
Unicorn: Reasoning about Configurable System
Performance through the Lens of Causality
Md Shahriar Iqbal

University of South Carolina
miqbal@email.sc.edu

Rahul Krishna
IBM Research
rkrsn@ibm.com

Mohammad Ali Javidian
Purdue University

mjavidia@purdue.edu

Baishakhi Ray
Columbia University
rayb@cs.columbia.edu

Pooyan Jamshidi
University of South Carolina

pjamshid@cse.sc.edu

Abstract
Modern computer systems are highly configurable, with the
total variability space sometimes larger than the number of
atoms in the universe. Understanding and reasoning about
the performance behavior of highly configurable systems,
over a vast and variable space, is challenging. State-of-the-
art methods for performance modeling and analyses rely on
predictive machine learning models, therefore, they become
(i) unreliable in unseen environments (e.g., different hardware,
workloads), and (ii) may produce incorrect explanations. To
tackle this, we propose a newmethod, called Unicorn, which
(i) captures intricate interactions between configuration op-
tions across the software-hardware stack and (ii) describes
how such interactions can impact performance variations via
causal inference. We evaluated Unicorn on six highly config-
urable systems, including three on-device machine learning
systems, a video encoder, a database management system,
and a data analytics pipeline. The experimental results indi-
cate that Unicorn outperforms state-of-the-art performance
debugging and optimization methods in finding effective
repairs for performance faults and finding configurations
with near-optimal performance. Further, unlike the existing
methods, the learned causal performance models reliably
predict performance for new environments.

CCS Concepts: • Software and its engineering → Soft-
ware configuration management and version control
systems; Search-based software engineering.

Keywords: Configurable Systems, Performance Modeling,
Performance Debugging, Performance Optimization, Causal
Inference, Counterfactual Reasoning

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519575

Cache Misses

T
h
ro
u
gh

p
u
t
(F

P
S
)

20

10

0

100k 200k

(a)

Cache Misses

T
h
ro
u
gh

p
u
t
(F

P
S
)

LRU

FIFO

LIFO

MRU

20

10

0

100k 200k

(b)

Through-
put

Cache
Misses

Cache
Policy

(c)

Figure 1.An example showing the effectiveness of causality in rea-
soning about system performance behavior. (a) Observational data
shows that the increase in Cache Misses leads to high Throughput
and such trend is typically captured by statistical reasoning in ML
models; (b) incorporating Cache Policy as a confounder correctly
shows increase of Cache Misses corresponding to decrease in
Throughput; (c) the corresponding causal model correctly captures
Cache Policy as a common cause to explain performance behavior.

1 Introduction
Modern computer systems, such as data analytics pipelines,
are typically composed of multiple components, where each
component has a plethora of configuration options that can
be deployed individually or in conjunction with other com-
ponents on different hardware platforms. The configuration
space of such highly configurable systems is combinatori-
ally large, with 100s if not 1000s of software and hardware
configuration options that interact non-trivially with one
another [38, 51, 98, 99]. Individual component developers
typically have a relatively localized, and thus limited, under-
standing of the performance behavior of the systems that
comprise the components. Therefore, developers and end-
users of the final system are often overwhelmed with the
complexity of composing and configuring components, mak-
ing it challenging and error-prone to configure these systems
to reach desired performance goals.
Incorrect configuration (misconfiguration) elicits unex-

pected interactions between software and hardware, result-
ing in non-functional faults1, i.e., degradations in non-functional

1 Non-functional and Performance faults are used interchangeably to refer to
severe performance degradation caused by certain type ofmisconfigurations,
(aka. specious configuration) [47].

https://doi.org/10.1145/3492321.3519575

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

system properties like latency and energy consumption. These
non-functional faults, unlike regular software bugs, do not
cause the system to crash or exhibit any obvious misbe-
havior [75, 83, 94]. Instead, misconfigured systems remain
operational but degrade in performance [15, 70, 74, 84] that
can cause major issues in cloud infrastructure [18], internet-
scale systems [13], and on-device machine learning (ML) sys-
tems [1]. For example, a developer complained that “I have a
complicated system composed of multiple components running
on NVIDIA Nano and using several sensors and I observed sev-
eral performance issues. [3].” In another instance, a developer
asks “IâĂŹm quite upset with CPU usage on Jetson TX2 while
running TCP/IP upload test program” [4]. After struggling in
fixing the issues over several days, the developer concludes,
“there is a lot of knowledge required to optimize the network
stack and measure CPU load correctly. I tried to play with every
configuration option explained in the kernel documents.” In
addition, they would like to understand the impact of con-
figuration options and their interactions, e.g., “What is the
effect of swap memory on increasing throughput? [1]”.
Existing works and gap. Understanding the performance
behavior of configurable systems can enable (i) performance
debugging [34, 87], (ii) performance tuning [42, 45, 46, 72,
73, 78, 92, 95, 101], and (iii) architecture adaptation [8, 25,
26, 30, 44, 53, 56, 60]. A common strategy is to build per-
formance influence models such as regression models that
explain the influence of individual options and their inter-
actions [36, 82, 87, 95]. These approaches are adept at in-
ferring the correlations between configuration options and
performance objectives, however, as illustrated in Fig. 1 per-
formance influence models suffer from several shortcomings
(detailed in §2): (i) they become unreliable in unseen environ-
ments and (ii) produce incorrect explanations.
Our approach. Based on the several experimental pieces
of evidence presented in the following sections, this paper
proposes Unicorn–a methodology that enables reasoning
about configurable system performance with causal infer-
ence and counterfactual reasoning. Unicorn first recovers
the underlying causal structure from performance data. The
causal performance model allows users to (i) identify the
root causes of performance faults, (ii) estimate the causal ef-
fects of various configurable parameters on the performance
objectives, and (iii) prescribe candidate configurations to fix
the performance fault or optimize system performance.
Contributions. Our contributions are as follows:
• We propose Unicorn (§4), a novel approach that allows
causal reasoning about system performance.

• We have conducted a thorough evaluation of Unicorn in
a controlled case study (§5) as well as real-world large-
scale experiments. In particular, we evaluated effectiveness
(§7), transferability (§8), and scalability (§9) by comparing
Unicorn with: (i) state-of-the-art performance debugging
approaches, including CBI [90], DD [9], EnCore [104],

Video
Decoder

Stream
Muxer

Primary
Detector

Object
Tracker

Secondary
Classifier

Configuration Options

55861444 86

Figure 2. Deepstream: An example of a highly-configurable com-
posed system, a big data analytics pipeline system, with several
configurable components: (i) Video Decoder performs video en-
coding/decoding with different formats; (ii) Stream Muxer accepts
input streams and converts them to sequential batch frames; (iii)
Primary Detector transforms the input frames based on input NN
requirements and makes model inference to detect objects; (iv) Ob-
ject Tracker supports multi-object tracking; (v) Secondary Classifier
improves performance by avoiding re-inferencing.

and BugDoc [67] and (ii) performance optimization tech-
niques, including SMAC [48] and PESMO [43]. The eval-
uations were conducted on six real-world highly config-
urable systems, including a video analytic pipeline, Deep-
stream [5], three deep learning-based systems, Xception
[17], Deepspeech [41], and BERT [23], a video encoder,
X264 [7], and a database engine, SQLite [6], deployed on
NVIDIA Jetson hardware (TX1, TX2, and Xavier).

• In addition to sample efficiency and accuracy of Unicorn
in finding root causes of performance issues, we show
that the learned causal performance model is transferable
across different workload and deployment environments.
Finally, we demonstrate the scalability of Unicorn to large
systems consisting of 500 options and several trillion po-
tential configurations.

• The artifacts and supplementary materials can be found
at https://github.com/softsys4ai/unicorn.

2 Motivating Scenarios
Simple motivating scenario. In this simple scenario, we
motivate our work by demonstrating why performance anal-
yses solely based on correlational statistics may lead to an
incorrect outcome. Here, the collected performance data indi-
cates that Throughput is positively correlated with increased
Cache Misses2 (as in Fig. 1 (a)). A simple ML model built on
this data will predict with high confidence that larger Cache
Misses leads to higher Throughput—this is misleading as
higher Cache Misses should, in theory, lower Throughput.
By further investigating the performance data, we noticed
that the caching policy was automatically changed during
measurement. We then segregated the same data on Cache
Policy (as in Fig. 1 (b)) and found out that within each
group of Cache Misses, as Cache Misses increases, the
Throughput decreases. One would expect such behavior, as

2we used a distinct font to indicate variables such as configuration
options or performance metrics and events throughout this paper.

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

5 10 15 20 25 30 35
Throughput

20

40

60

80

100

120

140

160

E
ne

rg
y

Throughput (FPS)

E
n
er
gy

(J
)

20

60

100

140

10 20 30

Misconfiguration

(a) Performance Distribution

Config. Option Value

CPU Cores 2
CPU Frequency (GHz) 0.1
EMC Frequency (GHz) 1.6
GPU Frequency (GHz) 0.7
Scheduler Policy noop
Scheduler Runtime (µs) 950k
Scheduler Child Runs First 1
Batched Push Timeout 1
Batch Size 1
Interval 1
Buffer Size 6000
Dirty Background Ratio 5
Dirty Ratio 10
Drop Caches 0
Cache Pressure 500
Swappiness 60
Enable Padding 1
Offset 0
Swap Memory (Gb) 1
Sched Time Avg (ms) 1000
Dirty Bytes 30
Overcommit Memory 2
Overcommit Hugepages 1
Throughput (FPS) 6.8
Energy (J) 122

(b)Misconfiguration

Figure 3. (a) Performance distribution when Deepstream is de-
ployed on NVIDIA Jetson Xavier (b) Misconfiguration that caused
the multi-objective non-functional fault, shown as □ in the perfor-
mance distribution.

the more Cache Misses the higher number of access to ex-
ternal memory, and, therefore, the Throughput would be
expected to decrease. The system resource manager may
change the Cache Policy based on some criteria; this means
that for the same number of Cache Misses, the Throughput
may be lower or higher; however, in all Cache Policies,
the increases of Cache Misses resulting in a decrease in
Throughput. Thus, Cache Policy acts as a confounder that
explains the relation between Cache Misses and Throughout,
which a correlation-based model will not be able to capture.
In contrast, a causal performance model, as shown in Fig. 1
(c), finds the relation between Cache Misses, Cache Policy,
and Throughput and thus can reason about the observed be-
havior correctly.

In reality, performance analysis and debugging of hetero-
geneous multi-component systems is non-trivial and often
compared with finding the needle in the haystack [100]. In
particular, the end-to-end performance analysis is not pos-
sible by reasoning about individual components in isola-
tion, as components may interact with one another in such
a composed system. Below, we use a highly configurable
multi-stack system to motivate why causal reasoning is a
better choice for understanding the performance behavior
of complex systems.
Motivating scenario based on ahighly configurable data
analytics system. We deployed a data analytics pipeline,
Deepstream [5]. Deepstream has many components, and
each component has many configuration options, resulting
in several variants of the same system as shown in Fig. 2.
Specifically, the variability arises from: (i) the configuration
options of each software component in the pipeline, (ii) con-
figurable low-level libraries that implement functionalities

required by different components (e.g., the choice of track-
ing algorithm in the tracker or different neural network
architectures), (iii) the configuration options associated with
each component’s deployment stack (e.g., CPU Frequency
of Xavier). Further, there exist many configurable events
that can be measured/observed at the OS level by the event
tracing system. More specifically, the configuration space
of the system includes (i) 27 Software options (Decoder: 6,
Stream Muxer: 7, Detector: 10, Tracker: 4), (ii) 22 Kernel op-
tions (e.g., Swappiness, Scheduler Policy, etc.), and (iii)
4 Hardware options (CPU Frequency, CPU Cores, etc.). We
use 8 camera streams as the workload, x264 as the decoder,
TrafficCamNet model that uses ResNet 18 architecture for
the detector, and an NvDCF tracker, which uses a correla-
tion filter-based online discriminative learning algorithm
for tracking. Such a large space of variability makes perfor-
mance analysis challenging. This is further exacerbated by
the fact that the configuration options among the compo-
nents interact with each other. Additional details about our
Deepstream implementation can be found in the supple-
mentary materials.
To better understand the potential of the proposed ap-

proach, we measured (i) application performance metrics
including throughput and energy consumption by instru-
menting the Deepstream code, and (ii) 288 system-wide
performance events (hardware, software, cache, and trace-
point) using per f and measured performance for 2461 con-
figurations of Deepstream in two different hardware en-
vironments, Xavier, and TX2. As it is depicted in Fig. 3a,
performance behavior of Deepstream, like other highly
configurable systems, is non-linear, multi-modal, and non-
convex [52]. In this work, we focus on two performance
tasks: (i) Performance Debugging: here, one observes a per-
formance issue (e.g., latency), and the task involves replacing
the current configurations in the deployed environment with
another that fixes the observed performance issue; (ii) Perfor-
mance Optimization: here, no performance issue is observed;
however, one wants to get a near-optimal performance by
finding a configuration that enables the best trade-off in the
multi-objective space (e.g., throughput vs. energy consump-
tion vs. accuracy in Deepstream).
To show major shortcomings of existing state-of-the-art

performance models, we built performance influence models
that have extensively been used in the systems’ literature [33,
34, 36, 54, 59, 64, 71, 88, 89] and it is the standard approach in
industry [59, 64]. Specifically, we built non-linear regression
models with forward and backward elimination using a step-
wise training method on the Deepstream performance data.
We then performed several sensitivity analyses and identified
the following issues:
1. Performance influencemodels couldnot reliably pre-
dict performance inunseen environments. Performance
behavior of configurable systems vary across environments,

https://github.com/softsys4ai/unicorn
https://github.com/softsys4ai/unicorn

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

e.g., when we deploy software on new hardware with a differ-
ent microarchitecture or when the workload changes [49, 54–
56, 95]. When building a performance model, it is important
to capture predictors that transfer well, i.e., remain stable
across environmental changes. The predictors in perfor-
mance models are options (oi) and interactions (ϕ(oi ..oj))
that appear in the explainable models of form f (c) = β0 +
Σiϕ(oi) + Σi ..jϕ(oi ..oj). The transferability of performance
predictors is expected from performance models since they
are learned based on one environment (e.g., staging as the
source environment) and are desirable to reliably predict
performance in another environment (e.g., production as
the target environment). Therefore, if the predictors in a
performance model become unstable, even if they produce
accurate predictions in the current environment, there is
no guarantee that it performs well in other environments,
i.e., they become unreliable for performance predictions and
performance optimizations due to large prediction errors. To
investigate how transferable performance influence models
are across environments, we performed a thorough analysis
when learning a performance model for DeepStream de-
ployed on two different hardware platforms that have two
different microarchitectures. Note that such environmental
changes are common, and it is known that performance be-
havior changes when, in addition to a change in hardware
resources (e.g., higher CPU Frequency), we have major dif-
ferences in terms of architectural constructs [21, 24], also
supported by a thorough empirical study [54]. The results
in Fig. 4 (a) indicate that the number of stable predictors is
too small for the total number of predictors that appear in
the learned regression models. Additionally, the coefficients
of the common predictors change across environments as
shown in Fig. 5 making them unreliable to be resued in the
new scenario.
2. Performance influencemodels could produce incor-
rect explanations. In addition to performance predictions,
where developers are interested to know the effect of config-
uration changes on performance objectives, they are also in-
terested to estimate and explain the effect of a change in par-
ticular configuration options (e.g., changing Cache Policy)
toward performance variations. It is therefore desirable that
the strength of the predictors in performance models, deter-
mined by their coefficients, remain consistent across envi-
ronments [24, 54]. In the context of our simple scenario in
Fig. 1, the learned performance influence model indicates
that 0.16 × Cache Misses is the most influential term that
determines throughput, however, the (causal) model in Fig. 1
(c) show that the interactions between configuration option
Cache Policy and system event Cache Misses is a more
reliable predictor of the throughput, indicating that the per-
formance influencemodel, due to relying on superficial corre-
lational statistics, incorrectly explains factors that influence
performance behavior of the system. The low Spearman rank
correlation between predictors coefficients indicates that a

Performance Influence Model
0

10

20

30

40

50

T
er

m
s

(a)

Common Terms (Source → Target) Total Terms (Source)
Total Terms (Target) Error (Source)
Error (Target) Error (Source → Target)

0

30

60

90

Regression Models

M
A

P
E

(%
)

Causal Performance Model
0

10

20

30

40

50

T
er

m
s

(b)

0

30

60

90

Regression Models

M
A

P
E

(%
)

Figure 4. (a) Performance influence models do not generalize well
as the number of common terms, total terms and prediction error
of these models change from source (Xavier) to target (TX2). The
rank correlation between source and target is 0.07 (p-value=0.73).
(b) Causal performance models generalize better as the number of
common terms, total terms and prediction error of the structural
does not change much from source (Xavier) to target (TX2). The
rank correlation between source and target is 0.49 (p-value=0.76).

