1.11E-02 2.87E-02 9.29E-02 2.48E-01

While the PCE achieved high accuracy for most purposes (more than 99%), a more
accurate estimate of the tails of the distribution can have significant implications, es-
pecially in the case of robust performance estimation. Moreover, the PCE approach
estimates the output distributions at a very low computational cost, giving high accu-
racy even with a low number of samples. The PCE achieved more than 99% accuracy
even with 100 samples in the majority of the performance indices. The numerical exper-
iments confirm that the new methodology is competitive in a wide range of parameters,
especially where high accuracy is required.

Finally, we investigate the robustness of the PCE technique by adding independent
normally distributed random values [63] to the LQN model-based results. To control
the level of the noise that we add to the response value, we use the relative added noise
(RAN), which is defined as the ratio of the power of response value and the power of
added noise:

RAN =
µ

σ
(14)

where µ is the mean of the response and σ is the standard deviation of the noise. We
15

set different levels of RAN, with higher RAN level indicating less discrepancy and noise.
The leave-one-out errors shown in Table 5 indicate that the PCE method is quite robust
towards introduced noise. In the majority of the cases, the errors are below 20%, even
with RAN level of 5, which is the highest noise level.

6. Case Study 2 – JPetStore

JPetStore1 is a distributed Java EE demo application representing a typical web-based
online shopping system for selling pets, where an HTML-based web interface enables to
perform typical use cases, such as signing in and off, browsing through the product catalog
with categories and products, maintaining a virtual shopping cart, and purchasing an
order. A more detailed description of a previous version of the application w.r.t. its use
cases can be found in our previous work [64].

6.1. Experimental Design

The JPetStore system is exposed to synthetic session-based workload executed by
a workload generator, according to the methodology described in our previous work
[64]. A constant number of concurrent users (defining the level of workload intensity)
is performing a sequence of inter-related requests (defining the navigational profile) to
the system. The workload is closed as a new user session is started only after a previous
session has terminated.

Table 6: JPetStore – uncertainty specification.

Parameter Distribution Range of values
numUsers uniform (10, 100)
cpuCatalog uniform (0, 700)

Table 6 shows that we have two uncertain parameters: (i) the number of users (nu-
mUsers) uniformly varies from 10 to 100; (ii) the CPU demand (cpuCatalog) of the
Show Catalog service that uniformly varies from 0 to 700. These two parameters are
not correlated, hence no transformation is required for the PCE. The range of values has
been selected after having executed a series of preparation experiments with the goal to
explore the capacity range of the application under analysis.

The remaining parameters have a constant value. The experiments are executed in the
Emulab2 testbed which provides a controllable, predictable, and repeatable environment
for performance experiments [65]. Two server nodes are used: one for running the load
driver and the other running the JPetStore system. The Emulab node type pc3000, which
are Dell PowerEdge 2850s machines with a dual-core 64-bit Intel Xeon 3 GHz processor
and 2 GB RAM, is used for both nodes with a Ubuntu 12.04 LTS operating system
(GNU/Linux kernel 3.2.0-56, 64 bit).

The JPetStore system is deployed to a Jetty Servlet container (version 7.6.10). Apache
JMeter is of version 2.9. The initial and maximum heap size for both JMeter and Jetty

1http://github.com/mybatis/jpetstore-6
2http://emulab.net

16

are set to 1.5 GB. On both machines, Oracle Java version 1.6.0 45 is used. Both nodes
are connected via 100 Mbit/s LAN links.

Each experiment runs for 15 minutes, including a ramp-up time of 30 seconds at
the beginning of the experiment. During ramp-up time, the number of active users
is increased linearly until the desired number of users is reached. The performance
measurements of the first 230 seconds and last 30 seconds are removed to consider only
the steady state of the experiment.

The end-to-end response times for each invocation of user actions are recorded by the
workload generator. After each experiment run, aggregate statistics for the response time
are computed per action. The aggregate statistics include mean (with 95% confidence
interval, CI) and median values. We selected the mean response time and throughput of
the View Product service (also contained in the user sessions), and the utilization of the
server node running the JPetStore system as the performance measures of interest.