−3 −2 −1 0 1 2 3

Co-efficient Difference

P
re

d
ic

to
rs

(O
p

ti
on

s/
In

te
ra

ct
io

n
s)

CPU Frequency
GPU Frequency
EMC Frequency
Bitrate
Drop Caches
Swappiness
Interval
CPU Frequency ⊗ Bitrate
CPU Frequency ⊗ EMC Frequency
EMC Frequency ⊗ Bitrate
Swappiness ⊗ Bitrate
Drop caches ⊗ Bitrate
Swappiness ⊗ Interval
Bitrate ⊗ Interval
CPU Frequency ⊗ EMC Frequency ⊗
Bitrate

Figure 5. Visualizing co-efficient differences from the source
(Xavier) performance influence model to the target (TX2) per-
formance influence model for the common terms for both options
and interactions (shown by ⊗).

performance model based on regression could be highly un-
stable and thus would produce unreliable explanations as
well as unreliable estimation of the effect of change in spe-
cific options for performance debugging or optimization.

3 Causal Reasoning for Systems
We hypothesize that the reason behind unreliable predic-
tions and incorrect explanations of performance influence
models (see §3) is the inability of correlation-based models
to capture causally relevant predictors in the learned perfor-
mance models. The theoretical and empirical results [54, 57]
also show that predictive models that contain non-causal
predictors, even though they might be accurate in the envi-
ronment that the training data come from, such models are
not typically transferable in unseen environments.
Hence, we introduce a new abstraction for performance

modeling, called Causal Performance Model, which gives us
the leverage for performing causal reasoning for computer
systems. In particular, we introduce the causal performance
model to serve as a modeling abstraction that allow building

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

Throughput Energy

Branch
Misses

Cache
Misses

No. of
Cycles

Bitrate Buffer
Size

Batch
Size

Enable
Padding

f3 f4

ff1 f2

Causal
Interaction

Causal
Paths

Software
Options

Intermediate
Causal Mechanisms

Performance
Objective

f

Branchmisses = 2 × Bitrate + 8.1 × Buffersize + 4.1 × Bitrate × Buffersize × Cachemisses

Decoder Muxer

Figure 6. A partial causal performance model for Deepstream
discovered in our experiments.

reusable performance models for downstream performance
tasks, including performance predictions, performance test-
ing and debugging, performance optimization, and more
importantly, it serves as a transferable model that allow per-
formance analyses across environments [54, 57].

Causal performancemodels. We define a causal perfor-
mance model as an instantiation of Probabilistic Graphical
Models [79] with new types and structural constraints to
enable performance modeling and analyses. Formally, causal
performance models (cf., Fig. 6) are Directed Acyclic Graphs
(DAGs) [79] with (i) performance variables, (ii) functional
nodes that define functional dependencies between perfor-
mance variables (i.e., how variations in one or multiple vari-
ables determine variations in other variables), (iii) causal
links that interconnect performance nodes with each other
via functional nodes, and (iv) constraints to define assump-
tions we require in performance modeling (e.g., software
configuration options cannot be the child node of perfor-
mance objectives; or Cache Misses as a performance vari-
able takes only positive integer values). In particular, we
define three new variable types: (i) Software-level config-
uration options associated with a software component in
the composed system (e.g., Bitrate in the decoder compo-
nent of Deepstream), and hardware-level options (e.g., CPU
Frequency), (ii) intermediate performance variables relating
the effect of configuration options to performance objectives
including middleware traces (e.g., Context Switches), per-
formance events (e.g., Cache Misses) and (iii) end-to-end
performance objectives (e.g., Throughput). In this paper, we
characterize the functional nodes with polynomial models,
because of their simplicity and their explainable nature, how-
ever, they could be characterized with any functional forms,
e.g., neural networks [85, 102]. We also define two specific
constraints over causal performance models to characterize
the assumptions in performance modeling: (i) defining vari-
ables that can be intervened (note that some performance
variables can only be observed (e.g., Cache Misses) or in
some cases where a variable can be intervened, the user may
want to restrict the variability space, e.g., the cases where

the user may want to use prior experience, restricting the
variables that do not have a major impact to performance
objectives); (ii) structural constraints, e.g., configuration op-
tions do not cause other options. Note that such constraints
enable incorporating domain knowledge and enable further
sparsity that facilitates learning with low sample sizes.

How causal reasoning can fix the reliability and ex-
plainability issues in current performance analyses prac-
tices?. The causal performance models contain more detail
than the joint distribution of all variables in the model. For
example, the causal performance model in Fig. 6 encodes
not only Branch Misses and Throughput readings are de-
pendent but also that lowering Cache Misses causes the
Throughput of Deepstream to increase and not the other
way around. The arrows in causal performance models cor-
respond to the assumed direction of causation, and the ab-
sence of an arrow represents the absence of direct causal
influence between variables, including configuration options,
system events, and performance objectives. The only way we
can make predictions about how performance distribution
changes for a system when deployed in another environ-
ment or when its workload changes are if we know how the
variables are causally related. This information about causal
relationships is not captured in non-causal models, such as
regression-based models. Using the encoded information
in causal performance models, we can benefit from analy-
ses that are only possible when we explicitly employ causal
models, in particular, interventional and counterfactual anal-
yses [80, 81]. For example, imagine that in a hardware plat-
form, we deploy the Deepstream and observed that the
system throughput is below 30 FPS and Buffer Size as one
of the configuration options was determined dynamically
between 8k-20k. The system maintainers may be interested
in estimating the likelihood of fixing the performance issue
in a counterfactual world where the Buffer Size is set to a
fixed value, 6k. The estimation of this counterfactual query
is only possible if we have access to the underlying causal
model because setting a specific option to a fixed value is
an intervention as opposed to conditional observations that
have been done in the traditional performance model for
performance predictions.
Causal performance models are not only capable of pre-

dicting system performance in certain environments, they
encode the causal structure of the underlying system perfor-
mance behavior, i.e., the data-generating mechanism behind
system performance. Therefore, the causal model can reli-
ably transfer across environments [86]. To demonstrate this
for causal performance models as a particular characteri-
zation of causal models, we performed a similar sensitivity
analysis to regression-based models and observed that causal
performance models can reliably predict performance in un-
seen environments (see Fig. 4 (b)). In addition, as opposed
to performance influence models that are only capable of
performance predictions, causal performance models can be

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

5- Estimate
Causal Queries

•What is the root-cause of fault?
• How do I fix misconfiguration?
• How do I optimize perf.?
• How do I understand perf.?

Software: DeepStream
Middleware: TF, TensorRT
Hardware: Nvidia Xavier
Configuration: Default

Estimate probability of satisfying QoS if BufferSize is set to 6k?

2- Learn Causal
Performance Model

Initial
Perf. Data

P(Th > 40/s |do(Buffersize = 6k))
1- Specify

Performance Query

QoS : Th > 40/s
Observed : Th < 30/s ± 5/s Causal Performance Model

System Stack

Performance Tasks

Performance Fault/Issue

4- Update Causal
Performance Model

Causal
Inference
Engine

3- Determine
Next Configuration

Uses
Stage

Figure 7. Overview of Unicorn.

BufferSize

Throughput

Deployment Environments

En
ab

le
Pa

dd
in

g

Batc
hS

ize

En
er

gy

Low-Power: <Xavier 1200 MHz,
CPUs: 2, power: 10w, mode: 1>

Power-Perf.: <Xavier 1200 MHz,
CPUs: 4, power: 15w, mode: 2>

High-Perf.: <Xavier 1450 MHz,
CPUs: 6, power: 30w, mode: 4>

T

F

Misconfig. in
Low-Power

Measured
Performance

Configuration Change
Environment Change
Config. & Env. Change

Intervensions

QoS Threshold

Interventions that
fix perf. issue

High Performance
Variability

Perf. Variability

Figure 8. Mapping configuration space to multi-objective perfor-
mance space.

used for several downstream heterogeneous performance
tasks. For example, using a causal performance model, we
can determine the causal effects of configuration options on
performance objectives. Using the estimated causal effects,
one can determine the effect of change in a particular set of
options towards performance objectives and therefore can
select the options with the highest effects to fix a perfor-
mance issue, i.e., bring back the performance objective that
has violated a specific quality of service constraint without
sacrificing other objectives. Causal performance models are
also capable of predicting performance behavior by calcu-
lating conditional expectation, E(Y |X), where Y indicates
performance objectives, e.g., throughput, and X = x is the
system configurations that have not been measured.

4 Unicorn
This section presents Unicorn–our methodology for per-
formance analyses of highly configurable and composable
systems with causal reasoning.

Overview. Unicorn works in five stages, implementing
an active learning loop (cf. Fig. 7): (i) Users or developers of
a highly-configurable system specify, in a human-readable

FPS Energy

Branch
Misses

Cache
Misses

No of
Cycles

Bitrate Buffer
Size

Batch
Size

Enable
Padding

FPS Energy

Branch
Misses

Cache
Misses

No of
Cycles

Bitrate Buffer
Size

Batch
Size

Enable
Padding

Bitrate
(bits/s)

Enable
Padding

… Cache
Misses

… Through
put (fps)

c1 1k 1 … 42m … 7

c2 2k 1 … 32m … 22

… … … … … … …
cn 5k 0 … 12m … 25

FPS Energy

Branch
Misses

Cache
Misses

No of
Cycles

Bitrate Buffer
Size

Batch
Size

Enable
Padding

1- Recovering the
Skelton

2- Pruning
Causal Structure

3- Orienting
Causal Relations

Statistical
independence
tests

Fully connected graph
given constraints (e.g.,
no connections btw
configuration options)

Orientation rules &
measures (entropy) +
structural constraints
(colliders, v-structures)

Figure 9. Causal model learning from performance data.

language, the performance task at hand in terms of a query
in the Inference Engine. For example, a Deepstream user
may have experienced a throughput drop when they have
deployed it on NVIDIA Xavier in low-power mode (cf. Fig. 8).
Then, Unicorn’s main process starts by (ii) collecting some
predetermined number of samples and learning a causal per-
formance model; Here, a sample contains a system config-
uration and its corresponding measurementâĂŤincluding
low-level system events and end-to-end system performance.
Given a certain budget, which in practice either translates
to time [50] or several samples [52], Unicorn, at each itera-
tion, (iii) determines the next configuration(s) and measures
system performance when deployed with the determined
configuration–i.e. new sample; accordingly, (iv) the learned
causal performance model is incrementally updated, reflecting
a model that captures the underlying causal structure of the
system performance. Unicorn terminates if either budget
is exhausted or the same configuration has been selected a
certain number of times consecutively, otherwise, it contin-
ues from Stage III. Finally, (v) to automatically derive the
quantities which are needed to conduct the performance
tasks, the specified performance queries are translated to
formal causal queries, and they will be estimated based on
the final causal model.

Stage I: Formulate Performance Queries. Unicorn en-
ables developers and users of highly-configurable systems
to conduct performance tasks, including performance de-
bugging, optimization, and tuning, n particular, when they
need to answer several performance queries: (i) What con-
figuration options caused the performance fault? (ii) What
are important options and their interactions that influence
performance? (iii) How to optimize one quality or navigate
tradeoffs among multiple qualities in a reliable and explain-
able fashion? (iv) How can we understand what options and
possible interactions are most responsible for the perfor-
mance degradation in production?

At this stage, the performance queries are translated to for-
mal causal queries using the interface of the causal inference

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

FPS Energy

Branch
Misses

Cache
Misses

No of
Cycles

Bitrate Buffer
Size

Batch
Size

Enable
Padding 1- Evaluate Candidate

Interventions

FPS Energy

Branch
Misses

Cache
Misses

No of
Cycles

Bitrate Buffer
Size

Batch
Size

Enable
Padding

Option/Event/Obj Values
Bitrate 1k
Buffer Size 20k
Batch Size 10
Enable Padding 1
Branch Misses 24m
Cache Misses 42m
No of Cycles 73b
FPS 31/s
Energy 42J

2- Determine & Perform
next Perf. Measurement

3- Update Causal
Performance Model

Performance
Data

Model averaging

Expected change in
belief & KL; Causal
effects on objectives

Interventions on Hardware,
Workload, and Kernel options

Intervention 1 … Intervention n

Belief
Update

Prior
Belief

4- Replace Causal
Performance Model

Figure 10. Causal model update.

engine (cf. Fig. 7). Note that in the current implementation
of Unicorn, this translation is performed manually, how-
ever, this process could be made automated by creating a
grammar for specifying performance queries and the trans-
lations can be made between the performance queries into
the well-defined causal queries, note that such translation
has been done in domains such as genomics [27].