6.2. Results

The results of the JPetStore case study are shown as probability distribution plots
for each performance indicator in Figure 3. It can be observed that the PCE method
estimates the distribution of the performance indicators subject to the uncertain input
parameters with high accuracy. Similar to the results in the first case study, the real and
estimated distributions are almost identical in all cases, which confirms the efficiency
of PCE in estimating the performance robustness, and it is an indicator of the internal
validity of the method.

-0.5 0 0.5 1 1.5 2 2.5

Throughput
×10

4

0

1

2

3

4

5

6

7

8

F
re
q
u
en
cy

×10
-5 nUsers CpuCatalog

Y

Y
PC

4 4.5 5 5.5 6

Mean response time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F
re
q
u
e
n
c
y

nUsers CpuCatalog

Y

Y
PC

-0.2 0 0.2 0.4 0.6

Mean CPU0

0

0.5

1

1.5

2

2.5

3

3.5

F
re
q
u
en
cy

nUsers CpuCatalog

Y

Y
PC

-0.1 0 0.1 0.2 0.3

Mean CPU1

0

1

2

3

4

5

6

7

8

F
re
q
u
en
cy

nUsers CpuCatalog

Y

Y
PC

8.5 9 9.5 10 10.5

Mean memory
×10

8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
re
q
u
e
n
c
y

×10
-8 nUsers CpuCatalog

Y

Y
PC

Figure 3: Distribution of the different performance indices for the JPetStore, as obtained from direct
sampling of 1,000 points, as well as from the PCE estimate.

The parameters of the constructed PCE model are shown in Table. 7. CoV is the

17

measure that we use to indicate how robust the system is when it is subjected to un-
certain input parameters. While the system is quite robust with respect to memory
(CoV=3.89%), its robustness is not as high when considering the other performance in-
dicators. One would need to perform refactoring actions to improve the robustness of the
system in all performance indicators. This is an optimisation problem, which we intend
to investigate in the future.

Table 7: PCE results for JPetStore.

Performance PCE
Indices Degree Mean SD CoV

Mean throughput 2 8778.16 4145.09 47.22%
Mean response time 5 4.98 0.84 16.86 %
Mean CPU 0 14 0.25 0.09 37.97%
Mean CPU 1 6 0.09 0.05 52.97%
Mean memory 3 9.54 E+09 3.72 E+08 3.89%

Accuracy of PCE method for JPetStore is investigated for different number of samples
and results are shown in Table 8. In all cases, the method performs with high accuracy,
with errors lower than 1%, with the highest level of accuracy achieved for throughout.
The results are very promising, especially when considering the fact that even with 100
samples, it can produce more than 99% accuracy, which saves in computational cost.

Table 8: Accuracy of the PCE method for JPetStore with different sample sizes.

Performance PCE Samples MC Samples
Indices 1000 700 300 100 Required

Throughput 2.9 E-06 2.9 E-06 2.9 E-06 2.3 E-06 > 1,000
Response time 1.7 E-02 2.1 E-02 4.38 E-02 6.1 E-02 244
CPU 0 8.6 E-04 8.8 E-04 8.77 E-04 1.3 E-03 > 1,000
CPU 1 3.6 E-03 3.6 E-03 4.29 E-03 6.9 E-03 > 1,000
Memory 3.9 E-02 6.9 E-02 7.22 E-02 7.1 E-02 121

The last column of Table 8 presents the number of samples required by the MC
method to converge at 95% accuracy. In 3 out of 5 performance indices, the MC method
was not able to converge with up to 1,000 samples. Instead, the PCE achieved more than
99% accuracy even with 100 samples. In this case study, each sample takes 15 minutes
to simulate, hence the time saved in using 100 samples instead of 1,000 is 225 hours. The
MC method’s performance is better when modelling the robustness of response time and
memory, where only 244 and 121 samples are required. Even in these scenarios, however,
the PCE approach requires only 100 samples to achieve high accuracy.

The errors from the PCE modelling were quite low even when noise was introduced,
as shown in Table 9, indicating that the method is reliable even with low RAN levels.
As expected, the highest errors were observed for RAN level of 1, which ranged from
20%–99%. The highest accuracy was achieved for throughput.

18

Table 9: Leave-one-out cross-validation errors of PCE with different levels of relative added noise (RAN)
for JPetStore.