Stage II: LearnCausal PerformanceModel. In this stage,
Unicorn learns a causal performance model (see Section 2)
that explains the causal relations between configuration op-
tions, the intermediate causal mechanism, and performance
objectives. Here, we use an existing structure learning algo-
rithm called Fast Causal Inference (hereafter, FCI) [91]. We
selected FCI because: (i) it accommodates for the existence
of unobserved confounders [32, 77, 91], i.e., it operates even
when there are latent common causes that have not been, or
cannot be, measured. This is important because we do not as-
sume absolute knowledge about configuration space, hence
there could be certain configurations we could not modify
or system events we have not observed. (ii) FCI, also, accom-
modates variables that belong to various data types such as
nominal, ordinal, and categorical data common across the
system stack (cf. Fig. 8). To build the causal performance
model, we, first, gather a set of initial samples (cf. Fig. 9). To
ensure reliability [21, 24], we measure each configuration
multiple times, and we use the median (as an unbiased mea-
sure) for the causal model learning. As depicted in Fig. 9,
Unicorn implements three steps for causal structure learn-
ing: (i) recovering the skeleton of the causal performance
model by enforcing structural constraints; (ii) pruning the
recovered structure using standard statistical tests of inde-
pendence. In particular, we use mutual info for discrete vari-
ables and Fisher z-test for continuous variables; (iii) orienting
undirected edges using entropy [19, 20, 32, 77, 91].
Orienting undirected causal links.We orient undirected
edges using prescribed edge orientation rules [19, 20, 32, 77,
91] to produce a partial ancestral graph (or PAG). A PAG
contains the following types of (partially) directed edges:

0 20 40 60 80

25

50

H
am

m
in
g
D
is
ta
n
ce

(a)

0 20 40 60 80

100

200

E
n
er
gy

(b)

0 20 40 60 80

75

150

L
at
en
cy

(c)

0 20 40 60 80
0

10

20

Iteration

O
p
ti
on

In
d
ex

(d)

Figure 11. (a) The hamming distance between the learned causal
model and ground truth model decreases as the algorithms measure
more configuration samples. Incremental update of (b) Latency
and (c) Energy, using Unicorn for debugging a multi-objective
fault. Configuration options selected by Unicorn at each iteration
are during debugging are shown in (d) using the yellow-colored
nodes. Red-colored nodes indicate configuration options that are
selected as a fix to the multi-objective performance fault. Mapping
between option indexes and configuration options are shown in
the supplementary materials.

• X Y indicating that vertex X causes Y .
• X Y which indicates that there are unmeasured con-
founders between vertices X and Y .

In addition, a PAG produces two types of edges:
• X Y indicating that either X causes Y , or that there
are unmeasured confounders that cause both X and Y .

• X Y which indicates that either: (a) vertices X causes
Y , or (b) vertex Y causes X , or (c) there are unmeasured
confounders that cause both X and Y .

In the last two cases, the circle (◦) indicates that there is an
ambiguity in the edge type. In other words, given the current
observational data, the circle can indicate an arrowhead (

) or no arrowhead (—), i.e., for X Y , all three of X

https://github.com/softsys4ai/unicorn

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

Y , Y X , and X Y might be compatible with
current data, i.e., the current data could be faithful to each
of these statistically equivalent causal graphs inducing the
same conditional independence relationships.
Resolving partially directed edges. For subsequent anal-
yses over the causal graph, the PAG obtained must be fully
resolved (directed with no ◦ ended edges) in order to gener-
ate an ADMG. We use the information-theoretic approach
using entropy proposed in [62, 63] to discover the true causal
direction between two variables. Our work extends the theo-
retic underpinnings of entropic causal discovery to generate
a fully directed causal graph by resolving the partially di-
rected edges produced by FCI. For each partially directed
edge, we follow two steps: (i) establish if we can generate a la-
tent variable (with low entropy) to serve as a common cause
between two vertices; (ii) if such a latent variable does not
exist, then pick the direction which has the lowest entropy.
For the first step, we assess if there could be an unmea-

sured confounder (say Z) that lies between two partially ori-
ented nodes (say X and Y). For this, we use the LatentSearch
algorithm proposed by Kocaoglu et al. [63]. LatentSearch
outputs a joint distribution q(X ,Y ,Z) of the variables X , Y ,
and Z which can be used to compute the entropy H (Z) of
the unmeasured confounder Z . Following the guidelines of
Kocaoglu et al., we set an entropy threshold θr = 0.8 ×

min {H (X),H (Y)}. If the entropy H (Z) of the unmeasured
confounder falls below this threshold, then we declare that
there is a simple unmeasured confounder Z (with a low
enough entropy) to serve as a common cause between X
and Y and accordingly, we replace the partial edge with a
bidirected (i.e.,) edge.
When there is no latent variable with a sufficiently low

entropy, two possibilities exist: (i) variable X causes Y ; then,
there is an arbitrary function f (·) such that Y = f (X ,E),
where E is an exogenous variable (independent of X) that
accounts for system noise; or (ii) variable Y causes X ; then,
there is an arbitrary function д(·) such that X = д(Y , Ẽ),
where Ẽ is an exogenous variable (independent of Y) that
accounts for noise in the system. The distribution of E and
Ẽ can be inferred from the data [62, see §3.1]. With these
distributions, we measure the entropies H (E) and H (Ẽ). If
H (E) < H (Ẽ), then, it is simpler to explain the X Y (i.e.,
the entropy is lower when Y = f (X ,E)) and we choose X

Y . Otherwise, we choose Y X .

Stage III: Iterative Sampling (Active Learning). At this
stage, Unicorn determines the next configuration to be mea-
sured. Unicorn first estimates the causal effects of config-
uration options towards performance objectives using the
learned causal performance model. Then, Unicorn itera-
tively determines the next system configuration using the
estimated causal effects as a heuristic. Specifically, Unicorn

Problem [2]: For a real-time scene detection task, TX2 (faster plat-
form) only processed 4 frames/sec whereas TX1 (slower platform)
processed 17 frames/sec, i.e., the latency is 4× worse on TX2.
Observed Latency (frames/sec): 4 FPS
Expected Latency (frames/sec): 22-24 FPS (30-40% better)

Configuration Options U
ni
co

rn

SM
A
C

Bu
gD

oc

Fo
ru
m

A
CE

†

CPU Cores Ë Ë Ë Ë 3%
CPU Frequency Ë Ë Ë Ë 6%
EMC Frequency Ë Ë Ë Ë 13%
GPU Frequency Ë Ë Ë Ë 22%
Scheduler Policy · Ë Ë · .
kernel.sched_rt_runtime_us · · Ë · .
kernel.sched_child_runs_first · · Ë · .
vm.dirty_background_ratio · · · · .
vm.dirty_ratio · · Ë · .
Drop Caches · Ë Ë · .
CUDA_STATIC Ë Ë Ë Ë 55%
vm.vfs_cache_pressure · · · · .
vm.swappiness · Ë Ë · 1%

Latency (TX2 frames/sec) 28 24 21 23
Latency Gain (over TX1) 65% 41% 24% 35%
Latency Gain (over default) 7× 6× 5.25× 5.75×
Resolution time 22 mins 4 hrs 4 hrs 2 days

Figure 12. Using Unicorn on a real-world performance issue.

determines the value assignments for options with a proba-
bility that is determined proportionally based on their asso-
ciated causal effects. The key intuition is that such changes
in the options are more likely to have a larger effect on
performance objectives, and therefore, we can learn more
about the performance behavior of the system. Given the
exponentially large configuration space and the fact that
the span of performance variations is determined by a small
percentage of configurations, if we had ignored such esti-
mates for determining the change in configuration options,
the next configurations would result in considerable varia-
tions in performance objectives comparing with the existing
data. Therefore, measuring the next configuration would not
provide additional information for the causal model.
We extract paths from the causal graph (referred to as

causal paths) and rank them from highest to lowest based
on their average causal effect on latency, and energy. Using
path extraction and ranking, we reduce the complex causal
graph into a few useful causal paths for further analyses. The
configurations in this path are more likely to be associated
with the root cause of the fault.
Extracting causal pathswith backtracking.A causal path
is a directed path originating from either the configura-
tion options or the system event and terminating at a non-
functional property (i.e., throughput and/or energy). To dis-
cover causal paths, we backtrack from the nodes correspond-
ing to each non-functional property until we reach a node
with no parents. If any intermediate node has more than one
parent, then we create a path for each parent and continue
backtracking on each parent.

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

Ranking causal paths. A complex causal graph can re-
sult in many causal paths. It is not practical to reason over
all possible paths, as it may lead to a combinatorial explo-
sion. Therefore, we rank the paths in descending of their
causal effect on each non-functional property. For further
analysis, we use paths with the highest causal effect. To
rank the paths, we measure the causal effect of changing the
value of one node (say Batch Size or X) on its successor
(say Cache Misses or Z) in the path (say Batch Size
Cache Misses FPS and Energy). We express this with
the do-calculus [80] notation: E[Z | do(X = x)]. This nota-
tion represents the expected value of Z (Cache Misses) if
we set the value of the node X (Batch Size) to x . To com-
pute the average causal effect (ACE) of X → Z (i.e., Batch
Size Cache Misses), we find the average effect over
all permissible values of X (Batch Size), i.e., ACE (Z ,X) =
1
N ·

∑
∀a,b ∈X E [Z | do (X = b)] − E [Z | do (X = a)]. Here N

represents the total number of values X (Batch Size) can
take. If changes in Batch Size result in a large change in
Cache Misses, then ACE (Z ,X) will be larger, indicating
that Batch Size has a large causal effect on Cache Misses.

Stage IV: Update Causal Performance Model. At each
iteration, Unicorn measures the configuration that is de-
termined in the previous stage and updates the causal per-
formance model incrementally (shown in Fig. 10). Since the
causal model uses limited observational data, there may be a
discrepancy between the underlying performance model and
the learned causal performance model, note that this issue ex-
ists in all domains using data-drivenmodels, including causal
reasoning [80]. The more accurate the causal graph, the more
accurate the proposed intervention will be [19, 20, 32, 77, 91].
Fig. 11 (a) shows an example of an iterative decrease of ham-
ming distance [76] between the learned causal model and
(approximate) ground truth causal model. Fig. 11 (b), 11 (c),
and 11 (d) shows the iterative behavior of Unicorn while
debugging a multi-objective performance fault. In case our
repairs do not fix the faults, we update the observational data
with this new configuration and repeat the process. Over
time, the estimations of causal effects will become more accu-
rate. We terminate the incremental learning once we achieve
the desired performance.

Stage V: Estimate Performance Queries. At this stage,
given the learned causal performance model, Unicorn’s in-
ference engine estimates the user-specified queries using the
mathematics of causal reasoning–do-calculus. Specifically,
the causal inference engine provides a quantitative estimate
for the identifiable queries on the current causal model and
may return some queries as unidentifiable. It also determines
what assumptions or new measurements are required to
answer the “unanswerable“ questions, so, the user can de-
cide to incorporate these new assumptions by defining more
constraints or increasing the sampling budgets.

DEEPSTREAM XCEPTION BERT DEEPSPEECH X264 SQLITE

0

30

60

90

31
38 33 32

21 23

9

77

56
62

37 32

1
12 9 9 6 6

N
u
m
b
er

of
F
au
lt
s

Latency Energy Latency and Energy

Figure 13. Distribution of 451 single-objective and 43 multi-
objective non-functional faults across different software systems
used in our study.

5 Case Study
Prior to a systematic evaluation in §6, here, we show how
Unicorn can enable performance debugging in a real-world
scenario discussed in [2], where a developer migrated a real-
time scene detection system from NVIDIA TX1 to a more
powerful hardware, TX2. The developer, surprisingly, expe-
rienced 4× worse latency in the new environment (from 17
frames/sec in TX1 to 4 frames/sec in TX2). After two days
of discussions, the performance issue was diagnosed with
a misconfiguration–an incorrect setting of a compiler op-
tion and four hardware options. Here, we assess whether
and how Unicorn could facilitate the performance debug-
ging by comparing with (i) the fix suggested by NVIDIA
in the forum, and two academic performance debugging
approaches–BugDoc [67] and SMAC [48].
Findings. Fig. 12 illustrates our findings. We find that:
• Unicorn could diagnose the root cause of the misconfigu-
ration and recommends a fix within 22 minutes. Using the
recommended configuration from Unicorn, we achieved
a throughput of 28 frames/sec (65% higher than TX1 and
7× higher than the fault). This, surprisingly, exceeds the
developers’ initial expectation of 30 − 40% improvement.

• BugDoc (a diagnosis approach) has the least improvement
compared to other approaches (24% improvement over
TX1) while taking 4 hours to suggest the fix. BugDoc also
changed several unrelated options (depicted by Ë) not
endorsed by the domain experts.

• Using SMAC (an optimization approach), we aimed to find
a configuration that achieves optimal throughput. How-
ever, after converging, SMAC recommended a configura-
tion which achieved 24 frames/sec (41% better than TX1
and 6× better than the fault), however, could not outper-
form the configuration suggested by Unicorn and even
took 4 hours (11× longer than Unicorn to converge). In
addition, SMAC changed several unrelated options (Ë
in Fig. 12).

Why Unicorn works better (and faster)? Unicorn dis-
covers the misconfigurations by constructing a causal model
that rules out irrelevant configuration options and focuses
on the configurations that have the highest (direct or indi-
rect) causal effect on latency, e.g., we found the root-cause

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

Table 1. Overview of the subject systems used in our study.
Details about the configuration options and system events
for each system are found in the supplementary materials.

System Workload |C| |O| |S| |H | |W| |P|

Deepstream [5] Video analytics pipeline for
detection and tracking from
8 camera streams.

2461 53 288 2 1 2

Xception [17] Image recognition system to
classify 5000/5000 test im-
ages from CIFAR10.

6443 28 19 3 3 3

Deepspeech [41] Speech-to-text from 0.5/1932
hours of Common Voice Cor-
pus 5.1 (English) data.

6112 28 19 3 1 3

Bert [23] NLP system for sentiment
analysis of 1000/25000 test
reviews from IMDb.

6188 28 19 3 1 3

x264 [7] Encodes a 20 second 11.2 MB
video of resolution 1920 x
1080 from UGC.

17248 32 19 3 1 3

SQLite [6] Database engine for sequen-
tial & batch & random reads,
writes, deletions.

15680 242 288 3 3 3

* C: Configurations, O: Options, S: System Events, H: Hardware, W: Workload, P: Objectives

CUDA STATIC in the causal graph which indirectly affects la-
tency via Context Switches (an intermediate system event).
Using counterfactual queries, Unicorn can reason about
changes to configurations with the highest average causal
effect (ACE) (last column in Fig. 12). The counterfactual
reasoning occurs no additional measurements, significantly
speeding up inference as shown in Fig. 12, Unicorn accu-
rately finds all the configuration options recommended by
the forum (depicted by Ë in Fig. 12).

6 Evaluation
For a thorough evaluation of Unicorn, we have developed
UnicornTool that implements the methodology that we ex-
plained in §4. We used UnicornTool (see §A) to facilitate
comparing Unicorn with state-of-the-art performance de-
bugging and optimization approaches for:
• Effectiveness in terms of sample efficiency and perfor-
mance gain (§7).

• Transferability of learned models across environmental
changes such as hardware and workload changes (§8).

• Scalability to large-scale configurable systems (§9).
Systems.We selected six configurable systems including a
video analytic pipeline, three deep learning-based systems
(for image, speech, and NLP), a video encoder, and a database,
see Table 1. We use heterogeneous deployment platforms,
including NVIDIA TX1, TX2, and Xavier, each having dif-
ferent resources (compute, memory) and microarchitectures.
Configurations. We choose a wide range of configuration
options and system events (see Table 1), following NVIDIA’s
configuration guides/tutorials and other related work [37].
As opposed to prior works (e.g., [96, 97]) that only support
binary options due to scalability issues, we included options
with binary, discrete, and continuous.

Ground truth. We measured several thousands samples
(proportional to the configuration space of the system, see
supplementary materials for specific dataset size) for each
18 deployment settings (6 systems and 3 hardware; see Table
1 for more details). To ensure reliable and replicable results,
following the common practice [21, 24, 54, 59], we repeated
each measurement 5 times and used the median in the eval-
uation metrics. We curated a ground truth of performance
issues, called Jetson Faults, for each of the studied soft-
ware and hardware systems using the ground truth data. By
definition, non-functional faults are located in the tail of per-
formance distributions [35, 61]. We, therefore, selected and
labeled configurations that are worse than the 99th percentile
as ‘faulty.’ Fig. 13 shows the total 494 faults discovered across
different software. Out of these 494 non-functional faults,
43 are faults with multiple types (both energy and latency).
Of all the 451 single-objective and 43 multi-objective faults
discovered in this study, only 2 faults had a single root cause,
411 faults had five or more root causes, and 81 remaining
faults had two to four root causes.
Experimental parameters. To facilitate replication of the
results, we made some choices for specific parameters. In
particular, we disabled dynamic voltage and frequency scal-
ing (DVFS) before starting any experiment and start with 25
samples for each method (10% of the total sampling budget).
We repeat the entire process 3 times for consistent analyses.
Baselines.We evaluate Unicorn for two performance tasks:
(i) performance debugging and repair and (ii) performance
optimization. We compare Unicorn against state-of-the-
art, including CBI [90]—a statistical debugging method that
uses a feature selection algorithm; DD [9]—a delta debug-
ging technique, that minimizes the difference between a pair
of configurations; EnCore [104]—a debugging method that
learns to debug from correlational information about miscon-
figurations; BugDoc [67]—a debugging method that infers
the root causes and derives succinct explanations of failures
using decision trees; SMAC [48]—a sequential model-based
auto-tuning approach; and PESMO [43]—a multi-objective
Bayesian optimization approach.
Evaluation metrics. (i) Accuracy is calculated by weighted
Jaccard similarity between the predicted and true root causes,
where the weight vector was derived based on the aver-
age causal effect of options to performance based on the
ground-truth causal performance model. For example, if A
is the recommended configuration by an approach and B
is the configuration that fixes the performance issue in the
ground truth, we measure accuracy =

∑
ACE(A∩B)∑
ACE(A∪B)

. The key
intuition is that an ideal causal model underlying the system
should identify the most important options that affect per-
formance objectives. In other words, an ideal causal model
should provide recommendations for changing the values
of options that have the highest average causal effects on

https://github.com/softsys4ai/unicorn
https://github.com/softsys4ai/unicorn

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

Table 2. Efficiency of Unicorn compared to other approaches. Cells highlighted in blue indicate improvement over faults.
(a) Single objective performance fault for latency and energy in TX2 and Xavier, respectively.

Accuracy Precision Recall Gain Time†

U
n
ic
or

n

CB
I

D
D

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

D
D

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

D
D

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

D
D

En
Co

re

Bu
gD

oc

U
n
ic
or

n

O
th
er
s

DeepStream 87 61 62 65 81 83 66 59 60 71 80 61 65 60 70 88 66 67 68 79 0.8 4
Xception 86 53 42 62 65 86 67 61 63 67 83 64 68 69 62 82 48 42 57 59 0.6 4
BERT 81 56 59 60 57 76 57 55 61 73 71 74 68 67 65 74 54 59 62 58 0.4 4
Deepspeech 81 61 59 60 72 76 58 69 61 71 81 73 61 63 69 76 59 53 55 66 0.7 4TX

2

La
te
nc
y

x264 83 59 63 62 62 82 69 58 65 66 78 64 67 63 72 85 69 72 68 71 1.4 4
DeepStream 91 81 79 77 87 81 61 62 64 73 85 63 61 62 75 86 68 62 61 78 0.7 4
Xception 84 66 63 63 81 78 56 58 66 65 80 69 55 63 68 83 59 50 51 62 0.4 4
BERT 66 59 53 63 72 70 62 64 64 65 79 61 54 63 66 62 49 36 49 53 0.5 4
Deepspeech 73 68 63 72 71 75 55 59 54 68 78 53 52 59 71 78 64 48 65 63 1.2 4X

av
ie
r

En
er
gy

x264 77 71 70 74 74 83 63 53 61 66 78 67 53 54 72 87 73 71 76 76 0.3 4

(b)Multi-objective non-functional faults in Energy, Latency in Xavier.

Accuracy Precision Recall Gain (Latency) Gain (Energy) Time†

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

O
th
er
s

Xception 89 76 81 79 77 53 54 62 81 59 59 62 84 53 61 65 75 38 46 44 0.9 4
BERT 71 72 73 71 77 42 56 63 79 59 62 65 84 53 59 61 67 41 27 48 0.5 4
Deepspeech 86 69 71 72 80 44 53 62 81 51 59 64 88 55 55 62 77 43 43 41 1.1 4

En
er
gy

+
La
te
nc
y

x264 85 73 83 81 83 50 54 67 80 63 62 61 75 62 64 66 76 64 66 64 1 4
† Wallclock time in hours

system performance. (ii) Precision is calculated by the per-
centage of true root causes among the predicted ones. (iii) Re-
call is calculated by the percentage of true root causes that
are correctly predicted. (iv) Gain is calculated by percent-
age improvement of suggested fix over the observed fault–
∆дain =

NFPfault−NFPnofault
NFPfault ×100, where NFPfault the observed

faulty performance and NFPno fault is the performance of
suggested fix. (v) Error is calculated by the hypervolume
error (in multi-objective) [107]. (vi) Time is measured by
wallclock time (in hours) to suggest a fix.

7 Effectiveness and Sample Efficiency
Setting. We only show the partial results, however, our
results generalize to all evaluated settings. For debugging,
we use latency faults in TX2 and energy faults in Xavier.
For single-objective optimization, we compare Unicorn with
SMAC for Xception for latency and energy and for multi-
objective optimization we compare with PESMO in TX2.
Results (debugging). Tables 2a and 2b shows Unicorn sig-
nificantly outperforms correlation-based methods in all cases.
For example, in Deepstream on TX2, Unicorn achieves 6%
more accuracy, 12% more precision, and 10% more recall
compared to the next best method, BugDoc. We observed
latency gains as high as 88% (9% more than BugDoc) on TX2
and energy gain of 86% (9% more than BugDoc) on Xavier
for Xception. We observe similar trends for multi-objective
faults as well. The results confirm that Unicorn can recom-
mend repairs for faults that significantly improve latency and

100 200

40

60

80

100

Sample Size

G
ai
n
%

Xception

100 200

Sample Size

Bert

DD CBI Encore Bugdoc Unicorn

100 200

Sample Size

Deepspeech

100 200 300 400

Sample Size

x264

(a) Latency

100 200

40

60

80

100

Sample Size

G
ai
n
%

Xception

100 200

Sample Size

Bert

100 200

Sample Size

Deepspeech

200 400

Sample Size

x264

(b) Energy

Figure 14. Unicorn has significantly higher sampling efficiency
than other baselines in debugging non-functional faults: (a) latency
faults in TX2 and (b) energy faults in Xavier.

energy. By applying the changes to the configurations rec-
ommended by Unicorn improves performance drastically.

Fig. 14a and Fig. 14b demonstrate the sample efficiency re-
sults for different systems. We observe that, for both latency
and energy faults, Unicorn achieved significantly higher

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

0 50 100 150 200

20

40

60

Iteration

M
in
.
L
at
en
cy

(S
ec
s.
)

(a) Single Objective Latency

Unicorn Smac

0 50 100 150 200

100

150

200

250

Iteration

M
in
.
E
n
er
gy

(J
)

(b) Single Objective Energy

Unicorn Smac

0 50 100 150 200

0.4

0.6

0.8

Iteration

H
yp

er
vo
lu
m
e
E
rr
or

(c) Multi-Objective Latency and Energy

Unicorn Pesmo

10 20 30 40 50
100

150

200

250

300

Latency (Secs.)

E
n
er
gy

(J
)

(d) Pareto Front

Unicorn Pesmo

Figure 15. Unicorn vs. single and multi-objective optimization
with SMAC and PESMO in TX2.

gains with substantially fewer samples. For Xception, Uni-
corn required a 8× fewer samples to obtain 32% higher gain
than DD. The higher gain in Unicorn in comparison to
correlation-based methods indicates that Unicorn’s causal
reasoning is more effective in guiding the search in the ob-
jective space. Unicorn does not waste budget evaluating
configurations with lower causal effects and finds a fix faster.

Unicorn resolvesmisconfiguration faults significantly faster
than correlation-based approaches. In Tables 2a and 2b, the
last two columns indicate the time taken (in hours) by each
approach to diagnosing the root cause. For all correlation-
based methods, we set a maximum budget of 4 hours. We
find that, while other approaches use the entire budget to
diagnose and resolve the faults, Unicorn can do so signifi-
cantly faster. In particular, we observed that Unicorn is 13×
faster in diagnosing and resolving faults in energy usage for
x264 deployed on Xavier and 10× faster for latency faults
for Bert deployed on TX2.
Results (optimization). Fig. 15 (a) and Fig. 15 (b) demon-
strate the single-objective optimization results—Unicorn
finds configurations with optimal latency and energy for
both cases. Fig. 15 (a) illustrates that the optimal configu-
ration discovered by Unicorn has 43% lower latency (12
seconds) than that of SMAC (21 seconds). Here, Unicorn
reaches near-optimal configuration by only exhausting one-
third of the entire budget. In Fig. 15 (b), the optimal configura-
tion discovered by Unicorn and SMAC had almost the same
energy, but Unicorn reached this optimal configuration 4x
faster than SMAC. In both single-objective optimizations,
the iterative variation of Unicorn is less than SMAC–i.e.,
Unicorn finds more stable configurations. Fig. 15 (c) com-
pares Unicorn with PESMO to optimize both latency and
energy in TX2 (for image recognition). Here, Unicorn has

Accuracy Precision Recall Gain

30

60

90

%

Unicorn (Reuse) Unicorn + 25 Unicorn (Rerun)
Bugdoc (Reuse) Bugdoc + 25 Bugdoc (Rerun)

Time
0

2

4

H
ou
rs
.

Figure 16. Unicorn has higher accuracy, precision, recall, and
gain in debugging non-functional energy faults when hardware
changes (Xavier to TX2).

10k 20k 50k
0

30

60

90

Workload Size

G
ai
n
%

Unicorn + 20% Unicorn + 10% Unicorn (Reuse)
Smac + 20% Smac + 10% Smac (Reuse)

Figure 17. Unicorn finds configurations with higher gain when
workloads are changed for performance (latency) optimization task
in TX2.

12% lower hypervolume error than PESMO and reaches the
same level of hypervolume error of PESMO 4x times faster.
Fig. 15 (d) illustrates the Pareto optimal configurations ob-
tained by Unicorn and PESMO. The Pareto front discovered
by Unicorn has higher coverage, as it discovers a larger
number of Pareto optimal configurations with lower energy
and latency value than PESMO.

8 Transferability
Setting.We reuse the causal performancemodel constructed
from a source environment, e.g., TX1, to resolve a non-
functional fault in a target environment, e.g., Xavier. We
evaluated Unicorn for debugging energy faults for Xcep-
tion and used Xavier as the source and TX2 as the target,
since they have different microarchitectures, expecting to
see large differences in their performance behaviors. We only
compared with BugDoc as it discovered fixes with higher
energy gain in Xavier than other correlation-based base-
line methods (see Table 2a). We compared Unicorn and
BugDoc in the following scenarios: (i) BugDoc (Reuse) and
Unicorn (Reuse): reusing the recommended configurations
from Source to Target, (ii) BugDoc + 25 and Unicorn + 25:
reusing the performance models (i.e., causal model and deci-
sion tree) learned in Source and fine-tuning the models with
25 new samples in Target, and (iii) BugDoc (Rerun) and
Unicorn (Rerun): we rerun Unicorn and BugDoc from
scratch to resolve energy faults in Target. For optimization
tasks, we use three larger additional Xception workloads:
10000 (10k), 20000 (20k), and 50000 (50k) test images (previ-
ous experiments used 5000 (5k) test images). We evaluated

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

Table 3. Scalability for SQLite and DeepStream on Xavier.

Time/Fault (in sec.)
Sy
st
em

Co
nfi

gs

Ev
en
ts

Pa
th
s

Q
ue
rie

s

D
eg
re
e

G
ai
n
(%
)

D
is
co
ve
ry

Q
ue
ry

Ev
al

To
ta
l

SQLite 34 19 32 191 3.6 93 9 14 291

242 19 111 2234 1.9 94 57 129 1345

242 288 441 22372 1.6 92 111 854 5312

Deepstream 53 19 43 497 3.1 86 16 32 1509

53 288 219 5008 2.3 85 97 168 3113

three variants of SMAC and Unicorn: (i) SMAC (Reuse) and
Unicorn (Reuse), where we reuse the near-optimum found
with 5k test images on the larger workloads; (ii) SMAC +
10% and Unicorn + 10%, where we rerun with 10% budget in
target and update the optimization and causal performance
model with 10% additional budget; and (iii) SMAC + 20% and
Unicorn + 20%, where we rerun with 20% budget in target
and update the models with 20% additional budget.
Results. Fig. 16 indicates the results in resolving energy
faults in TX2. We observe that Unicorn + 25 obtains 8%
more accuracy, 7% more precision, 5% more recall and 8%
more gain than BugDoc (Rerun). Here, BugDoc takes sig-
nificantly longer time than Unicorn, i.e., BugDoc (Rerun)
exhausts the entire 4-hour budget whereas Unicorn takes at
most 20 minutes to fix the energy faults. Moreover, we have
to rerun BugDoc every time the hardware changes, and this
limits its practical usability. In contrast, Unicorn incremen-
tally updates the internal causal model with new samples
from the newer hardware to learn new relationships. We
also observe that with little updates, Unicorn + 25 (∼20 min-
utes) achieves a similar performance of Unicorn (Rerun)
(∼36 minutes). Since the causal mechanisms are sparse, the
causal performance model from Xavier in Unicorn quickly
reaches a fixed structure in TX2 using incremental learning
by judiciously evaluating the most promising fixes until the
fault is resolved.

Our experimental results demonstrate that Unicorn per-
forms better than the two variants of three SMAC (c.f. Fig. 17).
SMAC (Reuse) performs theworst when theworkload changes.
With 10K images, reusing the near-optimal configuration
from 5K images results in a latency gain of 10%, compared
to 12% with Unicorn in comparison with the default config-
uration. We observe that Unicorn + 20% achieves 44%, 42%,
and 47% higher gain than SMAC + 20% for workload sizes of
10k, 20k, and 50k images, respectively.