Performance RAN level
Indices 20 10 5 1

Throughput 2.97 E-06 3.01 E-06 3.01 E-06 3.03 E-06
Response time 4.46 E-02 4.90 E-02 6.45 E-02 1.13 E-01
CPU 0 9.25 E-03 2.64 E-02 7.61 E-02 2.03 E-01
CPU 1 9.27 E-03 1.94 E-02 4.91 E-02 1.31 E-01
Memory 7.20 E-02 7.20 E-02 7.20 E-02 7.20 E-02

7. Case Study 3 – WordCount

WordCount (cf. Figure 4) is a popular benchmark application for Apache Storm. In
WordCount a text file is fed to the system and it counts the number of occurrences of
the words in the text file. In Storm, this corresponds to the following operations. A
Processing Element (PE) called Spout is responsible to read the input messages (tuples)
from a data source (e.g., a Kafka topic) and stream the messages (i.e., sentences) to the
topology. Another PE of type Bolt called Splitter is responsible for splitting sentences
into words, which are then counted by another PE called Counter. As depicted in
Figure 4, WordCount features a three-layer architecture that involves interactions with
technologies such as Apache Kafka as data source and a storage to persist the (word,
count) pairs. This case study is representative of highly configurable systems [33, 30, 66]
where the performance is studied in terms of changes in the configuration options while
the environmental parameters are kept constant.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)

(s
en

te
nc

e)

Figure 4: WordCount topology architecture.

7.1. Experimental Design

The performance statistics regarding each specific configuration has been collected
over a window of 5 minutes (excluding the first two minutes of warm up and the last
minute of cluster cleaning between two consequential experiments). The first two minutes
are excluded because the monitoring data are not stationary, while the last minute is the
time given to the topology to fully process all messages. We then shut down the topology,
clean the cluster, and move on to the next experiment.

We replicated each trial for 30 times in order to report the comparison results, and
conducted each individual test on a clean cluster, meaning that we killed all processes

19

from a previous run on all cluster nodes before starting the new ones. In addition,
we deleted all data generated by the previous run from the storage share between the
worker nodes. We ran the experiment on a cluster with 5 nodes (1 Nimbus, 1 ZooKeeper,
3 Supervisor, each 1 CPU, 4GB RAM) on OpenNebula. More details regarding the
experiment and raw data are available in [45]. The configuration parameters with their
associated values are listed in Table 10.

The range for the parameter values was chosen based on preliminary trials. This
setting resulted in a dataset of size 1,404. spout wait is a configuration option that set the
time in ms for the SleepEmptyEmitStrategy that aims to make the spout in sleeping mode.
In other words, this setting will make the spout component to sleep after pushing data, so
topologies’ throughput will likely decrease as the value of this configuration increases, and
this is typically used for internal queuing. Parameters splitters and counters configuration
options determine the level of parallelism of their associated components. The evaluation
of each sample takes approximately 8 minutes. As this is a factorial design, we assume
no correlation between the uncertain parameters.

7.2. Results

Figure 5 presents the entire PDF plots of the throughput and latency computed
based on the frequency histograms of the real values Y and the values produced by the
PC model YPC . Results are presented for each performance index to test whether the
throughput and latency models built using polynomial chaos expansion represent the
actual behaviour of the corresponding performance index.

-1 0 1 2 3

Throughput
×10

4

0

0.2

0.4

0.6

0.8

1

1.2

F
re
q
u
en
cy

×10
-4 spoutwait spliters counters

Y

Y
PC

0 2000 4000 6000 8000 10000

Latency

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
spoutwait spliters counters

Y

Y
PC

Figure 5: Distribution of the different performance indices for the WordCount system, as obtained from
direct sampling of 1,000 points, as well as from the PCE estimate.

Table 10: WordCount – uncertainty specification.

Parameter Values

spoutwait {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1e3, 1e4}
splitters {1, 2, 3, 4, 5, 6}
counters {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

20

Table 11: PCE results forWordCount.