9 Scalability
Setting. We evaluated Unicorn for scalability with SQLite
(large configuration space) and Deepstream (large com-
posed system). In SQLite, we evaluated three scenarios:
(a) selecting the most relevant software, hardware options,

and events (34 configuration options and 19 system events),
(b) selecting all modifiable software and hardware options
and system events (242 configuration options and 19 events),
and (c) selecting not only all modifiable software and hard-
ware options and system events but also intermediate tracepoint
events (242 configuration options and 288 events). In Deep-
stream, there are two scenarios: (a) 53 configuration options
and 19 system events, and (b) 53 configuration options and
288 events when we select all modifiable software and hard-
ware options, and system/tracepoint events.
Results. In large systems, there are significantly more causal
paths and therefore, causal learning and estimations of queries
take more time. The results in Table 3 indicate that Unicorn
can scale to a much larger configuration space without an
exponential increase in runtime for any of the intermediate
stages. This can be attributed to the sparsity of the causal
graph. For example, the average degree of a node for SQLite
in Table 3 is at most 3.6, and it reduces to 1.6 when the num-
ber of configurations increases. Similarly, the average degree
reduces from 3.1 to 2.3 in Deepstream when systems events
are increased.

10 Related Work
Performance faults in configurable systems. Previous
empirical studies have shown that a majority of performance
issues are due to misconfigurations [39], with severe con-
sequences in production environments [68, 93], and config-
uration options that cause such performance faults force
the users to tune the systems themselves [106]. Previous
works have used static and dynamic program analysis to
identify the influence of configuration options on perfor-
mance [66, 96, 97] and to detect and diagnose misconfig-
urations [10, 11, 103, 105]. Unlike Unicorn, none of the
white-box analysis approaches target configuration space
across the system stack, where it limits their applicability in
identifying the true causes of a performance fault.
Statistical and model-based debugging. Debugging ap-
proaches such as StatisticalDebugging [90], HOLMES [16],
XTREE [65], BugDoc [67], EnCore [67], Rex [69], and Per-
fLearner [40] have been proposed to detect root causes of
system faults. These methods make use of statistical diagno-
sis and pattern mining to rank the probable causes based on
their likelihood of being the root causes of faults. However,
these approaches may produce correlated predicates that
lead to incorrect explanations.
Causal testing and profiling. Causal inference has been
used for fault localization [12, 29], resource allocations in
cloud systems [31], and causal effect estimation for advertise-
ment recommendation systems [14]. More recently, AID [28]
detects root causes of an intermittent software failure us-
ing fault injection as an intervention. Causal Testing [58]
modifies the system inputs to observe behavioral changes
and utilizes counterfactual reasoning to find the root causes

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

of bugs. Causal profiling approaches like CoZ [22] point to
developers where optimizations will improve performance
and quantify their potential impact. Causal inference meth-
ods like X-Ray [10] and ConfAid [11] had previously been
applied to analyze program failures. All approaches above
are either orthogonal or complementary to Unicorn, mostly
they focus on functional bugs (e.g., Causal Testing) or if
they are performance-related, they are not configuration-
aware (e.g., CoZ).

11 Limitations and Future Directions
Learning a predictive model vs learning the underly-
ing structure. Building a causal performance model could
be more expensive than performance influence models. The
reason for having a potentially higher learning cost is that
in addition to learning a predictive model, we also need to
learn the structure of the input configuration space. However,
exploiting causal knowledge is more helpful in search-like
tasks (e.g., performance optimization [51, 55]) that looks
for higher quality samples, making it possible to debug or
optimize with a few samples.
Dealing with an incomplete causal model. Existing off-
the-shelf causal graph discovery algorithms like FCI remain
ambiguous while data is insufficient and returns partially
directed edges. For highly configurable systems, gathering
high-quality data is challenging. To address this issue, we
develop a novel pipeline for causal model discovery by com-
bining FCI with entropic causality, an information-theoretic
approach [62] to causality that takes the direction across
which the entropy is lower as the causal direction. Such
an approach helps to reduce ambiguity and thus allows the
causal graph to converge faster. Note that estimating a theo-
retical guarantee for convergence is out of scope, as having
a global view of the entire configuration space is infeasible.
Moreover, the presence of too many confounders can affect
the correctness of the causal models, and this error may prop-
agate along with the structure if the dimensionality is high.
Therefore, we use a greedy refinement strategy to update
the causal graph incrementally with more samples; at each
step, the resultant graph can be approximate and incomplete,
but asymptotically, it will be refined to its correct form given
enough time and samples.
Algorithmic innovations for faster convergence. The
efficacy of Unicorn depends on several factors such as the
representativeness of the observational data or the presence
of unmeasured confounders that can negatively affect the
quality of the causal model. There are instances where the
causal model may be incorrect or lack some crucial connec-
tions that may result in detecting spurious root causes or
recommending incorrect repairs. One promising direction
to address this problem would be to develop new algorithms
for Stage II & III of Unicorn (see Section 4). Specifically, we
see the potential for developing innovative approaches for

learning better structure, incorporating domain knowledge
by restricting the structure of the underlying causal model.
In addition, there are potentials for developing better sam-
pling algorithms by either shrinking the search space (e.g.,
using transfer learning [55]) or searching the space more
efficiently to determine effective interventions that enable
faster convergence to the true underlying structure.
Incorporating domain knowledge. Additionally, there is
scope for developing new approaches for either automati-
cally extracting constraints (e.g., from source code or other
downstream artifacts) to incorporate in learning causal per-
formance model or approaches to make humans part of the
loop for correcting the causal performance model during
learning. Specifically, new approaches could provide infras-
tructure as well as algorithms to determine when to ask for
human feedback and what to ask for, e.g., feedback regarding
a specific part of the causal model or feedback regarding the
determined intervention at each step.
Developing new domain-specific languages. Unicorn
uses a query engine to translate common user queries into
counterfactual statements. A domain-specific language to
facilitate automated specification of queries from written
unstructured data could potentially lead to the adoption of
causal reasoning in the system development lifecycle.

12 Conclusion
Modern computer systems are highly-configurablewith thou-
sands of interacting configurations with a complex perfor-
mance behavior. Misconfigurations in these systems can
elicit complex interactions between software and hardware
configuration options, resulting in non-functional faults. We
propose Unicorn, a novel approach for diagnostics that
learns and exploits the system’s causal structure consisting
of configuration options, system events, and performance
metrics. Our evaluation shows that Unicorn effectively and
quickly diagnoses the root cause of non-functional faults and
recommends high-quality repairs to mitigate these faults. We
also show that the learned causal performancemodel is trans-
ferable across different workload and deployment environ-
ments. Finally, we demonstrate the scalability of Unicorn
scales to large systems consisting of 500 options and several
trillion potential configurations.

Acknowledgements
This work has been supported in part by NASA (Awards
80NSSC20K1720 and 521418-SC) and NSF (Awards 2007202,
2107463, and 2038080), Google, and Chameleon Cloud. We
are grateful to all who provided feedback on this work, in-
cluding Christian KÜastner, Sven Apel, Yuriy Brun, Emery
Berger, Tianyin Xu, Vivek Nair, Jianhai Su, Miguel Velez,
Tobius DÜurschmid, and the anonymous EuroSys’22 (as well
as EuroSys’21 and FSE’21) reviewers.

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

References
[1] Slow image classification with tensorflow on TX2. In NVIDIA devel-

oper forums: https://forums.developer.nvidia.com/t/54307, October
2017.

[2] Cuda performance issue on TX2. In NVIDIA developer forums: https:
//forums.developer.nvidia.com/t/50477, June 2020.

[3] General performance problems. In NVIDIA developer forums: https:
//forums.developer.nvidia.com/t/111704, February 2020.

[4] High CPU usage on jetson TX2 with GigE fully loaded. In NVIDIA de-
veloper forums: https://forums.developer.nvidia.com/t/124381, May
2020.

[5] Nvidia deepstream sdk. https://developer.nvidia.com/deepstream-sdk,
2021.

[6] Sqlite database engine. https://www.sqlite.org/index.html, 2021.
[7] X264 video encoder. https://www.videolan.org/developers/x264.html,

2021.
[8] Alcocer, J. P. S., Bergel, A., Ducasse, S., and Denker, M. Perfor-

mance evolution blueprint: Understanding the impact of software
evolution on performance. In Proc. of Working Conference on Software
Visualization (VISSOFT) (2013), IEEE, pp. 1–9.

[9] Artho, C. Iterative delta debugging. International Journal on Software
Tools for Technology Transfer 13, 3 (2011), 223–246.

[10] Attariyan, M., Chow, M., and Flinn, J. X-ray: Automating root-
cause diagnosis of performance anomalies in production software.
In Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12) (2012), pp. 307–320.

[11] Attariyan,M., and Flinn, J. Automating configuration troubleshoot-
ing with dynamic information flow analysis. In OSDI (2010), vol. 10,
pp. 1–14.

[12] Baah, G. K., Podgurski, A., and Harrold, M. J. Causal inference for
statistical fault localization. In Proceedings of the 19th international
symposium on Software testing and analysis (2010), pp. 73–84.

[13] blames ’faulty configuration change’ for nearly six-hour
outage, F. https://t.ly/Dy1s.

[14] Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X.,
Chickering, D. M., Portugaly, E., Ray, D., Simard, P., and Snelson,
E. Counterfactual reasoning and learning systems: The example of
computational advertising. The Journal of Machine Learning Research
14, 1 (2013), 3207–3260.

[15] Bryant, R. E., David Richard, O., and David Richard, O. Computer
systems: a programmer’s perspective, vol. 2. 2003.

[16] Chilimbi, T. M., Liblit, B., Mehra, K., Nori, A. V., and Vaswani,
K. Holmes: Effective statistical debugging via efficient path profiling.
In 2009 IEEE 31st International Conference on Software Engineering
(2009), IEEE, pp. 34–44.

[17] Chollet, F. Xception: Deep learning with depthwise separable con-
volutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition (2017), pp. 1251–1258.

[18] cloud outage was triggered by configuration error, A.
https://www.computerworld.com/article/2508335/amazon-cloud-
outage-was-triggered-by-configuration-error.html.

[19] Colombo, D., and Maathuis, M. H. Order-independent constraint-
based causal structure learning. The Journal of Machine Learning
Research 15, 1 (2014), 3741–3782.

[20] Colombo, D., Maathuis, M. H., Kalisch, M., and Richardson, T. S.
Learning high-dimensional directed acyclic graphs with latent and
selection variables. The Annals of Statistics (2012), 294–321.

[21] Curtsinger, C., and Berger, E. D. Stabilizer: Statistically sound
performance evaluation. ACM SIGARCH Computer Architecture News
41, 1 (2013), 219–228.

[22] Curtsinger, C., and Berger, E. D. Coz: Finding code that counts
with causal profiling. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (2015), pp. 184–197.

[23] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-
training of deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805 (2018).

[24] Ding, Y., Pervaiz, A., Carbin, M., and Hoffmann, H. Generalizable
and interpretable learning for configuration extrapolation. In Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(2021), pp. 728–740.

[25] Elkhodary, A., Esfahani, N., and Malek, S. Fusion: A framework
for engineering self-tuning self-adaptive software systems. In Proc.
Int’l Symp. Foundations of Software Engineering (FSE) (2010), ACM,
pp. 7–16.

[26] Esfahani, N., Elkhodary, A., and Malek, S. A learning-based
framework for engineering feature-oriented self-adaptive software
systems. IEEE Trans. Softw. Eng. (TSE) 39, 11 (2013), 1467–1493.

[27] Farahmand, S., OâĂŹConnor, C., Macoska, J. A., and Zarringha-
lam, K. Causal inference engine: a platform for directional gene set
enrichment analysis and inference of active transcriptional regulators.
Nucleic acids research 47, 22 (2019), 11563–11573.

[28] Fariha, A., Nath, S., and Meliou, A. Causality-guided adaptive
interventional debugging. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (2020), pp. 431–446.

[29] Feyzi, F., and Parsa, S. Inforence: effective fault localization based
on information-theoretic analysis and statistical causal inference.
Frontiers of Computer Science 13, 4 (2019), 735–759.

[30] Filieri, A., Hoffmann, H., and Maggio, M. Automated multi-
objective control for self-adaptive software design. In Proc. Int’l Symp.
Foundations of Software Engineering (FSE) (2015), ACM, pp. 13–24.

[31] Geiger, P., Carata, L., and Schölkopf, B. Causal models for de-
bugging and control in cloud computing. arXiv preprint arXiv 1603
(2016).

[32] Glymour, C., Zhang, K., and Spirtes, P. Review of causal discovery
methods based on graphical models. Frontiers in genetics 10 (2019),
524.

[33] Grebhahn, A., Siegmund, N., and Apel, S. Predicting performance
of software configurations: There is no silver bullet. arXiv preprint
arXiv:1911.12643 (2019).

[34] Grebhahn, A., Siegmund, N., Köstler, H., andApel, S. Performance
prediction of multigrid-solver configurations. In Software for Exascale
Computing-SPPEXA 2013-2015. Springer, 2016, pp. 69–88.

[35] Gunawi, H. S., et al. Fail-slow at scale: Evidence of hardware
performance faults in large production systems. ACM Transactions
on Storage (TOS) 14, 3 (2018), 1–26.

[36] Guo, J., Czarnecki, K., Apel, S., Siegmund, N., and Wasowski,
A. Variability-aware performance prediction: A statistical learning
approach. In Proc. Int’l Conf. Automated Software Engineering (ASE)
(2013), IEEE.

[37] Halawa, H., Abdelhafez, H. A., Boktor, A., and Ripeanu, M.
NVIDIA jetson platform characterization. Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
10417 LNCS (2017), 92–105.

[38] Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G.,
and Baudry, B. Test them all, is it worth it? assessing configuration
sampling on the jhipster web development stack. Empirical Software
Engineering 24, 2 (2019), 674–717.

[39] Han, X., and Yu, T. An empirical study on performance bugs for
highly configurable software systems. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (2016).

[40] Han, X., Yu, T., and Lo, D. Perflearner: learning from bug reports
to understand and generate performance test frames. In 2018 33rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) (2018).

[41] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen,
E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A., et al. Deep
speech: Scaling up end-to-end speech recognition. arXiv preprint

https://forums.developer.nvidia.com/t/54307
https://forums.developer.nvidia.com/t/50477
https://forums.developer.nvidia.com/t/50477
https://forums.developer.nvidia.com/t/111704
https://forums.developer.nvidia.com/t/111704
https://forums.developer.nvidia.com/t/124381

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

arXiv:1412.5567 (2014).
[42] Henard, C., Papadakis, M., Harman, M., and Le Traon, Y. Com-

bining multi-objective search and constraint solving for configuring
large software product lines. In Proc. Int’l Conf. Software Engineering
(ICSE) (2015), IEEE, pp. 517–528.

[43] Hernández-Lobato, D., Hernandez-Lobato, J., Shah, A., and
Adams, R. Predictive entropy search for multi-objective bayesian
optimization. In International Conference on Machine Learning (2016),
pp. 1492–1501.

[44] Hoffmann, H., Sidiroglou, S., Carbin,M., Misailovic, S., Agarwal,
A., and Rinard, M. Dynamic knobs for responsive power-aware
computing. In In Proc. of Int’l Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (2011).

[45] Hoos, H. H. Automated algorithm configuration and parameter
tuning. In Autonomous search. Springer, 2011, pp. 37–71.

[46] Hoos, H. H. Programming by optimization. Communications of the
ACM 55, 2 (2012), 70–80.