Performance PCE
Indices Degree Mean SD CoV

Throughput 3 2837.65 6323.81 222.85%
Latency 2 3102.61 1698.86 54.76%

While the results from the PCE method are very close to the real values, the accuracy
is not as good as in the first two case studies. Table 11 shows the results from the
PCE analysis. Similar to the first two case studies, the system shows different levels of
robustness for different performance indicators. While the robustness of the system in
terms of latency is relatively high (although it still might need improvement), the system
suffers greatly with respect to throughput robustness.

Table 12: Accuracy of PCE with different number of samples for WordCount.

Performance PCE Samples MC Samples

Indices 1000 700 300 100 Required

Throughput 3.2 E-02 1.1 E-01 1.8 E-01 3.0 E-01 > 1, 000

Latency 2.9 E-02 1.2 E-05 2.9 E-04 7.1 E-04 > 1, 000

As in the first two case studies, we measured the accuracy of the PCE method with
different numbers of samples. The errors produced are shown in Table 12. Compared
to the first two case studies, the accuracy is not as high, although the PCE method
produces very low errors for latency (less than 1%). The distribution of throughput, on
the other hand, proves difficult to estimate with low number of samples. Nevertheless,
the PCE method was more than 97% accurate with 1,000 samples. The MC method,
on the other hand, did not converge with 1,000 samples, as shown in the last column of
Table 12.

The WordCount case study is quite different in the way the uncertain parameters
are sampled. Here, the input parameters are assumed to have discrete values, and a
factorial design of all input parameters is considered. In PCE, input parameters have
to be modelled as one of the continuous probability distributions presented in Table 1.
This may have an impact on how accurately these discrete values can be represented as
distributions, and as a result, the accuracy of PCE estimations. Nevertheless, the PCE
method performed reasonable well with 700 samples, with accuracy around 90%.

Table 13: Leave-one-out cross-validation errors of PCE with different levels of relative added noise (RAN)
for WordCount.

Performance RAN level
Indices 20 10 5 1

Throughput 4.60 E-02 4.60 E-02 4.60 E-02 4.70 E-02
Latency 2.30 E-02 2.30 E-02 2.30 E-02 2.30 E-02

Finally, the leave-one-out cross-validation errors of PCE with different RAN levels
are shown in Table 13. The PCE approach performed extremely well when noise was

21

introduced in the WordCount system, with errors less than 5% in the worst case. This
indicates that the PCE approach is robust even when input parameters are discrete
values.

8. Discussion

The experimental evaluation performed on the three case studies demonstrated the
power of polynomial chaos expansion in estimating the distribution of performance in-
dices given a set of uncertain parameters as input. Early performance estimates are
important as they determine whether the software system meets the requirements, and
allow for refactoring actions to be taken in time, thus to avoid expensive fixes.

Our approach nicely fits with the novel DevOps trend [1], where the operational
data is used for guiding changes in software. New versions of a software system may
be developed at a daily basis and performance engineers have to rely on incomplete
and uncertain data to decide about the required changes. Our approach supports such
decisions to be made before having the full information about the parameters under
which the software system will perform.

The assumption of a distribution for the uncertain parameters represent a limita-
tion of the approach, however a similar methodology was used in our previous work for
performance and reliability evaluation [9, 13]. Some strategies can be used to mitigate
this open issue, in fact the uncertainty of parameters is often influenced by the origin
of components. Information from hardware manufactures, third party software vendors
or system experts is useful in characterising the uncertainty of specific parameters. For
instance, in some situations, the distribution of the source variables can be obtained and
consequently, the desired parameter’s distribution can be approximated from its own
source.

Each case study used in the experimental evaluation was from a different stage of
the software development lifetime, from software architecture design stage, where perfor-
mance indices are obtained through model-based analysis, to an emulated environment,
and finally, a real running system where performance is measured online. Results showed
that, in general, the PCE method achieves high accuracy levels for all systems, especially
when a high number of samples is used (1,000 samples), where the method is at least
97% accurate. Even with a low number of samples (100), the method performed very
well in terms of accuracy in the majority of the cases. In the majority of the cases, the
truncation degree was less than 7. The highest truncation degree resulted in the first
case study (E-commerce system) where the response time for making a purchase required
a polynomial of degree 16. Nevertheless, the PCE approach took only a few seconds to
compute the coefficients.

The case that suffered the most by the decrease in the number of samples used
for PCE was throughput measured inWordCount. One reason for this is the way the
input parameters are modelled. We found that the PCE method works best when input
parameters can be modelled as probability distributions. In WordCount, however, input
parameters are discrete values, which impact the sampling process, and as a result the
accuracy of PCE.

The PCE approach was compared to Monte Carlo simulations, where the sampling of
input parameters is controlled using a dynamic stopping criterion. As the simulations are

22

very costly, we set the upper bound on the number of samples to be used to 1,000. Results
showed that the PCE approach outperformed the MC method, requiring significantly less
samples to model performance robustness, saving up to 225 hours.

We also tested how the PCE method reacts to noise, by introducing different levels
of Gaussian white noise to measurements. The signal-to-noise ratio was set at different
levels, with higher RAN level indicating less discrepancy and noise. This ensures that
the PCE method is reliable even when measurements are not very accurate. In general,
the PCE was very robust and produced low errors even for low RAN. InWordCount onE-
commerce, the accuracy of the method was above 97% for all noise levels. The results
were slightly worse forJPetStore, where accuracy drops to around 80% for the lower RAN
level, however the method is quite robust with accuracy above 92% in all other cases.
Similar results are observed for the E-commerce system.

Apart form the estimation of the probability distribution, the PCE method provides
a robustness measure for the performance indices, i.e., the coefficient of variance (CoV).
The standard deviation and mean of a variable are expressed in the same units, so
taking the ratio of these two allows the units to cancel, and results in the CoV, which is
expressed as a percentage. While the mean estimates whether the software system meets
performance requirements, CoV shows the extent of variability in relation to the mean of
the sample. This ratio can then be compared to other such ratios in a meaningful way:
the solution with the smaller CoV is less dispersed, and as a result more robust than the
solution with the larger CoV, making us more confident regarding the performance of
the system.

We observed that for the same system, while a certain performance index may be
robust toward the changes in uncertain parameters values, other performance indices
may suffer. This was, for instance, illustrated in Table 7 for the JPetStore system,
where mean memory was very robust with low CoV (3.89%), while the other indices had
high CoV values (up to around 53%). This indicates that the robustness of different
performance indices may be orthogonal, hence in the case of refactoring actions required
to fix the robustness of the system with respect to a certain performance index, its
impact may be negative on the robustness of other indices. Multiobjective optimisation
techniques [67, 68] could be used to address this issue, which is a priority for our future
work.

9. Conclusion

This paper introduces a computationally-efficient approach for uncertainty propa-
gation and robustness analysis of performance indices. The approach is based on the
approximate representation of the performance indices using polynomial chaos expan-
sions, and provides a qualitative and quantitative estimation of the effect of parameter
uncertainties on performance results. The computational cost of PCE is significantly
lower than the classical Monte Carlo method, saving up to 225 hours (improvement of
90%).

The application of the approach to three case studies showed that even with a rela-
tively low-order approximation, the polynomial chaos expansions can accurately estimate
the shape and tails of the output and states distribution for performance indices, provid-
ing a generally applicable approach for uncertainty propagation in robust performance
estimation.

23

In conclusion, the PCE analysis method can be used to efficiently propagate the effect
of uncertain parameters in software systems and calculate the robustness of performance
indices. Additionally, since the PCE approach provides a means for accurate estimation of
the shape of the distribution, it can form the basis of a procedure for applying refactoring
techniques to shape the distribution, which would enhance the flexibility in addressing
uncertainty compared to worst-case or minimum variance control.

Acknowledgement

This research was supported under Australian Research Council’s Discovery Projects
funding scheme, project number DE 140100017.

References

[1] A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu, W. Hasselbring, C. Heger, N. Herbst,
P. Jamshidi, R. Jung, J. von Kistowski, A. Koziolek, J. Kroß, S. Spinner, C. Vögele, J. Wal-
ter, A. Wert, Performance-oriented DevOps: A research agenda, Tech. Rep. SPEC-RG-2015-01,
SPEC Research Group — DevOps Performance Working Group, Standard Performance Evaluation
Corporation (SPEC) (2015).

[2] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with generalized
stochastic Petri nets, John Wiley & Sons, Inc., 1994.