[47] Hu, Y., Huang, G., and Huang, P. Automated reasoning and de-
tection of specious configuration in large systems with symbolic
execution. In 14th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 20) (2020), pp. 719–734.

[48] Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential model-
based optimization for general algorithm configuration. In Inter-
national conference on learning and intelligent optimization (2011),
Springer, pp. 507–523.

[49] Iqbal, M. S., Kotthoff, L., and Jamshidi, P. Transfer Learning for
Performance Modeling of Deep Neural Network Systems. In USENIX
Conference on Operational Machine Learning (Santa Clara, CA, 2019),
USENIX Association.

[50] Iqbal, M. S., Su, J., Kotthoff, L., and Jamshidi, P. Flexibo: Cost-
aware multi-objective optimization of deep neural networks. arXiv
preprint arXiv:2001.06588 (2020).

[51] Jamshidi, P., and Casale, G. An uncertainty-aware approach to
optimal configuration of stream processing systems. In Proc. Int’l
Symp. on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS) (2016), IEEE.

[52] Jamshidi, P., and Casale, G. An uncertainty-aware approach to
optimal configuration of stream processing systems. In 2016 IEEE
24th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS) (2016), IEEE,
pp. 39–48.

[53] Jamshidi, P., Ghafari, M., Ahmad, A., and Pahl, C. A framework for
classifying and comparing architecture-centric software evolution
research. In Proc. of European Conference on Software Maintenance
and Reengineering (CSMR) (2013), IEEE, pp. 305–314.

[54] Jamshidi, P., Siegmund, N., Velez, M., Kästner, C., Patel, A., and
Agarwal, Y. Transfer learning for performance modeling of config-
urable systems: An exploratory analysis. In Proc. Int’l Conf. Automated
Software Engineering (ASE) (2017), ACM.

[55] Jamshidi, P., Velez, M., Kästner, C., and Siegmund, N. Learn-
ing to sample: Exploiting similarities across environments to learn
performance models for configurable systems. In Proc. Int’l Symp.
Foundations of Software Engineering (FSE) (2018), ACM.

[56] Jamshidi, P., Velez, M., Kästner, C., Siegmund, N., and
Kawthekar, P. Transfer learning for improving model predictions
in highly configurable software. In Proc. Int’l Symp. Soft. Engineering
for Adaptive and Self-Managing Systems (SEAMS) (2017), IEEE.

[57] Javidian, M. A., Jamshidi, P., and Valtorta, M. Transfer learning
for performance modeling of configurable systems: A causal analysis.
arXiv preprint arXiv:1902.10119 (2019).

[58] Johnson, B., Brun, Y., and Meliou, A. Causal testing: Understand-
ing defectsâĂŹ root causes. In Proceedings of the 2020 International
Conference on Software Engineering (2020).

[59] Kaltenecker, C., Grebhahn, A., Siegmund, N., and Apel, S. The
interplay of sampling andmachine learning for software performance

prediction. IEEE Software (2020).
[60] Kawthekar, P., and Kästner, C. Sensitivity analysis for building

evolving and & adaptive robotic software. In Proceedings of the IJCAI
Workshop on Autonomous Mobile Service Robots (WSR) (7 2016).

[61] Kleppmann, M. Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. " O’Reilly Media,
Inc.", 2017.

[62] Kocaoglu, M., Dimakis, A. G., Vishwanath, S., and Hassibi, B.
Entropic causal inference. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (2017), p. 1156âĂŞ1162.

[63] Kocaoglu, M., Shakkottai, S., Dimakis, A., Caramanis, C., and
Vishwanath, S. Applications of Common Entropy for Causal Infer-
ence.

[64] Kolesnikov, S., Siegmund, N., Kästner, C., Grebhahn, A., and
Apel, S. Tradeoffs in modeling performance of highly configurable
software systems. Software & Systems Modeling 18, 3 (2019), 2265–
2283.

[65] Krishna, R., Menzies, T., and Layman, L. Less is more: Minimizing
code reorganization using xtree. Information and Software Technology
88 (2017), 53–66.

[66] Li, C., Wang, S., Hoffmann, H., and Lu, S. Statically inferring
performance properties of software configurations. In Proceedings
of the Fifteenth European Conference on Computer Systems (2020),
pp. 1–16.

[67] Lourenço, R., Freire, J., and Shasha, D. Bugdoc: A system for
debugging computational pipelines. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (2020),
pp. 2733–2736.

[68] Maurer, B. Fail at scale: Reliability in the face of rapid change. Queue
13, 8 (2015), 30–46.

[69] Mehta, S., Bhagwan, R., Kumar, R., Bansal, C., Maddila, C., Ashok,
B., Asthana, S., Bird, C., and Kumar, A. Rex: Preventing bugs and
misconfiguration in large services using correlated change analy-
sis. In 17th {USENIX} Symposium on Networked Systems Design and
Implementation (2020).

[70] Molyneaux, I. The art of application performance testing: Help for
programmers and quality assurance.[sl]:" oâĂŹreilly media, 2009.

[71] Mühlbauer, S., Apel, S., and Siegmund, N. Accurate modeling of
performance histories for evolving software systems. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) (2019), IEEE, pp. 640–652.

[72] Murashkin, A., Antkiewicz, M., Rayside, D., and Czarnecki, K.
Visualization and exploration of optimal variants in product line
engineering. In Proc. Int’l Software Product Line Conference (SPLC)
(2013), ACM, pp. 111–115.

[73] Nair, V., Menzies, T., Siegmund, N., and Apel, S. Faster discovery of
faster system configurations with spectral learning. arXiv:1701.08106
(2017).

[74] Nistor, A., Chang, P.-C., Radoi, C., and Lu, S. Caramel: Detect-
ing and fixing performance problems that have non-intrusive fixes.
In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering (2015).

[75] Nistor, A., Jiang, T., and Tan, L. Discovering, reporting, and fixing
performance bugs. In 10th working conference on mining software
repositories (2013).

[76] Norouzi, M., Fleet, D. J., and Salakhutdinov, R. R. Hamming
distance metric learning. In Advances in neural information processing
systems (2012), pp. 1061–1069.

[77] Ogarrio, J. M., Spirtes, P., and Ramsey, J. A hybrid causal search
algorithm for latent variable models. In Conference on Probabilistic
Graphical Models (2016), pp. 368–379.

[78] Olaechea, R., Rayside, D., Guo, J., and Czarnecki, K. Comparison
of exact and approximate multi-objective optimization for software
product lines. In Proc. Int’l Software Product Line Conference (SPLC)

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

(2014), ACM, pp. 92–101.
[79] Pearl, J. Graphical models for probabilistic and causal reasoning.

Quantified representation of uncertainty and imprecision (1998), 367–
389.

[80] Pearl, J. Causality. Cambridge university press, 2009.
[81] Pearl, J., and Mackenzie, D. The book of why: the new science of

cause and effect. Basic Books, 2018.
[82] Pereira, J. A., Martin, H., Acher, M., Jézéqel, J.-M., Botterweck,

G., and Ventresqe, A. Learning software configuration spaces: A
systematic literature review. arXiv preprint arXiv:1906.03018 (2019).

[83] Reddy, C. M., and Nalini, N. Fault tolerant cloud software systems
using software configurations. In 2016 IEEE International Conference
on Cloud Computing in EmergingMarkets (CCEM) (2016), IEEE, pp. 61–
65.

[84] Sánchez, A. B., Delgado-Pérez, P., Medina-Bulo, I., and Segura,
S. Tandem: A taxonomy and a dataset of real-world performance
bugs. IEEE Access 8 (2020), 107214–107228.

[85] Scherrer, N., Bilaniuk, O., Annadani, Y., Goyal, A., Schwab, P.,
Schölkopf, B., Mozer, M. C., Bengio, Y., Bauer, S., and Ke, N. R.
Learning neural causal models with active interventions. arXiv
preprint arXiv:2109.02429 (2021).

[86] Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner,
N., Goyal, A., and Bengio, Y. Toward causal representation learning.
Proceedings of the IEEE 109, 5 (2021), 612–634.

[87] Siegmund, N., Grebhahn, A., Apel, S., and Kästner, C.
Performance-influence models for highly configurable systems. In
Proc. Europ. Software Engineering Conf. Foundations of Software Engi-
neering (ESEC/FSE) (August 2015), ACM, pp. 284–294.

[88] Siegmund, N., Grebhahn, A., Apel, S., and Kästner, C.
Performance-influence models for highly configurable systems. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (2015), pp. 284–294.

[89] Siegmund, N., Ruckel, N., and Siegmund, J. Dimensions of soft-
ware configuration: on the configuration context in modern software
development. In Proceedings of the 28th ESEC/FSE (2020), pp. 338–349.

[90] Song, L., and Lu, S. Statistical debugging for real-world performance
problems. ACM SIGPLAN Notices 49, 10 (2014), 561–578.

[91] Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman, D. Cau-
sation, prediction, and search. MIT press, 2000.

[92] Styles, J., Hoos, H. H., and Müller, M. Automatically configur-
ing algorithms for scaling performance. In Learning and Intelligent
Optimization. Springer, 2012, pp. 205–219.

[93] Tang, C., Kooburat, T., Venkatachalam, P., Chander, A., Wen,
Z., Narayanan, A., Dowell, P., and Karl, R. Holistic configuration
management at facebook. In Proceedings of the 25th Symposium on
Operating Systems Principles (2015), pp. 328–343.

[94] Tsakiltsidis, S., Miranskyy, A., and Mazzawi, E. On automatic
detection of performance bugs. In 2016 IEEE international symposium

on software reliability engineering workshops (ISSREW) (2016), IEEE,
pp. 132–139.

[95] Valov, P., Petkovich, J.-C., Guo, J., Fischmeister, S., and Czar-
necki, K. Transferring performance prediction models across differ-
ent hardware platforms. In Proc. Int’l Conf. on Performance Engineering
(ICPE) (2017), ACM, pp. 39–50.

[96] Velez, M., Jamshidi, P., Sattler, F., Siegmund, N., Apel, S., and
Kästner, C. Configcrusher: Towardswhite-box performance analysis
for configurable systems. Automated Software Engineering 27 (2020),
265âĂŞ300.

[97] Velez, M., Jamshidi, P., Siegmund, N., Apel, S., and Kästner, C.
White-box analysis over machine learning: Modeling performance of
configurable systems. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE) (2021), IEEE, pp. 1072–1084.

[98] Velez, M., Jamshidi, P., Siegmund, N., Apel, S., and Kästner, C.
On debugging the performance of configurable software systems:
Developer needs and tailored tool support. In 2022 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE) (2022).

[99] Wang, S., Li, C., Hoffmann, H., Lu, S., Sentosa, W., and Kistijan-
toro, A. I. Understanding and auto-adjusting performance-sensitive
configurations. ACM SIGPLAN Notices 53, 2 (2018).

[100] Whitaker, A., Cox, R. S., Gribble, S. D., et al. Configuration debug-
ging as search: Finding the needle in the haystack. In OSDI (2004),
vol. 4, pp. 6–6.

[101] Wu, F., Weimer, W., Harman, M., Jia, Y., and Krinke, J. Deep
parameter optimisation. In Proc. of the Annual Conference on Genetic
and Evolutionary Computation (2015), ACM, pp. 1375–1382.

[102] Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. The causal-neural
connection: Expressiveness, learnability, and inference.

[103] Xu, T., Jin, X., Huang, P., Zhou, Y., Lu, S., Jin, L., and Pasupathy,
S. Early detection of configuration errors to reduce failure damage.
USENIX Association, pp. 619–634.

[104] Zhang, J., Renganarayana, L., Zhang, X., Ge, N., Bala, V., Xu, T.,
and Zhou, Y. Encore: Exploiting system environment and correlation
information for misconfiguration detection. In Proceedings of the 19th
international conference on Architectural support for programming
languages and operating systems (2014), pp. 687–700.

[105] Zhang, S., and Ernst, M. D. Automated diagnosis of software
configuration errors. In 2013 35th International Conference on Software
Engineering (2013).

[106] Zhang, Y., He, H., Legunsen, O., Li, S., Dong, W., and Xu, T. An
evolutionary study of configuration design and implementation in
cloud systems. In Proceedings of International Conference on Software
Engineering (2021), ICSE’21.

[107] Zitzler, E., Brockhoff, D., and Thiele, L. The hypervolume in-
dicator revisited: On the design of pareto-compliant indicators via
weighted integration. In International Conference on Evolutionary
Multi-Criterion Optimization (2007), Springer, pp. 862–876.

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

.

A Artifact Appendix

DOI: doi:10.5281/zenodo.6360540
Code: https://github.com/softsys4ai/unicorn

This appendix provides additional information regarding
the tool that we have developed for evaluating Unicorn. In
this section, we call this tool UnicornTool. In addition, we
describe the steps using our UnicornTool to reproduce the
results reported in §7, §8, and §9. We provide the source code
and data in a publicly accessible GitHub repository that can
be tested on any hardware once the software dependencies
are met.

A.1 Description
Unicorn is used for performing tasks such as performance
optimization and performance debugging in both offline and
online modes.
• In the offline mode, UnicornTool can be run on any device
that uses previously measured configurations.

• In the online mode, the performance metrics are mea-
sured directly on the hardware on which the underlying
configurable system is deployed, while the experiments
are running. In the experiments, we have used TX2 and
Xavier. To collect measurements from these devices, sudo
privilege is needed, as it requires setting a device to a new
configuration before measurement.

A.2 Setup

A.2.1 SoftwareDependencies UnicornTool is implement-
ed by integrating and building on top of several existing tools
(see Fig. 18):
• semopy for predictions with causal models.
• ananke and causality for estimating the causal effects.
• causal-learn for structure learning.

A.2.2 Hardware Dependencies UnicornTool is imple-
mented both in offline and online modes. There are no par-
ticular hardware dependencies to run UnicornTool in offline
mode. To run UnicornTool in online mode, we used hard-
ware that has sensors for performance measurements. In
particular, we used TX1, TX2, and Xavier with Jetpack 4.3
and Ubuntu 20.04 LTS.

A.2.3 Installation We use docker-compose to install the
necessary software required to run UnicornTool. The nec-
essary steps to install the dependencies and third-party li-
braries used to test our approach can be done with the fol-
lowing commands.
git clone git@github.com:softsys4ai/unicorn.git
cd unicorn
docker-compose up --build --detach

5- Estimate
Causal Queries

2- Learn Causal
Performance Model

Perf. Data

1- Specify
Performance Query

4- Update Causal
Performance Model

Causal
Inference
Engine

3- Determine
Next Configuration

Data flow
Stage

Ananke

[Estimating average
causal effects of
options to objective]

Causality

[Estimating individual
causal effects and
counterfactual queries]

causal-learn

[Learning causal
model from data]

semopy

[Performance prediction
with the learned causal
performance model]

[Model
update]

Tools

Uses

[Tool used for]

Figure 18. Toolchain in UnicornTool.

Once this step is completed, UnicornTool is ready to be
tested.

A.3 Data
All the datasets required to run experiments are already
included in the ./unicorn/data directory.

A.4 Major Claims
We make the following major claims in our paper:
• Unicorn can be used to detect root causes of non-functional
performance (latency and energy) faults with higher accu-
racy and gain.