[3] L. Kleinrock, Queueing systems, volume i: theory.
[4] G. Franks, D. C. Petriu, C. M. Woodside, J. Xu, P. Tregunno, Layered bottlenecks and their

mitigation, in: Proceedings of the International Conference on the Quantitative Evaluation of
Systems, 2006, pp. 103–114.

[5] M. Woodside, G. Franks, D. C. Petriu, The future of software performance engineering, in: Proceed-
ings of the International Workshop on Future of Software Engineering, IEEE, 2007, pp. 171–187.

[6] N. Esfahani, S. Malek, K. Razavi, Guidearch: guiding the exploration of architectural solution space
under uncertainty, in: Proceedings of the International Conference on Software Engineering, 2013,
pp. 43–52.

[7] P. Jamshidi, C. Pahl, N. C. Mendonça, Managing uncertainty in autonomic cloud elasticity con-
trollers, IEEE Cloud Computing 3 (3) (2016) 50–60.

[8] D. Garlan, Software engineering in an uncertain world, in: Proceedings of International Workshop
on Future of Software Engineering Research, 2010, pp. 125–128.

[9] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, L. Grunske, Model-based performance analysis
of software architectures under uncertainty, in: Proceedings of the International Conference on
Quality of Software Architectures, 2013, pp. 69–78.

[10] K. Sepahvand, S. Marburg, H.-J. Hardtke, Uncertainty quantification in stochastic systems using
polynomial chaos expansion, International Journal of Applied Mechanics 2 (02) (2010) 305–353.

[11] D. C. Petriu, H. Shen, Applying the UML performance profile: Graph grammar-based derivation of
LQN models from UML specifications, in: Proceedings of the International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, Springer, 2002, pp. 159–177.

[12] I. Meedeniya, A. Aleti, L. Grunske, Architecture-driven reliability optimization with uncertain
model parameters, Journal of Systems and Software 85 (10) (2012) 2340–2355.

[13] I. Meedeniya, I. Moser, A. Aleti, L. Grunske, Architecture-based reliability evaluation under uncer-
tainty, in: Proceedings of the International Conference on Quality of Software Architectures, 2011,
pp. 85–94.

[14] M. Awad, D. A. Menascé, On the predictive properties of performance models derived through
input-output relationships, in: Proceedings of the European Workshop on Computer Performance
Engineering, 2014, pp. 89–103.

[15] M. Awad, D. A. Menascé, Dynamic derivation of analytical performance models in autonomic
computing environments, in: Proceedings of the Computer Measurement Group Conference, 2014.

[16] R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook, Response surface methodology: process
and product optimization using designed experiments, John Wiley & Sons, 2016.

24

[17] R. L. Mason, R. F. Gunst, J. L. Hess, Designs and analyses for fitting response surfaces, Statistical
Design and Analysis of Experiments: With Applications to Engineering and Science, Second Edition
(2003) 568–613.

[18] B. D. Youn, K. K. Choi, A new response surface methodology for reliability-based design optimiza-
tion, Computers & structures 82 (2) (2004) 241–256.

[19] T. W. Simpson, J. J. Korte, T. M. Mauery, F. Mistree, Comparison of response surface and kriging
models for multidisciplinary design optimization, NASA Technical Report, 1998.

[20] M. Farina, A neural network based generalized response surface multiobjective evolutionary algo-
rithm, in: Proceedings of the International Congress on Evolutionary Computation, Vol. 1, IEEE,
2002, pp. 956–961.

[21] T. Goel, R. Vaidyanathan, R. T. Haftka, W. Shyy, N. V. Queipo, K. Tucker, Response surface ap-
proximation of pareto optimal front in multi-objective optimization, Computer methods in applied
mechanics and engineering 196 (4) (2007) 879–893.

[22] Z. He, J. Wang, J. Oh, S. H. Park, Robust optimization for multiple responses using response
surface methodology, Applied stochastic models in business and industry 26 (2) (2010) 157–171.

[23] J. C. Helton, J. D. Johnson, C. J. Sallaberry, C. B. Storlie, Survey of sampling-based methods
for uncertainty and sensitivity analysis, Reliability Engineering & System Safety 91 (10) (2006)
1175–1209.

[24] Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation, Soft
Computing-A Fusion of Foundations, Methodologies and Applications 9 (1) (2005) 3–12.

[25] M. Courtois, C. M. Woodside, Using regression splines for software performance analysis, in: Pro-
ceedings of International Workshop on Software and Performance, 2000, pp. 105–114.

[26] S. Kraft, S. Pacheco-Sanchez, G. Casale, S. Dawson, Estimating service resource consumption
from response time measurements, in: Proceedings of the International Conference on Performance
Evaluation Methodologies and Tools, 2009, p. 48.

[27] W. Wang, G. Casale, Bayesian service demand estimation using gibbs sampling, in: International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems,
IEEE, 2013, pp. 567–576.

[28] A. Kattepur, M. Nambiar, Performance modeling of multi-tiered web applications with varying
service demands, International Journal of Networking and Computing 6 (1) (2016) 64–86.

[29] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, G. Saake, Predict-
ing performance via automated feature-interaction detection, in: Proceedings of the International
Conference on Software Engineering, IEEE, 2012, pp. 167–177.

[30] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, P. Kawthekar, Transfer learning for improving
model predictions in highly configurable software, in: Proceedings of the International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, IEEE, 2017.

[31] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, A. Wasowski, Variability-aware performance predic-
tion: A statistical learning approach, in: Proceedings of the International Conference on Automated
Software Engineering, IEEE, 2013, pp. 301–311.

[32] A. Sarkar, J. Guo, N. Siegmund, S. Apel, K. Czarnecki, Cost-efficient sampling for performance
prediction of configurable systems, in: Proceedings of the International Conference on Automated
Software Engineering, IEEE, 2015.

[33] N. Siegmund, A. Grebhahn, S. Apel, C. Kästner, Performance-influence models for highly con-
figurable systems, in: Proceedings of the Joint Meeting on Foundations of Software Engineering,
ACM, 2015, pp. 284–294.

[34] T. Zheng, C. M. Woodside, M. Litoiu, Performance model estimation and tracking using optimal
filters, IEEE Transactions on Software Engineering 34 (3) (2008) 391–406.

[35] H. Ghanbari, C. Barna, M. Litoiu, M. Woodside, T. Zheng, J. Wong, G. Iszlai, Tracking adaptive
performance models using dynamic clustering of user classes 36 (5) (2011) 179–188.

[36] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, S. A. McKee, Methods of inference
and learning for performance modeling of parallel applications, in: Proceedings of Symposium on
Principles and Practice of Parallel Programming, 2007, pp. 249–258.

[37] A. B. Sharma, R. Bhagwan, M. Choudhury, L. Golubchik, R. Govindan, G. M. Voelker, Automatic
request categorization in internet services, ACM SIGMETRICS Performance Evaluation Review
36 (2) (2008) 16–25.

[38] M. Faber, J. Happe, Systematic adoption of genetic programming for deriving software performance
curves, in: Proceedings of International Conference on Performance Engineering, ACM, 2012, pp.
33–44.

[39] N. Wiener, The homogeneous chaos, American Journal of Mathematics 60 (4) (1938) 897–936.

25

[40] D. Xiu, G. E. Karniadakis, The wiener–askey polynomial chaos for stochastic differential equations,
SIAM journal on scientific computing 24 (2) (2002) 619–644.

[41] D. A. Menascé, H. Gomaa, S. Malek, J. P. Sousa, SASSY: A framework for self-architecting service-
oriented systems, IEEE Software 28 (6) (2011) 78–85.

[42] M. Kowal, M. Tschaikowski, M. Tribastone, I. Schaefer, Scaling size and parameter spaces in
variability-aware software performance models, in: Proceedings of the International Conference
on Automated Software Engineering, IEEE, 2015, pp. 407–417.

[43] E. Incerto, M. Tribastone, C. Trubiani, Symbolic performance adaptation, in: Proceedings of the
International Symposium on Software Engineering for Adaptive and Self-Managing Systems, ACM,
2016, pp. 140–150.

[44] D. Perez-Palacin, R. Mirandola, Dealing with uncertainties in the performance modelling of software
systems, in: Proceedings of the International Conference on Quality of Software Architectures, 2014,
pp. 33–42.