• Unicorn can support performing downstream performance
tasks such as performance optimization.

• The causal performance models are transferable across
environments (different workload or hardware) and can
be efficiently re-used from the source environment where
it is trained to a target environment.

A.5 Experiments
We run the following experiments to support our claims.

A.5.1 E1: PerformanceDebuggingExperiment To sup-
port the claim of efficiency of Unicorn in debugging non-
functional faults, we reproduce energy faults results for Xcep-
tion in Nvidia Jeston Xavier from Table 2a. Our initial
study discovered 29 energy faults for Xception in Nvidia
Jetson Xavier, that is 12% of the faults reported in Table 2a.
This would require 1.5 hours to run the experiments in of-
fline mode and 11 hours to run the experiments in online
mode.
Execution. To run UnicornTool on a single bug, execute
the following command:
docker-compose exec unicorn python \\
./tests/run_unicorn_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online -i 0

doi:10.5281/zenodo.6360540
https://github.com/softsys4ai/unicorn
https://semopy.com/
https://ananke.readthedocs.io/en/latest/
https://github.com/akelleh/causality
https://github.com/cmu-phil/causal-learn

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

To run UnicornTool and other debugging baselines re-
ported in this paper on all the bugs, please use the following
commands one by one:
docker-compose exec unicorn python \\
./tests/run_unicorn_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online

docker-compose exec unicorn python \\
./tests/run_baseline_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online -b cbi

docker-compose exec unicorn python \\
./tests/run_baseline_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online -b encore

docker-compose exec unicorn python \\
./tests/run_baseline_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online -b bugdoc

Results. We save the evaluation metrics such as accuracy,
precision, recall, gain, and time required for debugging. A
separate plot is generated using the recommended fixes to
compare Unicorn with other baseline approaches with their
evaluation metrics. Note, in the offline mode the reported
time is different (usually less) from the main text as instead
of running the measurements online we reuse recorded mea-
surements. However, we can get a sense of the efficiency by
comparing the number of samples required to resolve a fault.

A.5.2 E2: PerformanceOptimizationExperiment Uni-
corn supports can support performing downstream perfor-
mance tasks such as performance optimization. To support
this claim, we reproduce single-objective latency optimiza-
tion results reported in Fig. 15 (a). This experiment would
require around 1.5 hours to complete in the offline mode
and 4 hours to complete in the online mode. We also compare
the results with a baseline optimization approach, SMAC,
reported in the paper.
Execution. To run the experiment, we need to execute the
following commands:

docker-compose exec unicorn python \\
./tests/run_unicorn_optimization.py -o \\
inference_time -s Image -k TX2 \\
-m offline\online

docker-compose exec unicorn python \\
./tests/run_baseline_optimization.py -o \\
inference_time -s Image -k TX2 \\
-m offline\online -b smac

Results. We display the results similar to Fig. 15 (a) using
a line plot. Note that this experiment is run once without
repeating, so there are no error bars.

A.5.3 E3: Transferability Experiment. To support this
claim, we initially build a causal performance model to re-
solve the latency faults in Xavier and reuse the causal per-
formance model to resolve the latency faults in TX2. We only
use one bug to demonstrate this result. This would require 10
minutes to run the experiment in the offline mode and 25
minutes in the online mode.
Execution. The following command runs the experiments:
docker-compose exec unicorn python \\
./tests/run_unicorn_transferability.py -o \\
inference_time -s Image -k Xavier \\
-m offline\online

Results. The evaluation metrics, including accuracy, preci-
sion, recall, gain, and time required for debugging for differ-
ent scenarios reported in the paper are saved to a separate
CSV file after the experiments are over and plotted. Note
that the reported time is different from the time reported in
the main text in the offline mode.

A.6 Using UnicornTool with external data
We added instructions to describe the required steps to use
UnicornTool with any other external dataset.

A.7 Extending UnicornTool

We welcome any contribution for extending either Uni-
corn (see §11 for several possible future directions) and
UnicornTool for performance improvements or feature ex-
tensions.

https://github.com/softsys4ai/unicorn/blob/master/artifact/OTHERS.md

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

B Appendix
B.1 Causal Performance Modeling and Analyses:

Motivating Scenarios (Additional details)
Fig. 19 and Fig. 20 present additional scenarios where per-
formance influence models could produce incorrect expla-
nations. The regression terms presented here incorrectly
identify spurious correlations, whereas the causal model
correctly identifies the cause-effect relationships.
The performance behavior of regression models for con-

figurable systems varies when sample size varies. Fig. 21
shows the change of a number of stable terms and error
with different numbers of samples used for building a perfor-
mance influencemodel. Here, we vary the number of samples
from 50 to 1500 to build a source regression model. We use
a sample size of 2000 to build the target regression model.
We observe that regression models cannot be reliably used
in performance tasks, as they are sensitive to the number
of training samples. The results indicate that these model
classes as opposed to causal models cannot identify causal
variables underlying system performance, so depending on
the training sample, they try to find the best predictor to
increase the prediction power with the i.i.d. assumption that
does not hold in system performance. On the contrary, the
number of stable predictor’s variation is less in causal perfor-
mance models and leads to better generalization, as shown
in Fig. 22. In addition to the number of stable predictors, the
difference in error between source and target is negligible
when compared to the performance regression models.

Through-
put

Batch
Size

QoS

Figure 19. Performance influence model incorrectly identifies
Batch Size and QoS are positively correlated with the term
0.08 Batch Size×QoSwhereas they are unconditionally indepen-
dent. Causal model correctly identifies the dependence (no causal
connection) relationship between Batch Size and QoS (no arrow
between Batch Size and QoS).

Through-
put

CyclesCPU
Frequency

Figure 20. Causal model correctly identifies how CPU Frequency
causally influences Throughput via Cycles whereas the perfor-
mance influence model Throughput = 0.05 × CPU Frequency ×

Cycles identified incorrect interactions.

Extraction of predictor terms from the causal perfor-
mance model. The constructed causal performance models

have performance objective nodes at the bottom (leaf nodes)
and configuration options nodes at the top level. The inter-
mediate levels are filled with the system events. To extract
a causal term from the causal model, we backtrack starting
from the performance objective until we reach a configura-
tion option. If there is more than one path through a system
event from performance objective to configuration options,
we consider all possible interactions between those configu-
ration options to calculate the number of causal terms.

50 100 500 1000 1500 2000
0

20

40

60

Number of Samples

T
er
m
s

Common terms (Source → Target) Total terms (Source)
Error (Source) Error (Source → Target)

30

60

90

Regression Models

M
A
P
E
(%

)

Figure 21. Performance influence models relying on correlational
statistics are not stable as new samples are added and do not gener-
alize well. Common terms refers to the individual predictors (i.e.,
options and interactions) in the performance models that are similar
across envirnments.

50 100 500 1000 1500 2000
0

20

40

Number of Samples

T
er
m
s

Common terms (Source → Target) Total terms (Source)
Error (Source) Error (Source → Target)

30

60

90

Regression Models

M
A
P
E
(%

)

Figure 22. Causal performance models are relatively more stable
as new samples are added and do generalize well.

B.2 Unicorn (Additional details)
Note, if X is a continuous variable, we would replace the
summation of ACE with an integral. For the entire path, we
extend it as:

PathACE =
1
K

·
∑

ACE(Z ,X) ∀X ,Z ∈ path (1)

Eq. (1) represents the average causal effect of the causal path.
The configuration options that lie in paths with larger PACE
tend to have a greater causal effect on the corresponding
non-functional properties in those paths. We select the topK
paths with the largest PACE values, for each non-functional
property. In this paper, we use K=3 to 25, however, this may
be modified in our replication package.

Counterfactual queries can be different for different tasks.
For debugging, we use the top K paths to (a) identify the
root cause of non-functional faults; and (b) prescribe ways
to fix the non-functional faults. Similarly, we use the top

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

Table 8. Linux OS/Kernel configuration options.

Configuration Options Option Values/Range
vm.vfs_cache_pressure 1, 100, 500
vm.swappiness 10, 60, 90
vm.dirty_bytes 30, 60
vm.dirty_background_ratio 10, 80
vm.dirty_background_bytes 30, 60
vm.dirty_ratio 5, 50
vm.nr_hugepages 0, 1, 2
vm.overcommit_ratio 50, 80
vm.overcommit_memory 0, 2
vm.overcommit_hugepages 0, 1, 2
kernel.cpu_time_max_percent 10 - 100
kernel.max_pids 32768, 65536
kernel.numa_balancing 0, 1
kernel.sched_latency_ns 24000000, 48000000
kernel.sched_nr_migrate 32, 64, 128
kernel.sched_rt_period_us 1000000, 2000000
kernel.sched_rt_runtime_us 500000, 950000
kernel.sched_time_avg_ms 1000, 2000
kernel.sched_child_runs_first 0, 1
Swap Memory 1, 2, 3, 4 (GB)
Scheduler Policy CFP, NOOP
Drop Caches 0, 1, 2, 3

Table 9. Hardware configuration options.

Configuration Options Option Values/Range
CPU Cores 1 - 4
CPU Frequency 0.3 - 2.0 (GHz)
GPU Frequency 0.1 - 1.3 (GHz)
EMC Frequency 0.1 - 1.8 (GHz)

Table 10. Performance system events and tracepoints.

System Events
Context Switches
Major Faults
Minor Faults
Migrations
Scheduler Wait Time
Scheduler Sleep Time
Cycles
Instructions
Number of Syscall Enter
Number of Syscall Exit
L1 dcache Load Misses
L1 dcache Loads
L1 dcache Stores
Branch Loads
Branch Loads Misses
Branch Misses
Cache References
Cache Misses
Emulation Faults
Tracepoint Subsystems
Block
Scheduler
IRQ
ext4

Table 4. Mapping between configuration options and op-
tions indexes. Only a subset of configuration options are
shown here.

Option Configuration Option Configuration
Index Options Index Options
0 Swap Memory 14 kernel.numa_balancing
1 Scheduler Policy 15 kernel.sched_latency_ns
2 Drop Caches 16 kernel.sched_nr_migrate
3 Batch Size 17 kernel.sched_rt_period_us
4 Bitrate 18 kernel.sched_rt_runtime_us
5 Buffer Size 19 kernel.sched_time_avg_ms
6 CPU Freqeuncy 20 kernel.sched_child_runs_first
7 GPU Frequency 21 vm.vfs_cache_pressure
8 EMC Frequency 22 vm.swappiness
9 CPU Cores 23 Enable Padding
10 vm.overcommit_memory 24 vm.dirty_background_ratio
11 vm.overcommit_hugepages 25 vm.dirty_background_bytes
12 kernel.cpu_time_max_percent 26 vm.dirty_ratio
13 kernel.max_pids 27 vm.nr_hugepages

Table 5. Configuration options in Xception, Bert, and
Deepspeech.

Configuration Options Option Values/Range
Memory Growth -1, 0.5, 0.9
Logical Devices 0, 1

Table 6. x264 software configuration options.

Configuration Options Option Values/Range
CRF 13, 18, 24, 30
Bit Rate 1000, 2000, 2800, 5000
Buffer Size 6000, 8000, 20000
Presets ultrafast, veryfast, faster

medium, slower
Maximum Rate 600k, 1000k
Refresh OFF, ON

Table 7. SQLite software configuration options.

Configuration Options Option Values/Range
PRAGMA TEMP_STORE DEFAULT, FILE, MEMORY
PRAGMA JOURNAL_MODE DELETE, TRUNCATE,PERSIST,MEMORY, OFF
PRAGMA SYNCHRONOUS FULL, NORMAL, OFF
PRAGMA LOCKING_MODE NORMAL, EXCLUSIVE
PRAGMA CACHE_SIZE 0, 1000, 2000, 4000, 10000
PRAGMA PAGE_SIZE 2048, 4096, 8192
PRAGMA MAX_PAGE_COUNT 32, 64
PRAGMA MMAP_SIZE 30000000000, 60000000000,

K paths to identify the options that can improve the non-
functional property values near-optimal. For both tasks, a
developer may ask specific queries to Unicorn and expect

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

Table 11. Deepstream software configuration options.

Component Configuration Options Option Values/Range
CRF 13, 18, 24, 30
Bitrate 1000, 2000, 2800, 5000
Buffer Size 6000, 8000, 20000

Decoder Presets ultrafast, veryfast, faster
medium, slower

Maximum Rate 600k, 1000k
Refresh OFF, ON
Batch Size 0 - 30
Batched Push Timeout 0 - 20
Num Surfaces per Frame 1, 2, 3, 4

Stream Mux Enable Padding 0, 1
Buffer Pool Size 1 - 26
Sync Inputs 0, 1
Nvbuf Memory Type 0, 1, 2, 3
Net Scale Factor 0.01 - 10
Batch Size 1 - 60
Interval 1 - 20
Offset 0, 1

Nvinfer Process Mode 0, 1
Use DLA Core 0, 1
Enable DLA 0, 1
Enable DBSCAN 0, 1
Secondary Reinfer Interval 0 - 20
Maintain Aspect Ratio 0, 1
IOU Threshold 0 - 60
Enable Batch Process 0, 1

Nvtracker Enable Past Frame 0, 1
Compute HW 0, 1, 2, 3, 4

an actionable response. For debugging, we use the example
causal graph of where a developer observes low FPS and high
energy, i.e., a multi-objective fault, and has the following
questions:
? “What are the root causes ofmymulti-objective (FPS
and Energy) fault?” To identify the root cause of a non-
functional fault, we must identify which configuration op-
tions have the most causal effect on the performance ob-
jective. For this, we use the steps outlined in §4 to extract
the paths from the causal graph and rank the paths based
on their average causal effect (i.e., PathACE from Eq. (1)) on
latency and energy. We return the configurations that lie on
the top K paths. For example, in Fig. 6 we may return (say)
the following paths:
• Batch Size Cache Misses FPS and Energy
• Enable Padding Cache Misses FPS and Energy

and the configuration options BatchSize, and Enable
Padding being the probable root causes.
? “How to improvemy FPS and Energy?” To answer this
query, we first find the root causes as described above. Next,
we discover what values each of the configuration options
must take in order that the new FPS and Energy is better
(high FPS and low Energy) than the fault (low FPS and high
Energy). For example, we consider the causal path Batch
Size Cache Misses FPS and Energy, we identify
the permitted values for the configuration options Batch
Size that can result in a high FPS and energy (Y low) that
is better than the fault (Yhigh). For this, we formulate the

following counterfactual expression:
Pr(Y low

r epair |¬r epair, Y
high
¬r epair) (2)

Eq. (2) measures the probability of “fixing” the latency fault
with a “repair” (Y low

r epair) given that with no repair we ob-
served the fault (Y high

¬r epair). In our example, the repairs would
resemble Batch Size=10. We generate a repair set (R1),
where the configurations Batch Size is set to all permissi-
ble values, i.e.,

R1 ≡
⋃

{Batch Size = x , ...} ∀x ∈ Batch Size (3)

observe that, in the repair set (R1) a configuration option
that is not on the path Batch Size Cache Misses
FPS and Energy is set to the same value of the fault. For
example, Bit Rate is set to 2 or Enable Padding is set to
1. This way we can reason about the effect of interactions
between Batch Size with other options, i.e., Bit Rate,
Buffer Size. Say Buffer Size or Enable padding were
changed/recommended to set at any other value than the
fault in some previous iteration, i.e., 20 or 0, respectively.
In that case, we set BufferSize and Enable padding=0.
Similarly, we generate a repair set R2 by setting Enable
Paddingto all permissible values.