[45] P. Jamshidi, G. Casale, An uncertainty-aware approach to optimal configuration of stream process-
ing systems., in: Proceedings of the IEEE International Symposium on the Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2016.
URL http://dx.doi.org/10.5281/zenodo.56238

[46] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A. Metzger, G. Estrada, Fuzzy self-learning
controllers for elasticity management in dynamic cloud architectures, in: Proceedings of the Inter-
national Conference on Quality of Software Architectures, IEEE, 2016, pp. 70–79.

[47] C. Pahl, P. Jamshidi, O. Zimmermann, Architectural principles for cloud software, ACM Transac-
tions on Internet Technology.

[48] I. Meedeniya, A. Aleti, I. Avazpour, A. Amin, Robust archeopterix: Architecture optimization of
embedded systems under uncertainty, in: Proceedings of the Second International Workshop on
Software Engineering for Embedded Systems, IEEE Press, 2012, pp. 23–29.

[49] I. Meedeniya, I. Moser, A. Aleti, L. Grunske, Evaluating probabilistic models with uncertain model
parameters, Software & Systems Modeling 13 (4) (2014) 1395–1415.

[50] M. Marseguerra, E. Zio, L. Podofillini, Multiobjective spare part allocation by means of genetic
algorithms and monte carlo simulation, Reliability engineering & system safety 87 (3) (2005) 325–
335.

[51] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the em
algorithm, Journal of the royal statistical society. Series B (methodological) (1977) 1–38.

[52] D. C. Montgomery, G. C. Runger, Applied statistics and probability for engineers, John Wiley &
Sons, 2010.

[53] L. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338 – 353.
[54] Y. Ben-Haim, Info-gap decision theory: decisions under severe uncertainty, Academic Press, 2006.
[55] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, Siam, 2009.
[56] A. Hyvärinen, J. Karhunen, E. Oja, Independent component analysis, Vol. 46, John Wiley & Sons,

2004.
[57] A. Keese, H. G. Matthies, Sparse quadrature as an alternative to monte carlo for stochastic finite

element techniques, Proceedings in Applied Mathematics and Mechanics 3 (1) (2003) 493–494.
[58] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning: data mining, inference

and prediction, 2nd Edition, Springer, 2008.
[59] G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for

stochastic finite element analysis, Probabilistic Engineering Mechanics 25 (2) (2010) 183–197.
[60] A. M. Molinaro, R. Simon, R. M. Pfeiffer, Prediction error estimation: a comparison of resampling

methods, Bioinformatics 21 (15) (2005) 3301–3307.
[61] C. Trubiani, A. D. Marco, V. Cortellessa, N. Mani, D. C. Petriu, Exploring synergies between

bottleneck analysis and performance antipatterns, in: Proceedings of the International Conference
on Performance Engineering, 2014, pp. 75–86.

[62] G. Franks, P. Maly, M. Woodside, D. C. Petriu, A. Hubbard, M. Mroz, Layered Queue-
ing Network Solver and Simulator, [online] http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-
jan13.pdf (2013).

[63] B. Hughes, On the error probability of signals in additive white gaussian noise, IEEE Transactions
on Information Theory 37 (1) (1991) 151–155.

[64] A. van Hoorn, M. Rohr, W. Hasselbring, Generating probabilistic and intensity-varying workload for
web-based software systems, in: Proceedings of International Performance Evaluation Workshop,
2008, pp. 124–143.

[65] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,

26

A. Joglekar, An integrated experimental environment for distributed systems and networks, in:
Proceedings of Symposium on Operating Systems Design and Implementation, 2002, pp. 255–270.

[66] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel, Y. Agarwal, Transfer learning for
performance modeling of configurable systems: An exploratory analysis, in: Proceedings of the
International Conference on Automated Software Engineering, ACM, 2017.

[67] A. Aleti, I. Moser, S. Mostaghim, Adaptive range parameter control, in: Evolutionary Computation
(CEC), 2012 IEEE Congress on, IEEE, 2012, pp. 1–8.

[68] A. Aleti, I. Moser, Predictive parameter control, in: Proceedings of the 13th annual conference on
Genetic and evolutionary computation, ACM, 2011, pp. 561–568.

27