R2 ≡
⋃

{Enable padding = x , ...} ∀x ∈ Enable padding (4)

Now, we combine the repair set for each path to construct
a final repair set R = R1 ∪ . . . ∪ Rk . Next, we compute the
Individual Causal Effect (ICE) on the FPS and Energy (Y) for
each repair in the repair set R. In our case, for each repair
r ∈ R, ICE is given by:

ICE(r) = Pr(Y low
r | ¬r, Yhigh

¬r) − Pr(Yhigh
r | ¬r, Yhigh

¬r) (5)

ICE measures the difference between the probability that
FPS and Energy is low after a repair r and the probability
that the FPS and Energy is still high after a repair r . If this
difference is positive, then the repair has a higher chance
of fixing the fault. In contrast, if the difference is negative,
then that repair will likely worsen both FPS and Energy.
To find the most useful repair (Rbest), we find a repair with
the largest (positive) ICE, i.e., Rbest = argmax∀r ∈ R[ICE(r)].
This provides the developer with a possible repair for the
configuration options that can fix the multi-objective FPS
and Energy fault.
Remarks. The ICE computation of Eq. (5) occurs only on the
observational data. Therefore, we may generate any number
of repairs and reason about them without having to deploy
those interventions and measure their performance in the
real world. This offers significant runtime benefits.

B.3 Evaluation (Additional details)

B.3.1 Experimental setup We used the following four
components for Deepstream implementation:
• Decoder: For the decoder, we use x264. It uses the x264
and takes the encoded H.64, VP8, VP9 streams, and pro-
duces an NV12 stream.

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

Table 13. Hyperparameters for FCI used in Unicorn.

Hyperparameters Value
depth -1
testId fisher-z-test
maxPathLength -1
completeRuleSetUsed False

Latency Energy

Migrations Context
Switches

Cache
Misses

CUDA
Static

CPU
Cores

GPU
Frequency

CPU
Frequency

EMC
Frequency

Swappiness Cache
References

Figure 23. Causal graph used to resolve the latency fault in the
real world case study in section 5

Table 12. Hyperparameters for DNNs used in Unicorn.

Architecture Hyperparameters Option Values
Number of Filters Entry flow 32
Filter Size Entry Flow (3 × 3)
Number of Filters Middle Flow 64
Filter Size Middle Flow (3 × 3)

Xception Number of Filters Exit Flow 728
Filter Size Exit Flow (3 × 3)
Batch Size 32
Number of Epochs 100
Dropout 0.3
Maximum Batch Size 16

Bert Maximum Sequence Length 13
Learning Rate 1e−4
Weight Decay 0.3
Dropout 0.3
Maximum Batch Size 16

Deepspeech Maximum Sequence Length 32
Learning Rate 1e−4
Number of Epochs 10

• Stream Mux: The streammux module takes the NV12
stream and outputs the NV12 batched buffer with informa-
tion about input frames, including the original timestamp
and frame number.

• Nvinfer: For object detection and classification, we use
the TrafficCamNet model that uses ResNet 18 architecture.
This model is pre-trained in 4 classes on a dataset of 150k
frames and has an accuracy of 83.5% for detecting and
tracking cars from a traffic camera’s viewpoint. The 4
classes are Vehicle, BiCycle, Person, and Roadsign. We use

the Keras (Tensorflow backend) pre-trained model from
TensorRT.

• Nvtracker: The plugin accepts NV12- or RGBA-formated
frame data from the upstream component and scales (con-
verts) the input buffer to a buffer in the format required
by the low-level library, with tracker width and height.
NvDCF tracker uses a correlation filter-based online dis-
criminative learning algorithm as a visual object tracker
while using a data association algorithm for multi-object
tracking.

Configuration options, events, and hyperparameters
used for evaluation. Table 11, Table 5, Table 6, and Table 7,
show different software configuration options and their val-
ues for different systems considered in this paper. Table 8
shows the OS/kernel level configuration options and their
values for different systems considered in this paper. Addi-
tionally, Table 10 shows the performance events considered
in this paper. The hyperparameters considered for Xception,
Bert, and Deepspeech are shown in Table 12.

B.3.2 Case Study. Fig. 23 shows the causal graph to re-
solve the real-world latency fault.

B.3.3 Effectiveness. Table 14(a) shows the effectiveness
of Unicorn in resolving single objective faults due to heat
in NVIDIA TX1. Here, Unicorn outperforms correlation-
based methods in all cases. For example, in Bert on TX1,
Unicorn achieves 9% more accuracy, 11% more precision,
and 10% more recall compared to the next best method, Bug-
Doc. We observed heat gains as high as 7% (2% more than
BugDoc) on x264. The results confirm that Unicorn can rec-
ommend repairs for faults that significantly improve latency
and energy usage. Applying the changes to the configura-
tions recommended by Unicorn increases the performance
drastically.
Unicorn can resolve misconfiguration faults significantly

faster than correlation-based approaches. In Table 14, the last
two columns indicate the time taken (in hours) by each ap-
proach to diagnosing the root cause. Unicorn can do resolve
faults significantly faster, e.g., Unicorn is 13× faster in diag-
nosing and resolving latency and heat faults for Deepspeech.

B.3.4 Transferability. Table 15 indicates the results for
different transfer scenarios: (I) We learn a causal model from
TX1 and use them to resolve the latency faults in TX2, (I) We
learn a causal model from TX2 and use them to resolve the
energy faults in Xavier, and (III) We learn a causal model
from Xavier and use them to resolve the heat faults in TX1.
Here, we determine how transferable is Unicorn by com-
paring with Unicorn (Reuse), Unicorn +25, and Unicorn
(Rerun). For all systems, we observe that the performance
of Unicorn (Reuse) is close to the performance of Unicorn
(Rerun) which confirms the high transferability property of
Unicorn. For example, in Xception and SQLite, Unicorn
(Reuse) has the exact gain as of Unicorn (Rerun) for heat

EuroSys ’22, April 5–8, 2022, RENNES, France Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray, and Pooyan Jamshidi

Table 14. Efficiency of Unicorn compared to other approaches. Cells highlighted in blue indicate improvement over faults and red
indicate deterioration. Unicorn achieves better performance overall and is much faster.

(a) Single objective performance fault for heat in TX1.

Accuracy Precision Recall Gain Time†

U
n
ic
or

n

CB
I

D
D

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

D
D

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

D
D

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

D
D

En
Co

re

Bu
gD

oc

U
n
ic
or

n

O
th
er
s

Xception 69 63 57 64 65 75 56 56 60 66 68 62 58 64 69 4 3 2 2 3 0.6 4
BERT 71 62 61 61 62 72 56 59 56 61 72 65 62 67 62 5 3 2 2 3 0.4 4
Deepspeech 71 61 64 62 67 71 58 59 54 68 69 67 66 68 67 3 3 2 2 2 0.7 4H

ea
t

x264 74 65 57 64 65 74 62 54 55 65 74 66 63 68 69 7 3 2 2 5 1.4 4

(b)Multi-objective non-functional faults for Heat, Latency in TX2.

Accuracy Precision Recall Gain (Latency) Gain (Heat) Time†

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

O
th
er
s

Xception 62 52 55 57 69 57 50 61 61 48 51 60 58 42 47 51 2 1 1 1 0.9 4
BERT 64 52 47 56 62 52 45 60 68 54 62 65 65 37 48 60 4 3 2 3 0.4 4
Deepspeech 62 52 43 55 60 48 48 55 67 58 41 59 69 37 45 65 4 1 1 4 0.3 4

La
te
nc
y
+

H
ea
t

x264 61 53 53 60 63 50 54 61 60 53 55 55 67 54 54 65 5 3 3 4 0.5 4

(c)Multi-objective non-functional faults for Energy, Heat in Xavier.

Accuracy Precision Recall Gain (Energy) Gain (Heat) Time†

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

O
th
er
s

Xception 65 55 57 63 64 55 51 62 67 47 53 60 58 44 51 54 3 1 1 1 0.8 4
BERT 69 55 51 59 65 53 47 61 71 53 61 67 65 41 51 61 4 2 2 3 0.4 4
Deepspeech 72 55 49 61 73 51 51 61 71 57 53 64 69 47 51 64 4 1 1 3 0.3 4

En
er
gy

+
H
ea
t

x264 72 59 57 66 71 51 55 62 69 61 59 59 67 51 51 61 5 2 3 4 0.5 4

(d) Multi-objective non-functional faults for Energy, Heat, and Latency in TX2.

Accuracy Precision Recall Gain (Latency) Gain (Energy) Gain (Heat) Time†

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

CB
I

En
Co

re

Bu
gD

oc

U
n
ic
or

n

O
th
er
s

Image 76 57 48 66 68 61 57 61 81 53 46 70 62 33 30 42 52 23 18 24 4 1 0 0 0.1 4
x264 80 59 47 54 76 61 56 63 81 56 46 51 12 2 1 2 15 4 2 4 4 1 0 1 0.1 4A

ll

Th
re
e

SQLite 73 56 51 53 68 59 56 60 78 54 45 51 12 1 1 4 8 4 2 5 1 1 -1 -1 0.1 4
† Wallclock time in hours

faults. For latency and energy faults, the main difference
between Unicorn (Reuse) and Unicorn (Rerun) is less than
5% for all systems. We also observe that with little updates,
Unicorn +25 (∼24 minutes) achieves a similar performance
of Unicorn (Rerun) (∼40 minutes), on average. This con-
firms that as the causal mechanisms are sparse, the causal
performance model from source in Unicorn quickly reaches
a fixed structure in the target using incremental learning
by judiciously evaluating the most promising fixes until the
fault is resolved.

B.3.5 Scalability. The scalability of Unicorn depends on
the scalability of each phase. Therefore, we design scenarios
to test the scalability of each phase to determine the over-
all scalability. Since the initial number of samples and the
underlying phases for each task is the same, it is sufficient
to examine the scalability of Unicorn for the debugging
non-functional fault task.
SQLite was chosen because it offers a large number of

configurable options, much more than neural applications,
and video encoders. Further, each of these options can take

Unicorn: Reasoning about Configurable System Performance through the Lens of Causality EuroSys ’22, April 5–8, 2022, RENNES, France

Table 15. Transferring causal models across hardware platforms.
Cells highlighted in blue indicate the transferability potential of
Unicorn when compared to Unicorn (Rerun).

TX1 (source) −→ TX2 (target)

Accuracy Recall Precision ∆дain

Software U
ni
co

rn
(R
eu

se
)

U
ni
co

rn
+2

5

U
ni
co

rn
(R
er
un

)

U
ni
co

rn
(R
eu

se
)

U
ni
co

rn
+2

5

U
ni
co

rn
(R
er
un

)

U
ni
co

rn
(R
eu

se
)

U
ni
co

rn
+2

5

U
ni
co

rn
(R
er
un

)

U
ni
co

rn
(R
eu

se
)

U
ni
co

rn
+2

5

U
ni
co

rn
(R
er
un

)

La
te
nc
y

Xception 52 83 86 70 79 86 46 78 83 46 71 82
Bert 55 75 81 57 70 71 45 67 76 43 70 74
Deepspeech 45 71 81 56 79 81 49 73 76 54 73 76
x264 57 79 83 70 75 78 58 77 82 45 73 85

TX2 (source) −→ Xavier (target)

En
er
gy

Xception 53 74 84 48 73 80 51 69 78 43 73 83
Bert 50 61 66 53 71 79 49 66 70 40 55 62
Deepspeech 57 70 73 45 74 78 43 69 75 49 71 78
x264 54 72 77 46 72 78 42 75 83 46 79 87

Xavier (source) −→ TX1 (target)

H
ea
t

Xception 63 64 69 61 67 68 58 74 75 3 4 4
Bert 55 65 71 59 67 72 52 64 72 3 4 5
Deepspeech 57 64 71 59 63 69 53 63 71 1 2 3
x264 51 65 74 53 64 74 54 69 74 3 5 7

on a large number of permitted values, making Deepstream
a useful candidate to study the scalability of Unicorn. Deep-
stream was chosen as it has a higher number of compo-
nents than others, and it is interesting to determine how
Unicorn behaves when the number of options and events
are increasing. As a result, SQLite exposes new system de-
sign opportunities to enable efficient inference and many
complex interactions between software options.

In large systems, there are significantly more causal paths
and therefore, causal learning and estimations of queries

take more time. However, with as many as 242 configuration
options and 19 events (Table 3, row 2), causal graph discovery
takes roughly one minute, evaluating all 2234 queries takes
roughly two minutes, and the total time to diagnose and fix a
fault is roughly 22minutes for SQLite. This trend is observed
even with 242 configuration options, 288 events (Table 3, row
3), and finer granularity of configuration values—the time re-
quired to causal model recovery is a little over 1 minute and
the total time to diagnose and fix a fault is less than 2 hours.
Similarly, in Deepstream, with 53 configuration options and
288 events, causal model discovery is less than two minutes
and the time needed to diagnose and fix a fault is less than an
hour. The results in Table 3 indicate that Unicorn can scale
to a much larger configuration space without an exponential
increase in runtime for any of the intermediate stages. This
can be attributed to the sparsity of the causal graph (average
degree of a node for SQLite in Table 3 is at most 3.6, and it
reduces to 1.6 when the number of configurations increase
and reduces from 3.1 to 2.3 in Deepstream when systems
events are increased). This makes sense because not all vari-
ables (i.e., configuration options and/or system events) affect
non-functional properties and a high number of variables in
the graph end up as isolated nodes. Therefore, the number
of paths and consequently the evaluation time do not grow
exponentially as the number of variables increases.

Finally, the latency gain associatedwith repairs from larger
configuration space with configurations was similar to the
original space of 34 and 53 configurations for SQLite and
Deepstream, respectively. This indicates that: (a) imparting
domain expertise to select most important configuration op-
tions can speed up the inference time of Unicorn, and (b) if
the user chooses instead to use more configuration options
(perhaps to avoid initial feature engineering), Unicorn can
still diagnose and fix faults satisfactorily within a reasonable
time.

	Abstract
	1 Introduction
	2 Motivating Scenarios
	3 Causal Reasoning for Systems
	4 Unicorn
	5 Case Study
	6 Evaluation
	7 Effectiveness and Sample Efficiency
	8 Transferability
	9 Scalability
	10 Related Work
	11 Limitations and Future Directions
	12 Conclusion
	References
	A Artifact Appendix
	A.1 Description
	A.2 Setup
	A.3 Data
	A.4 Major Claims
	A.5 Experiments
	A.6 Using UnicornTool with external data
	A.7 Extending UnicornTool

	B Appendix
	B.1 Causal Performance Modeling and Analyses: Motivating Scenarios (Additional details)
	B.2 Unicorn (Additional details)
	B.3 Evaluation (Additional details)

